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Abstract

We prove that given a set X of two nonempty words, a set ¥ of nonempty words
commutes with X if and only if either Y is a union of powers of X or X,Y C tt for some
primitive word t. We also show that the same holds for certain special types of codes, but
does not hold in general for sets of cardinality at least four.

1 Introduction

This note deals with a special case of the following general problem. Given a subset of a free
semigroup describe, if possible, all subsets which commute with it. We solve the problem
when the given subset has exactly two elements.

A simple sufficient condition under which two arbitrary elements of an associative algebra
commute is when the two elements belong to the subalgebra generated by a third element.
In favorable situations this condition is also necessary. This is precisely what happens for
polynomials and series of noncommuting variables over a field with Bergman’s Theorem [5],
for words in free monoids with the Defect Theorem, elements in free groups and under some
restrictions for matrices, [9, p. 222]. In other cases the condition is not necessary but similar
conditions are, see [3].

A few words on what is already known in the literature concerning subsets of free semi-
groups are appropriate. When the subset is a prefix (no element is a prefix of another) the
problem was settled in a very nice paper, [14]. The author left as a conjecture that the general
case of codes is not substantially different and gave some evidence of it. We give an example
showing that for arbitrary subsets the above condition fails to be necessary.

Let us mention a related problem which does not seem to have received an answer yet. It
is straightforward to verify that given a subset of the free semigroup, there exists a unique
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maximal subset which commutes with it, called its centralizer. The question was raised by
Conway in [6], whether or not the centralizer of a rational subset of a free semigroup is itself
rational. To our knowledge this question is still open. Our result can be viewed as a solution
of Conway’s problem for two element sets.

Actually, Conway’s problem was originally formulated for free monoids and not for free
semigroups, and there is no reason why these two variants should be related. Indeed, we give
an example of a finite set such that its centralizers with respect to the free monoid and to
the free semigroup are not the same modulo the empty word, see Example 4 in Section 4.

Our contribution is mainly to prove that when a subset X of a free semigroup has two
elements then a subset commutes with X if and only if it is a union of subsets of the form
X, for some nonnegative integer i € N. Thus we give an affirmative answer to a question
proposed in [15]. We achieve this goal by resorting to a result from the theory of equations
in words which can be thought of as an extension of the well celebrated defect theorem.
Another important part of our contribution is to give a family of counterexamples in the
case of subsets of four or more elements. This last result illustrates that the preceding result
cannot be extended to the general case. However, we can extend it to certain special classes
of codes, such as elementary codes or synchronizing ones, cf. [15] and [1].

2 Preliminaries

In this section we fix our terminology and recall tools needed in our considerations. Our
results, as discussed more in Section 6, are more natural to state in the framework of free
semigroups than that of free monoids. Consequently, we have chosen the terminology of free
semigroups, and hence, finite set X is assumed to consist of nonempty words only, unless
otherwise stated.

2.1 Free monoids and semigroups

We fix a finite alphabet A and denote by AT (resp. A*) the free semigroup (resp. monoid)
it generates. An element z of A* is a finite word, its length is denoted by |z|. The word of
length 0, denoted by 1, is the unit of A*. A word z is a prefiz (resp. suffiz) of a word y if
there exists a word z satisfying y = zz (resp. y = zz). We also denote by A“ (resp. “A) the
set of infinite words; i.e, left to right (resp. right to left) infinite sequences of elements in A,
and by “A“ the set of bi-infinite words. For a given set of finite words X, an X -faclorization
of a word w (finite, infinite or bi-infinite) is any sequence (finite, infinite or bi-infinite) of
elements of X yielding w as their product. A periodic word is a word that admit an X-
factorization for a singleton X. Notice that for nonperiodic words it is not possible to shift a
factorization over the word, whereas this might be the case for bi-infinite periodic words like
...abab - abab - abab. ... The set of all nonempty prefixes and suffixes of a set X are denoted
by Pref(X) and Suff(X), respectively.

We equip the power set of AT (or A*) with the subset product defined by X -Y = {z -y |
z € X,y €Y} Asubset X C A* is a code if it generates unambiguously its submonoid, i.e.,

if for all integers n, m and all words z;,y; € X, ¢=1,...,n, 7 = 1,...,m, the condition
T1...Ty = Y1...Yp implies n = m and x; = y; forall e =1,...,n. It is a prefizif z,zy € X
implies y = 1.



