Syntaxe quantitative : développement de Taylor des réseaux de preuve

Jules Chouquet

Joint work with Lionel Vaux Auclair (I2M, Aix Marseille Université)

Journées PPS, 8 novembre 2018

Motivations/framework

- ullet Quantitative semantics of λ -calculus and linear logic
- Commutation between cut-elmination/normalization and Taylor expansion of proof nets
- Combinatorial study of parallel cut elimination

Main result

Parallel reduction over infinite linear combinations of differential nets is well defined

- Quantitative semantics
- Quantitative syntax
- Taylor expansion
- 4 Linear logic proof nets
- Contribution

Semantics of λ -calculus

Quantitative approach: think about resources

 $[[M]]_{\mathcal{M}} \leadsto \mathsf{Something} \; \mathsf{in} \; \mathsf{a} \; \mathsf{structure} \; \mathcal{M} \; \mathsf{invariant} \; \mathsf{under} \; o_{eta}$

- Quantitative meaning of [[M]] in $(\lambda x(xx))M$? wrt $(\lambda xx)M$?
- Interpret probabilistic reduction ?
- . . .

Girard (Normal functors, 1988)

Uses of arguments \rightsquigarrow degree of a monomial in a power series.

Types: $[[A]] \subseteq \mathbb{S}^{|A|}$ where \mathbb{S} is a semiring

Programs: power series

Quantitative Semantics

Example 2: multirelations

Key idea

let $M: A \to B$, N: A. $([a_1, \ldots, a_k], b) \in [[M]]$ will match with k uses of the argument N in the application (MN).

- Quantitative semantics
- Quantitative syntax
- Taylor expansion
- 4 Linear logic proof nets
- Contribution

Resource calculus

A quantitative syntax

$$m,n ::= x \mid \lambda x m \mid \langle m \rangle [n_1,\ldots,n_k]$$
 (k-linear application)
$$\langle \lambda x m \rangle [n_1,\ldots,n_k] \to_{\partial} \sum_{\sigma \in \mathfrak{S}_n} m \left[n_{\sigma(1)}/x_1,\ldots,n_{\sigma(k)}/x_k \right]$$
 $\langle \lambda x \langle x \rangle [x] \rangle [z] \to_{\partial} 0 \quad_{\partial} \leftarrow \langle \lambda x x \rangle [z,z]$

λ -calculus		resource calculus
$(\lambda x(x)x)z$	~ →	$\langle \lambda x \langle x \rangle [x] \rangle [z,z]$
\downarrow_{eta}		\downarrow_{∂}
ZZ	~ →	$\langle z \rangle [z] + \langle z \rangle [z]$

Multilinear Approximations

We say m is an approximation of M, and define $\lhd \subset \Delta \times \Lambda$:

- $x \triangleleft x$, $\lambda x n \triangleleft \lambda x N$ if $n \triangleleft N$.
- $\langle m \rangle [n_1, \ldots, n_k] \lhd MN$ if $k \in \mathbb{N}$, $m \lhd M$ and $n_i \lhd N$.

Definition

We extend \rightarrow_{∂} to a parallel reduction $\rightrightarrows_{\partial}$.

Property : simulation of \rightarrow_{β} with approximants

If $m \triangleleft M$ and $M \rightarrow M'$, $m \rightarrow 0$ or $m \rightrightarrows_{\partial} m' \triangleleft M'$.

Example

- $N \rightarrow N' \Rightarrow MN \rightarrow MN'$
- $m \triangleleft M, n_i \triangleleft N \Rightarrow \langle m \rangle [n_1, \ldots, n_k] \triangleleft MN$.
- $n_i \rightrightarrows_{\partial} n_i' \Rightarrow \langle m \rangle [n_1, \dots, n_k] \rightrightarrows_{\partial} \langle m \rangle [n_1', \dots, n_k'] \lhd MN'$ (ind. hyp.)

- Quantitative semantics
- Quantitative syntax
- Taylor expansion
- 4 Linear logic proof nets
- Contribution

Taylor expansion

A bridge between syntax and semantics

Semantic approach: Interpret a term/function as an infinite series of approximants.

Syntactic Taylor expansion:

$$\mathcal{T}(MN) = \sum_{k \in \mathbb{N}} \frac{1}{k!} \langle \mathcal{T}(M) \rangle [\mathcal{T}(N), \dots, \mathcal{T}(N)]_k$$

$$\mathcal{T}(\lambda x M) = \lambda x \mathcal{T}(M), \mathcal{T}(x) = x.$$

Remark

 $\mathcal{T}(M)$ is a weighted sum of all resource nets m s.t. $m \lhd M$

Simulation

Wanted result

Extend $\rightrightarrows_{\partial}$ to infinite sums of terms (\Rightarrow_{∂}) , in order to have $M \to_{\beta} N \Rightarrow \mathcal{T}(M) \Rightarrow_{\partial} \mathcal{T}(N)$, and define $NF(\mathcal{T}(M))$

Problem

Can \Rightarrow_{∂} be always well-defined ?

