On denotations of circular and non-wellfounded proofs

Sesterce 2023

Farzad Jafarrahmani
based on joint work with Thomas Ehrhard and Alexis Saurin

LIP6, Sorbonne University

Tarski theorem

Let (X, \leq) be a complete lattice, and F be an increasing function on X. Then the set P of all fixpoints F is a complete lattice.

Let (X, \leq) be a complete lattice, and F be an increasing function on X. Then the set P of all fixpoints F is a complete lattice.

$$
\mu X . F(X)=\bigcap P=\bigcap\{x \mid F(x) \leq x\}
$$

$$
\overline{F(\mu X . F(X)) \leq \mu X . F(X)} \quad \frac{F(S) \leq S}{\mu X . F(X) \leq S}
$$

Let (X, \leq) be a complete lattice, and F be an increasing function on X. Then the set P of all fixpoints F is a complete lattice.

$$
\mu X . F(X)=\bigcap P=\bigcap\{x \mid F(x) \leq x\}
$$

$$
\frac{\Delta \vdash F(\mu X . F(X)), \Gamma}{\Delta \vdash \mu X . F(X), \Gamma} \quad \frac{F(S) \vdash S}{\mu X . F(X) \vdash S}
$$

Let (X, \leq) be a complete lattice, and F be an increasing function on X. Then the set P of all fixpoints F is a complete lattice.

$$
\begin{aligned}
& \mu X . F(X)=\bigcap P=\bigcap\{x \mid F(x) \leq x\} \\
& \nu X . F(X)=\bigcup P=\bigcup\{x \mid F(x) \geq x\}
\end{aligned}
$$

$$
\frac{\Delta \vdash F(\mu X . F(X)), \Gamma}{\Delta \vdash \mu X . F(X), \Gamma} \quad \frac{F(S) \vdash S}{\mu X . F(X) \vdash S}
$$

$$
\frac{\Delta, F(\nu X . F(X)) \vdash \Gamma}{\Delta, \nu X . F(X) \vdash \Gamma} \quad \frac{S \vdash F(S)}{S \vdash \nu X . F(X)}
$$

Let (X, \leq) be a complete lattice, and F be an increasing function on X. Then the set P of all fixpoints F is a complete lattice.

$$
\begin{aligned}
& \mu X . F(X)=\bigcap P=\bigcap\{x \mid F(x) \leq x\} \\
& \nu X . F(X)=\bigcup P=\bigcup\{x \mid F(x) \geq x\}
\end{aligned}
$$

$$
\Gamma \vdash \Delta \leadsto \vdash \Gamma^{\perp}, \Delta:
$$

$$
\frac{\vdash F(\mu X . F(X)), \Gamma}{\vdash \mu X . F(X), \Gamma} \quad \frac{\vdash S^{\perp}, F(S)}{\vdash S^{\perp}, \nu X . F(X)}
$$

Cut-elimination fails...

$$
\frac{\frac{\overline{\vdash 0,0, T}}{}(T) \frac{{ }^{\vdash 0, T}}{}(\mathrm{~T})}{\vdash 0,0, \nu X . X}(\mathrm{cut})
$$

\downarrow

$$
\frac{\vdash F(\mu X . F(X)), \Gamma}{\vdash \mu X . F(X), \Gamma} \quad \frac{\vdash \Gamma, S \quad \vdash S^{\perp}, F(S)}{\vdash \Gamma, \nu X . F(X)}
$$

${ }^{1}$ David Baelde, Amina Doumane, Alexis Saurin: Infinitary Proof Theory: the Multiplicative Additive Case.

Example

$$
\text { nat }=\mu X(1 \oplus X)
$$

But...

$$
\begin{array}{cc}
\frac{\vdots}{\vdash \nu X \cdot X}(\nu) & \frac{\vdots}{\vdash \Gamma, \mu X \cdot X}(\mu) \\
\frac{\vdash \nu X \cdot X}{\vdash}(\nu) & \frac{1}{\vdash \Gamma, \mu X \cdot X}(\text { cut })
\end{array}
$$

But...

$$
\frac{\frac{\vdots}{\vdash \nu X \cdot X}(\nu) \quad \frac{\vdots}{\vdash \nu X \cdot X}(\nu)}{\frac{\frac{\vdots \Gamma, \mu X \cdot X}{\vdash \Gamma}(\mu)}{\vdash \Gamma, \mu X \cdot X}(\mu)}(\text { cut })
$$

There is a validity criteria to specify "valid" proofs ${ }^{2}$.