2.2 Equations

We will need some results concerning the theory of equations in free monoids. Here is the
minimal material necessary for our purpose. The interested reader may refer to [4] for a more
complete exposition of the subject. The idea is, given a set X of words, to state conditions
on relations satisfied by words so that these words may be expressed with as few parameters
as possible. The relations in question are stated in terms of one way infinite words. In [10],
they are stated in terms of two way infinite words.

Let = be a set of variables in one-to-one correspondence with a subset of nonempty words
X C AT, say & « x; for some fixed enumeration of X. An w-equation over the set Z is a pair
L(Z), R(Z), more traditionally denoted as L(Z) = R(Z) of infinite words in Z. The subset X
satisfies the equation L(Z) = R(Z), if whenever the z;’s are substituted for the &;’s, the two
handsides, as words in A%, are equal.

ExampLe 1 If = = {&,&2,&} with 1 = ab, x; = abe, x3 = cc, then zix% = w224 showing
that X satisfies the w-equation §&§ = £2£5 .

Assume X C AT satisfies a system of n w-equations of the form
E Li(E)=Ri(E),t=1,...,n (1)

Define the dependence graph of system FE as the nondirected graph G whose vertices are the
letters of = and whose edges are the pairs (£;,&) € = X = such that & and & are the first
letters of the left and right handsides of some equations of E. Then we have, see [4, Corollary
4.5]

Proposition 1 (Graph Lemma) Let E be a system and let X C AT be a subsel salisfying
it. If the dependence graph of E has p connected components then there exists a subset F' of
cardinality p such that X C F*.

Observe that in the example above we have X C {ab, c}*.

The main application of Proposition 1 is when p = 1 since in that case we may conclude
that all the words in X are powers of a same word. It should be clear how we will proceed
if we want to prove that the words of a set X are all powers of a same word: it will suffice
to find enough equations, possibly by introducing some new words, in such a way that the
corresponding graph satisfy the condition of the proposition.

This proposition was used effectively in [10] to derive a defect theorem for bi-infinite words,
which, in turn, is essential for some of our results. For our purpose this can be formulated as
follows:

Proposition 2 Let X C AT be a finite set of words over a finite alphabet. Then, if a
nonperiodic bi-infinite word w has two X -factorizations, then the combinatorial rank of X is
at most || X|| — 1, i.e. there exists a set F such that X C F* with ||F|| < || X]|-



3 Basic Properties

We state a few elementary properties of commuting subsets that actually apply to arbitrary
semigroups. Let X C AT be a subset. There exists the maximal subset Z C AT which
commutes with X. Indeed, 71X = X7, and 72X = X Z; imply (Z1 4+ Z3) X = X (Z1 + Z3).
Furthermore, this maximal subset is a subsemigroup, and it clearly contains the subsemigroup
X7 generated by X. We summarize these remarks as follows:

Proposition 3 Given a subset X C A" there exists a mazimal subset (for set inclusion) that
commutes with X . It is a subsemigroup conlaining X T.

We define the centralizer of X as this maximal subset Z and we denote it by Z(X). We
can give some easy bounds for this set:

Proposition 4 Given a subset X C AT, the following inclusions hold:

XT C Z(X) C Pref(X+) N Suff(XT).

Proof. The first inclusion is already mentioned above. Consider the second inclusion. Take
a word z in Z(X). Let 2o be a word in X. As Z(X)- X!l = Xl . Z(X) we can assert:

22l ¢ xll z(x)

From this we conclude that z € Pref(X*). By symmetric reasons, z € Suff(X). |

Notice that all the notions, like a centralizer, that we defined for semigroups can be defined
similarly for monoids as discussed more in Section 6. But, in addition to straightforward
interpretations of our results to the monoid case we would have only trivial results, like the
one showing that the largest monoid commuting with a set X C A* containing the empty
word is always the whole monoid A*. Moreover, there is no hope to obtain a characterization
similar to that in Theorem 2 for sets of two words. Indeed, for X = {1,ab} this maximal
monoid is Y = {a,b}", and clearly X and Y are not expressible as unions of powers of a set.

For words (not subsets of words), it is well known that the commutation is equivalent to

other simple properties, cf. [4] or [11].