Simulation

Wanted result

Extend $\rightrightarrows_{\partial}$ to infinite sums of terms (\Rightarrow_{∂}) , in order to have $M \to_{\beta} N \Rightarrow \mathcal{T}(M) \Rightarrow_{\partial} \mathcal{T}(N)$, and define $NF(\mathcal{T}(M))$

Problem

Can \Rightarrow_{∂} be always well-defined ?

Counterexample

$$\sum_{k \in \mathbb{N}} \langle \lambda x x \rangle [\langle \lambda x x \rangle \dots [y]]] \dots] \Rightarrow_{\partial} \infty \cdot y$$

If $\mathbb S$ is not a complete semiring, the reduction is not defined on all series of terms.

Some convergence results

 \Rightarrow_{∂} and normalization are well defined and commute with Taylor expansion:

- Classical Λ: Ehrhard Regnier 2007.
- Non deterministic Λ with finite sums : Pagani, Tasson, Vaux 2016.
- Algebraic calculus: Vaux 2017.

Idea of the proof in (Vaux, CSL 2017)

$$M o_{eta} M'$$
 $\mathcal{T}(M) o_{\partial} \mathcal{T}(M')$ Sketch $\{appdepth(m); m \in \mathcal{T}(M)\}$ bounded by $M ounder \{m_i m \in \mathcal{T}(M), m \Rightarrow_{\partial} m'\}$ bounded by $\#m'$
 $\{m_i \in \mathcal{T}(M); m_i \Rightarrow_{\partial} m'\}$ is finite.
 $\{m_i \in \mathcal{T}(M); m_i \Rightarrow_{\partial} m'\}$ is finite.
 $\{m_i \in \mathcal{T}(M); m_i \Rightarrow_{\partial} m'\}$ is finite.
 $\{m_i \in \mathcal{T}(M); m_i \Rightarrow_{\partial} m'\}$ is finite.

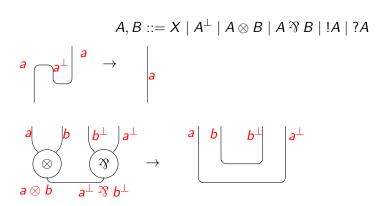
- Quantitative semantics
- Quantitative syntax
- Taylor expansion
- 4 Linear logic proof nets
- Contribution

MELL

Multiplicative nodes and reductions

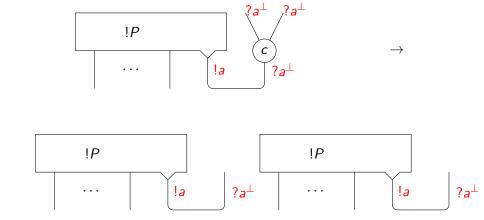
MELL

Multiplicative nodes and reductions



Duplication of an exponential box

An example of non linear reduction



Λ	MELL
$x, \lambda x M$	Multiplicatives
MN	Interaction of an exponential box
Several uses of the argument	Duplication of a box
Resource λ -calculus	Resource nets

Taylor expansion

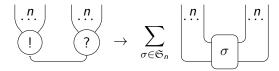
As in λ -calculus, we consider sums of approximants. An approximant of a box consists in the duplication of its content

Resource reduction

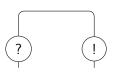
Linear fragment of differential interaction nets

Resource nets

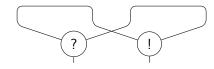
Exponential box is removed, and will be simulated by the linear constructs ? and !



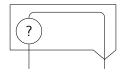
Exemples



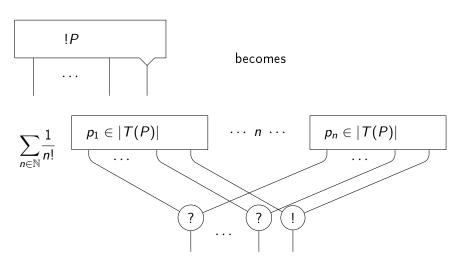
 $\quad \text{and} \quad$



Are approximants of :



Taylor expansion of a box



Convergence

Wanted result

Define \Rightarrow over infinite sums of nets, in order to simulate exponential cut elimination and normalization of an MELL net, into its Taylor expansion

Can we define a parallel reduction over infinite sums of resource nets?

Convergence

Wanted result

Define \Rightarrow over infinite sums of nets, in order to simulate exponential cut elimination and normalization of an MELL net, into its Taylor expansion

Can we define a parallel reduction over infinite sums of resource nets?

- Quantitative semantics
- Quantitative syntax
- Taylor expansion
- 4 Linear logic proof nets
- Contribution

In Λ , the convergence result is proved thanks to the following property :

If $m \in T(M)$, applicativedepth(m) is bounded by M

Key idea of our result

Applicative depth in Λ corresponds in proof nets to the number of cuts crossed by a switching path

Idea of the proof

Theorem

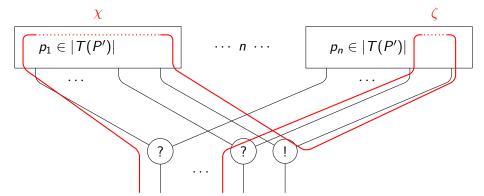
Let $P \in MELL$, q a resource net. $\{p \in |\mathcal{T}(P)|; p \Rightarrow q\}$ is finite.