[^0] Multiplicative Additive Case.

Denotational semantics of non-wellfounded proofs in linear logic

Totality candidates on a set E

Given $\mathcal{T} \subseteq \mathcal{P}(E)$ we set

$$
\mathcal{T}^{\perp}=\left\{u^{\prime} \subseteq E \mid \quad \forall u \in \mathcal{T} u \cap u^{\prime} \neq \varnothing\right\}
$$

Definition (Totality candidates)
\mathcal{T} is a totality candidate for E if $\mathcal{T}=\mathcal{T}^{\perp \perp}$.
(Equivalently $\mathcal{T}^{\perp \perp} \subseteq \mathcal{T}$, equivalently $\mathcal{T}=\mathcal{S}^{\perp}$ for some
$\mathcal{S} \subseteq \mathcal{P}(E)$.)
Fact

- \mathcal{T} is a totality candidate on E iff $\mathcal{T} \subseteq \mathcal{P}(E)$ and $\mathcal{T}=\uparrow \mathcal{T}$.
- $\operatorname{Tot}(X)$ (The set of all totality candidates on E), ordered with \subseteq, is a complete lattice (it is closed under arbitrary intersections).

Non-uniform totality spaces (NUTS)

A NUTS is a pair $X=(|X|, \mathcal{T} X)$ where

- $|X|$ is a set
- $\mathcal{T} X$ is a totality candidate on $|X|$, that is, a \uparrow-closed subset of $\mathcal{P}(|X|)$.
$t \in \operatorname{NUTS}(X, Y)$ if $t \in \mathbf{R E L}(|X|,|Y|)$ and

$$
\forall u \in \mathcal{T} X \quad t \cdot u \in \mathcal{T} Y
$$

Fact
NUTS is a model of $L L$ where the proofs are interpreted exactly as in REL.

Interpretation of $\mu X . F$ in NUTS

Interpretation of $\mu X . F$ in NUTS

$\bar{F}:(X, U) \mapsto(F X, \Phi U)$ where $\Phi U \in \mathcal{T}(F X)$.

Interpretation of $\mu X . F$ in NUTS

$\bar{F}:(X, U) \mapsto(F X, \Phi U)$ where $\Phi U \in \mathcal{T}(F X)$.
Assume μF exists.

$$
\begin{gathered}
g: \operatorname{Tot}(\mu F) \rightarrow \operatorname{Tot}(\mu F) \\
R \mapsto \Phi R
\end{gathered}
$$

Interpretation of $\mu X . F$ in NUTS

$\bar{F}:(X, U) \mapsto(F X, \Phi U)$ where $\Phi U \in \mathcal{T}(F X)$.
Assume μF exists.

$$
\begin{gathered}
g: \operatorname{Tot}(\mu F) \rightarrow \operatorname{Tot}(\mu F) \\
R \mapsto \Phi R
\end{gathered}
$$

By Tarski theorem, μg exists.

$$
\mu \bar{F}=(\mu F, \mu g) .
$$

NUTS as a denotational model of $\mu \mathrm{LL}_{\infty}$

$$
\llbracket \begin{gathered}
\vdots \pi \\
\frac{\vdash \Gamma, F[\mu X . F / \zeta]}{\vdash \Gamma, \mu X . F}(\mu-\mathrm{fold})
\end{gathered} \rrbracket=\llbracket \pi \rrbracket \llbracket \frac{\vdots \pi}{\left[\frac{\vdash, F[\nu X \cdot F / \zeta]}{\vdash \Gamma, \nu X . F}(\nu-\mathrm{fold})\right.} \rrbracket \rrbracket=\llbracket \pi \rrbracket
$$

Soundness of $\mu \mathrm{LL}_{\infty}$

Lemma

Let $\left(\pi_{i}\right)$ be a Cauchy sequence. Then
$\llbracket \lim _{n \rightarrow \infty} \pi_{i} \rrbracket_{\mathrm{REL}}=\bigcup_{i} \bigcap_{j>i} \llbracket \pi_{j} \rrbracket_{\mathrm{REL}}$.