Proposition 5 Letz,y € A® be two arbitrary words. The following conditions are equivalent:
i) Ty =y,
ii) there exist two integers i,j such that x* = y/,
iii) there exist a word z and two integers i,j such that * = 2 and y = 27,
iv) x and y have a common prefiz of length |z| + |y| — ged(|z], |y|).

This ideal situation is rarely met in other structures but it is a good source of inspiration.
Of course, condition iv) known as Fine and Wilf’s periodicity property, see [8], does not
make sense in general. For subsets of free semigroups, which is the object of this note, the
commutation was studied under the hypothesis that one of the subsets is a code in [14].

Outside this framework, there is little hope of some precise statement, and certainly nothing
like Bergman’s Theorem holds, cf. [13]. Section 4 is an illustration of this.

For the sake of readability we introduce a logical condition P that expresses the property
encountered in above mentioned Bergman’s Theorem.



Definition 1 Let X be a set of nonempty words. We say that X satisfies P, or shortly that
P(X) is true, if and only if for every subset of nonempty words Y commuting with X, X and
Y are unions of powers of a same set.

The question whether P is satisfied for all finite languages was raised in [15], and will be
answered negatively in Section 4. However, the problem was affirmatively answered when X
is a prefix. Indeed, [14] proved the following:

Theorem 1 Given a prefiz code X C A* there exists a unique prefiz code Z such that for all
Y CA* Y -X =X Y holds if and only if there exist a subsel I C N and a number j such
that Y = (J;c; Z' and X = Z7. In other words, P is satisfied for prefiz codes.

When X is a general code the above referred paper inquires about the commutation of X
with another code, not just an arbitrary subset. Then the equivalence between conditions i)
and 2) of Proposition 5 still holds.

Another case when P (X)) holds, as essentially noted in [15], is the case when X is a subset
of tT for some word ¢:

Proposition 6 Let ¢ be a primitive word and X C t*, then Z(X) =t*.

Proof. It is clear that {T commutes with X, so we only need to prove that Z(X) C ¢+.
Let z € Z(X). By Proposition 4, z is a suffix of a word in tt, i.e. 2z = ut® where u is a
proper suffix of ¢ and ¢ > 0. If w # 1 then, by the relation zX C XZ(X), we conclude that
ut't’ = t*2' for some j, k > 1 and 2’ € Z(X). By comparing the prefixes of length [t| of the
two handsides we obtain ut; = t;u where ¢; is a prefix of ¢ of length |¢t| — |u|. Hence, ¢; and u
commutes and consequently are powers of the same word, see e.g. [4]. By the primitiveness
of t we obtain that v = 1. ]

From this result we derive the proof for the sets consisting of two nonempy commuting
words.

Corollary 1 Let X = {z,y}, with & and y two nonempty words satisfying xy = yx. There
exists a primilive word t € AT such that for all Z C A" we have ZX = XZ if and only if
X Ctt and Z =, t* for some I CN. In other words, P(X) is true.

Proof. Because of Proposition 5 there exists a unique length minimal word ¢ € AT such that
z,y € t*. By the previous proposition Z(X) = ¢* from which we deduce our result. [

4 Counterexamples
We first recall an example that was known by one of the authors for quite a long time:

ExampPLE 2 Consider X = {a, a®,b,ba,ab,aba}. Then Y = X U{a?} commutes with X but
the two subsets cannot be expressed as unions of powers of the same subset.

As we shall see in the next section the above example cannot be sharpened for two element
sets. Hence it is interesting to know what happens with larger subsets. In fact, we give here
a family of examples that solves this question for subsets of sizes five or more, and then give
an example of size four.



EXAMPLE 3 Given n > 5, and set k = [logy(n—1)|. Consider X = {a,b}* U X' with
X' C {a, b}%_1 such that || X|| = n. Then, as is straightforward to compute, ¥ = X U{a,b}
commutes with X, but the two subsets cannot be expressed as unions of powers of the same
sel.

Notice that for these sets Z(X) = {a,b}" holds, which is again eual to Pref(X*) N
Suff (X *). The next example will show that even when this intersection is a semigroup, it is
not necessary Z(X).

ExampLE 4 Consider X = {a,ab,ba,bb}. Then, as is again straightforward to see, ¥ =
X U X2 U {bab, bbb} commutes with X but the two subsets cannot be expressed as unions of
powers of the same set.