Proof.

- If $p \in |\mathcal{T}(P)|$, the paths of p do not cross more than $2^{\#P}$ cuts
- 2 If $p \Rightarrow q$, $\#p \leq f(\#q)$, number of cuts on a path of p)
- **3** Then $\{\#p; p \in |\mathcal{T}(P)|, p \Rightarrow q\}$ is bounded by p and q.
- lacktriangledown then $\{p\in |\mathcal{T}(P)|; p
 ightrightarrows q\}$ is finite

- Quantitative semantics
- Quantitative syntax
- Taylor expansion
- 4 Linear logic proof nets
- Contribution
 - If $p \in |\mathcal{T}(P)|$, cuts(paths(p)) $\leq 2^{\#P}$
 - If $p \Rightarrow q$, $\#p \leq f(\#q$, cuts(paths(p)))
 - CQFD
 - Être acyclique, c'est chic

Switching paths



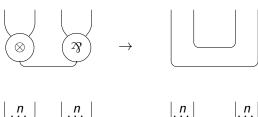
Lemme : coupures
$$(\chi :: \zeta) \leq 2^{\#P}$$
 (où $P = !(P')$)

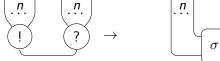
Hypothèse d'induction : coupures $(\chi) \le 2^{\#P'}$ et coupures $(\zeta) \le 2^{\#P}$.

$$\#P \ge \#P' + 1$$

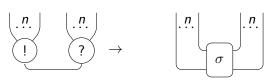
$$\rightarrow$$
 coupures $(\chi :: \zeta) \le 2 \cdot 2^{\#P'} \le 2^{\#P}$.

- Quantitative semantics
- Quantitative syntax
- Taylor expansion
- 4 Linear logic proof nets
- Contribution
 - If $p \in |\mathcal{T}(P)|$, cuts(paths(p)) $\leq 2^{\#P}$
 - If $p \Rightarrow q$, $\#p \leq f(\#q$, cuts(paths(p)))
 - CQFD
 - Être acyclique, c'est chic





(Division de la taille par 2)



(Division de la taille par 2)

(Division de la taille par n.)

- Quantitative semantics
- Quantitative syntax
- Taylor expansion
- 4 Linear logic proof nets
- Contribution
 - If $p \in |\mathcal{T}(P)|$, cuts(paths(p)) $\leq 2^{\#P}$
 - If $p \Rightarrow q$, $\#p \leq f(\#q, \operatorname{cuts}(\operatorname{paths}(p)))$
 - CQFD
 - Être acyclique, c'est chic

Main result

Theorem

For all MELL proof net P, if $\mathcal{T}(P) \Rightarrow \psi = \sum_{i \in I} a_i \cdot p_i$, then all resource net p has a finite coefficient in ψ

Main result

Theorem

For all MELL proof net P, if $\mathcal{T}(P) \Rightarrow \psi = \sum_{i \in I} a_i \cdot p_i$, then all resource net p has a finite coefficient in ψ

Main technical difficulty

Bound the growth of paths (p) under parallel reduction

Main result

Theorem

For all MELL proof net P, if $\mathcal{T}(P) \Rightarrow \psi = \sum_{i \in I} a_i \cdot p_i$, then all resource net p has a finite coefficient in ψ

Main technical difficulty

Bound the growth of paths (p) under parallel reduction

Reduction

If $P \to Q$, then the reduction $\mathcal{T}(P) \Rightarrow \mathcal{T}(Q)$ is well-defined

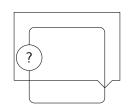
Normalization

$$NF(\mathcal{T}(M)) = \sum_{m \in |\mathcal{T}(M)|} \mathcal{T}(M)_m \cdot nf(m) = \mathcal{T}(NF(M))$$

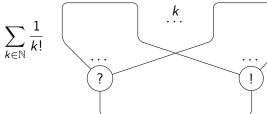
- Quantitative semantics
- Quantitative syntax
- Taylor expansion
- 4 Linear logic proof nets
- Contribution
 - If $p \in |\mathcal{T}(P)|$, cuts(paths(p)) $\leq 2^{\#P}$
 - If $p \Rightarrow q$, $\#p \leq f(\#q$, cuts(paths(p)))
 - CQFD
 - Être acyclique, c'est chic

A cyclic counter-example

Taylor expansion of

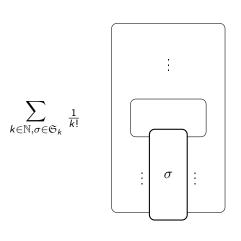


gives



A cyclic counter-example

Or,



Conclusion

- Quantitative semantics is a powerful approach to study important properties of various calculi
- Taylor expansion is a strong bridge between the calculus and its quantitative interpretation
- Linear logic is an efficient framework for quantitative semantics

- We study the calculus of linear logic proof nets
- We can mimick quantitative identities in the Taylor expansion setting (resource calculi)
- We show that this is sound wrt the underlying algebraic structure (convergence result)

Thank you