Intrinsic Simulation between Cellular Automata

N. Ollinger

SEMINARIO MATEMÁTICAS DISCRETAS CMM, Santiago, June 2001

(revised and commented version)

Cellular Automata

Definition. A d-CA $\mathcal A$ is a 4-uple $\left(\mathbb Z^d,S,N,\delta\right)$ with:

- S the finite set of states of A,
- ullet $N\subseteq \mathbb{Z}^d$ finite, the neighborhood of \mathcal{A} ,
- $\bullet \ \delta: S^{|N|} \to S$ the local rule of \mathcal{A} .

ightharpoonup A configuration C is a mapping from \mathbb{Z}^d to S.

Cellular Automata (2)

ightharpoonup The *global rule* applies δ uniformly according to N:

$$G_{\mathcal{A}}(C)_p = \delta\left(C_{p+N_1}, \dots, C_{p+N_n}\right).$$

► A *space-time diagram* is a graphical representation of an orbit.

Topological Characterization

- ightharpoonup We endow S with the trivial topology.
- lacktriangle We endow $S^{\mathbb{Z}^d}$ with the induced product topology.
- ▶ The shift $\sigma_p: S^{\mathbb{Z}^d} \to S^{\mathbb{Z}^d}$ is defined as $\sigma_p(C)_i = C_{i+p}$.

Theorem[Hedlund 69]. A map $G: S^{\mathbb{Z}^d} \to S^{\mathbb{Z}^d}$ is the global rule of a d-CA if and only if it is continue and commute with the shifts.

Simulation

► Simulation = analysis of the computational power.

Extrinsic simulation: the CA simulates another device.

► Intrinsic simulation: the CA simulates another CA.

Classical Intrinsic Simulations

► Any CA can be simulated by an OCA (Cole 69, Ibarra 85)

► Any nilpotent CA can be simulated by the trivial nilpotent CA

Simulation by Geometrical Transformation

Idea. A CA $\mathcal A$ simulates another CA $\mathcal B$ if, up to geometrical transformations, any space-time diagram from $\mathcal B$ is a space-time diagram from $\mathcal A$.

5 good transformations

packing

 $o^T \circ \mathcal{A} \circ o^{-T}$

cutting

 \mathcal{A}^n

shifting

 $\mathcal{A} \circ \sigma_k$

spatial organization temporal organization information mixing

5 good transformations (2)

twisting

mirroring

 $\prod_i \mathcal{A}_i$

 $\leftrightarrow \circ \mathcal{A} \circ \leftrightarrow$

independent layers symmetry

Generalizing Geometrical Transformations

$$\varphi: \mathbb{N} \times \mathbb{Z} \to 2^{\{1, \dots, k\} \times \mathbb{N} \times \mathbb{Z}}$$

► The new CA must be *completely* defined for any initial CA.

Theorem. There exist no geometrical transformation but compositions of the 5 good previous ones.

Universality

Definition. A *universal* CA is a CA which can simulate any CA.

► There are universal CA for the P⁻C simulation.

► Therefore, there are universal CA for the PCSTM simulation.

Theorem. The universal CA for PCSTM and PCS coincide.

Abstract Bulking

Definition. An abstract bulking is a two-sorted first-order structure

$$\mathfrak{A} = ig(\mathsf{Obj}, \mathsf{Pow}; \quad f : \mathsf{Obj} imes \mathsf{Pow} o \mathsf{Obj}, \ R \subseteq \mathsf{Obj} imes \mathsf{Obj}, \ \cdot : \mathsf{Pow} imes \mathsf{Pow} o \mathsf{Pow} ig)$$

- ightharpoonup (Pow, \cdot) is a monoid,
- ightharpoonup f is compatible with \cdot ,
- ightharpoonup R is a partial order.

More Axioms

ightharpoonup R is compatible with f.

$$\forall x, y, \alpha, R(x, y) \Rightarrow R(f(x, \alpha), f(y, \alpha))$$

ightharpoonup f preserves richness.

$$\forall x, \alpha, \exists y, R(x, f(y, \alpha))$$

The last axiom

ightharpoonup f keeps objects nearby.

$$\exists \varphi, \psi, \forall x, \alpha, \beta, R(f(x, \alpha \cdot \varphi(x, \beta)), f(x, \beta \cdot \psi(x, \alpha, \beta))$$

The way to conduct proofs

 \blacktriangleright Let Φ denotes the set of axioms.

 \blacktriangleright An object y simulates an object x if $\phi(x,y)$ is satisfied.

$$\phi(x,y) = \exists \alpha \exists \beta, R(f(x,\alpha), f(y,\beta))$$

Definition. A *bulking property* is a property on ϕ expressed by a formula φ such that $\Phi \models \varphi$.