Indeed, we have Z(X) = {a,b}" \ {b}which is in particular different from Pref(X+) N
Suff(X+). However, Z(X) is finitely generated: Z(X) = {a, ab, ba, bb, bab, bbb}*. Notice also
that the largest monoid that commutes with X is A* # Z(X)U{1}, thus exhibiting a difference
between the semigroup and the monoid cases.

5 Main results

In this section we give some examples when the Bergman type characterization holds.

5.1 Subsets commuting with two words

This section is dedicated to the proof of one of our main results solving our problems for two
element sets. The following simple technical Lemma can be found in [14]. For the sake of
completeness we reproduce it here.

Lemma 1 Let X C AT be a code such that Z(X) = Xt and let Y C At commute with X.
Ify e Y NX" for some inleger n > 0, then X™ CY.

Proof. Indeed, let z125...2, € Y with z; € X for2=1,...,n. Then for all x € X we have
1Ty .. xpr € XY N X" Since X is a code and Y C X T, this implies zy...z,2 € Y, thus
by transitivity X™ C Y. [

Our second lemma resembles Proposition 4.

Lemma 2 Let X C AT and Y commutes with X. If = € Y, then for all u € X (resp.
ve“X) zue XY (resp. vz € “X).

Proof. Let z € Y and u = uwjuy... € X% with u; € X for all .. We define recursively an
infinite word v = vqvg ... € X*¥ with v; € X forall 2. Asz € Y, thereexist zy € Y and vy € X
such that zu; = vy2;. Recursively, assuming that z, € Y and v, € X are already defined we
consider the identity z,u,4+1 = Up412,41 to define z,49 € Y and v,41 € X. It follows that
zu = v. By symmetric reasons we conclude the case u € “X. [

Now, we characterize the centralizer of a set consisting of two noncommuting words.

Proposition 7 Let X = {z,y} be a subset consisting of two noncommuting words. Then

Z(X)= X+



Proof. Set Z = Z(X). By Lemma 2, for all z € Z there exist two infinite words u,v € X%
such that zz“ = w and zy“ = v. Consequently, we have two infinite equations

zz¥ =x(...0p... and 2y =y ... Y, ... (2)

with z;,y; € X, ¢ > 0. If the two words zz* and zy“ were equal then, by Proposition 5, z
and y would commute contradicting the hypothesis. Let ¢ be the minimal integer for which
x; # y;. Observe that if z € X* we are done, so we assume z # 1 ...2;_1.

If |z| < |®y...2;_1|, then there exists a unique nonempty word ¢ such that zy ...2,_; = zt.
By cancelling out the common prefix of length |z| in equation (2) we obtain

¥ =tx;. . . xpn...and y¥ =ty .Y,

Since t, z,y are three different nonempty words we may conclude by Proposition 1.
On the other hand, if |z ...2;-1| < |z| then there exists a unique nonempty word ¢ such
that 2y ...2,_1t = z. By cancelling the common prefix of length |z|, we obtain

taY = a5 ..., ... and Ly = y; . Yy ...

Since t, z;, y; are three different nonempty words we conclude as above. [

The previous results together with Corollary 1 solves completely the case when X consists
of two nonempty words.

Theorem 2 Let X = {z,y} be a subsel of two nonempty words. Then a subset Y C AT
commutes with X if and only if there exist a subset I C N such that

Y = UXi if X is a code, and
el

Y = Uti if X Ctt witht € At and primitive.
el

In other words, P is salisfied for sels of two nonempty words.

5.2 The case of codes

We prove here some extensions of the previous theorem, as well as some of [14]. We give a
general result dealing with subsets commuting with codes and then apply it to several families
of codes to establish the property P for these codes.

Proposition 8 Let X C A% be a code, and z € Z(X) be such that z ¢ X*. Then for each
uw € X% and v € “X, there exisls two X -factorizations of the word vzu, namely v - zu and
vz - u with w = wouyuy ..., V= ...U_20_10g, 2u = uhuiuy ..., vz = ...v_,v" v]. Moreover,
there exist no indices i, j, k,l of such that zug ...u; = ug . ..u} and vy ...voz = v ...y

Proof. Assuming the hypothesis, the existence of these X-factorizations comes directly from
Lemma 2. The conditions for indices follows from facts that z ¢ X* and X is a code. ]

The statement of Proposition 8 is illustrated in Figure 1.
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Fig. 1. The illustration of Proposition 8.