The quasi-order

Theorem. " ϕ is a quasi-order" is a bulking property.

$$\varphi = \forall x, \phi(x, x) \land \forall x, y, z, (\phi(x, y) \land \phi(y, z)) \Rightarrow \phi(x, z)$$

Proof.

Universality

Definition. An object x is *strongly universal* if it can simulate any other object directly (*ie* without transformation).

$$\psi(x) = \forall y, \exists \alpha, R(y, f(x, \alpha))$$

Theorem. "If there exists a strongly universal object, then any universal object is strongly universal" is a bulking property.

$$\varphi = (\exists x, \psi(x)) \Rightarrow \forall x, ((\forall y, \phi(y, x)) \Rightarrow \psi(x))$$

$$o^m \circ \mathcal{A}^n \circ \sigma^k \circ o^{-m}$$

P⁻CS and Bulking

Definition. The $\langle m,n,k\rangle$ regular P⁻CS transformation of a CA $\mathcal A$ is the CA $\mathcal A^{\langle m,n,k\rangle}$ where

$$\mathcal{A}^{\langle m,n,k\rangle} = o^m \circ \mathcal{A}^{mn} \circ o^{-m} \circ \sigma^k.$$

Lemma. \mathcal{A} simulates \mathcal{B} if and only if \mathcal{A} simulates \mathcal{B} regularly.

Theorem. Regular P⁻CS induces a Bulking.

Proof

- ▶ Obj is the set of CA and Pow = $\mathbb{N}^* \times \mathbb{N}^* \times \mathbb{Z}^*$.
- $ightharpoonup R\left(\mathcal{A},\mathcal{B}\right)$ if there is an injection φ from $S_{\mathcal{A}}$ into $S_{\mathcal{B}}$ such that

$$\bar{\varphi} \circ \mathcal{A} = \mathcal{B} \circ \bar{\varphi}$$

- $\blacktriangleright \langle m, n, k \rangle \cdot \langle m', n', k' \rangle = \langle mm', nn', k' + n'k \rangle$
- ► Then we need to check the axioms...

Intrinsic Universality

► There exists a strongly universal CA on P⁻C.

► Universal CA coincide with universal CA on P⁻CS.

Robust Definition. An intrinsically universal CA is a strongly universal CA on P⁻CS.

Theorem[Rapaport 98]. There is no real-time universal CA.

Some results on P⁻CS

- ► Undecidability anywhere (thanks to Nilpotent CA),
- ► Infinitely many equivalence classes,
- ► Classical properties are compatible with P⁻CS: trivial CA, two-state CA, first-neighbors CA, Number-conserving CA, Totalistic CA, Reversible CA.

▶ But the preorder induces no semi-lattice.

$$\prod_{i=1}^{j} o^{m_i} \circ \mathcal{A}^{n_i} \circ \sigma^{k_i} \circ o^{-m_i}$$

P⁻CST and Bulking

Definition. The $\prod \langle m_i, n_i, k_i \rangle$ regular P⁻CST transformation of a CA \mathcal{A} is the CA $\mathcal{A}^{\prod \langle m_i, n_i, k_i \rangle}$ where

$$\mathcal{A}^{\prod \langle m_i, n_i, k_i \rangle} = \prod_i o^{m_i} \circ \mathcal{A}^{m_i n_i} \circ o^{-m_i} \circ \sigma^{k_i}.$$

Lemma. \mathcal{A} simulates \mathcal{B} if and only if \mathcal{A} simulates \mathcal{B} regularly.

Theorem. Regular P⁻CST induces a Bulking.

Proof

- ▶ Obj is the set of CA and Pow = $\bigcup_{j} (\mathbb{N}^* \times \mathbb{N}^* \times \mathbb{Z}^*)^{j}$.
- $ightharpoonup R\left(\mathcal{A},\mathcal{B}\right)$ if there is an injection φ from $S_{\mathcal{A}}$ into $S_{\mathcal{B}}$ such that

$$\bar{\varphi} \circ \mathcal{A} = \mathcal{B} \circ \bar{\varphi}$$

- $\prod \langle m_i, n_i, k_i \rangle \cdot \prod \langle m'_j, n'_j, k'_j \rangle =$ $\prod \langle m_i m'_j, n_i n'_j, k'_j + n'_j k_i \rangle$
- ► Then we need to check the axioms...

The semi-lattice

Theorem. PCST induces a sup semi-lattice with the natural operation $\mathcal{A} \times \mathcal{B}$ as a sup operation.

- ► Ideals play an interesting role:
 - Reversible CA build a principal ideal,
 - Non-chaoticity build an ideal.

Going further...

► Continue studying P⁻CST.

► Continue the exploration of classical properties.

▶ Is the ideal of non-universal CAs principal?