Before proving some corollaries, we recall a few definitions. An elementary set is a set X
such that X C F* implies || X|| < |[|F]|. It can be shown, see [15], that elementary sets are
codes and that, by definition, they allow no defect effect, see [4]. A synchronizing pair, see [1],
of a subset X is a pair p, ¢ € X* such that for all u,v € A*, upqv € X* implies up, quv € X*.

Theorem 3 P is salisfied for elementary codes.

Proof. From the assumption z € Z(X)\ X* we can derive, using Proposition 8 and Propo-
sition 2, a contradiction. Here we need the fact that vzu, with v € “X and u € X%, can be
chosen nonperiodic, which indeed is easy since X is elementary. Hence the result follows from
Lemma 1. ]

Some other simple but interesting corollaries of Proposition 8 are as follows:

Theorem 4 P is salisfied for codes containing a word of length one.

Proof. We consider z € Z(X)\ X+ and a € AN X. Using Proposition 8 with v = ¢* and
v = “a we obtain a contradiction. Hence no such z exists. ]

Theorem 5 P s salisfied for codes with a synchronizing pair.

Proof. We consider z € Z(X)\ X and p, ¢ a synchronizing pair of X. Using Proposition 8
with » and v containing pg as a factor we obtain a contradiction. Hence no such X exists. m

6 Conclusions and Open problems

We have found a simple characterization for sets commuting with a given finite set X in the
case where X consists of two nonempty words, as well as in the case where X is a certain type
of code, for example, elementary. Our proofs are rather short, but they rely essentially on
an important, but not much used, lemma on combinatorics of words, namely so-called Graph
Lemma. In fact, our results are among the first nontrivial applications of this lemma.



As shown in the examples of Section 4, it seems unlikely that there exists a simple condition
for two arbitrary, even finite, sets to commute. In [14] it is conjectured that a code X
commutes with a set Y if and only if X and Y are unions of powers of a same set, in other
words that X satisfies the condition P. To our knowledge this is still an open question and
we will not venture to make any guess. It should be possible to extend our result for three
word codes, but even this seems to require some nontrivial combinatorics. Another interesting
open problem is the question whether the condition P holds for every three elements set.

Finally, there remains to find a natural and hopefully efficient way to generate the cen-
tralizer of a rational set and to prove or disprove that it is rational, or even recursive. This
problem relates to the more general problem of solving equations where the unknowns are
subsets of a free monoid. The linear case where only unions are allowed amounts to associat-
ing a rational expression to a finite automaton and was solved a long time ago, see [7, Chap.
VII. 6]. The case where unions and intersections are allowed was settled in [2]. Observe
though that in all these cases the left handside is always reduced to one unknown.

We conclude with a short discussion on why we considered our problems, like Conway’s
problem, over the free semigroup and not over the free monoid. In fact, there are four potential
choices: commutation can be considered over the free monoid A* or over the free semigroup
AT, and the set X can be with or without the empty word 1. In each of these cases we can
consider both Conway’s problem or the existence of the Bergman type of characterization of
sets commuting with a given finite X. We summarize our knowledge about these problems.

First assume that the semigroup is the free semigroup A*. Now, it is reasonable to
assume that X does not contain the empty word (the other case would be very unnatural,
indeed), and so we are in the considerations of this paper. We know that the Bergman type
of characterization holds for two element sets, and that the Conway’s problem is nontrivial.
Moreover, we have an example of a nontrivial centralizer, i.e. an X C AT such that its
centralizer is properly inbetween X+ and A,

In the case when the semigroup is the free monoid both the cases where 1 € X and
1 ¢ X are meaningful. However, in the first case Conway’s problem has a trivial answer: the
centralizer of X, i.e. the largest monoid commuting with X, is the whole monoid A*, and
hence always rational. Moreover, the Bergman type of result does not hold for two element
sets: the set X = 1+ ab and its centralizer Z(X) = {a,b}* are not expressible as unions of
powers of a common set.

The remaining case when the semigroup is the monoid A* and X does not contain the
empty word is similar to the case considered here. Now we have the Bergman type of charac-
terization for sets commuting with a two element set. Also Conway’s problem is nontrivial,
but interestingly not the same as in the case of semigroups. Indeed, we do not have here an
example of a nontrivial centralizer of a finite set, as in the case of semigroups, cf. discussion
after Example 4.
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