Corollary

If π and π^{\prime} are proofs of $\vdash \Gamma$ and π reduces to π^{\prime} by the cut-elimination rules of $\mu \mathrm{LL}{ }_{\infty}$, then $\llbracket \pi \rrbracket_{\mathbf{R E L}}=\llbracket \pi^{\prime} \rrbracket_{\mathrm{REL}}$.

Soundness of $\mu \mathrm{LL}_{\infty}$

Lemma

Let $\left(\pi_{i}\right)$ be a Cauchy sequence. Then
$\llbracket \lim _{n \rightarrow \infty} \pi_{i} \rrbracket_{\mathrm{REL}}=\bigcup_{i} \bigcap_{j>i} \llbracket \pi_{j} \rrbracket_{\mathrm{REL}}$.

Corollary

If π and π^{\prime} are proofs of $\vdash \Gamma$ and π reduces to π^{\prime} by the cut-elimination rules of $\mu \mathrm{LL} \infty_{\infty}$, then $\llbracket \pi \rrbracket_{\text {REL }}=\llbracket \pi^{\prime} \rrbracket_{\text {REL }}$.

Theorem

If π is a valid proof of the sequent $\vdash \Gamma$, then $\llbracket \pi \rrbracket \in \mathcal{T} \llbracket\ulcorner\rrbracket$.

Inductive vs circular linear logic proofs

Trans () : $\mu \mathrm{LL} \rightarrow \mu \mathrm{LL}_{\infty}$

Given a $\pi \in \mu \mathrm{LL}$, then $\operatorname{Trans}(\pi)$ can be defined by induction on π as it is done in ${ }^{3}$.

$$
\begin{align*}
& \operatorname{Trans}\left(\frac{\vdash ? \Gamma, A^{\perp}, F[A / \zeta]}{\vdash ? \Gamma, A^{\perp}, \nu \zeta F}\left(\nu-\mathrm{rec}^{\prime}\right)\right)
\end{align*}=
$$

[^1]
Inductive vs circular linear logic proofs

Theorem
 Let π be a $\mu \mathrm{LL}$ proof. Then we have $\llbracket \pi \rrbracket=\llbracket \operatorname{Trans}(\pi) \rrbracket$ where the interpretation is given in a model $(\mathcal{L}, \overrightarrow{\mathcal{L}})$ of $\mu \mathrm{LL}$.

There is a transformation in the reverse direction for a fragment of $\mu \mathrm{LL}_{\infty}$ in ${ }^{4}$.

Currently working:

Will the semantics be preserved via this reverse transformation?

[^2]
An example

A syntatic-free proof that any term of booleans has a defined boolean value true or false

Consider $1 \oplus 1$ (The type of booleans).
$\llbracket 1 \oplus 1 \rrbracket=(\{(1, \star),(2, \star)\}, \mathcal{T} \llbracket 1 \oplus 1 \rrbracket)$ where

$$
\mathcal{T}(\llbracket 1 \oplus 1 \rrbracket)=\mathcal{P}(|\llbracket 1 \oplus 1 \rrbracket|) \backslash \emptyset
$$

For any proof π of $1 \oplus 1$, we have $\llbracket \pi \rrbracket \in \mathcal{T} \llbracket 1 \oplus 1 \rrbracket$. Hence $\llbracket \pi \rrbracket \neq \emptyset$.

A future direction

Categorical model for circular proofs in linear logic with fixpoints.

[^0]: ${ }^{2}$ David Baelde, Amina Doumane, Alexis Saurin: Infinitary Proof Theory: the

[^1]: ${ }^{3}$ Amina Doumane. On the infinitary proof theory of logics with fixedpoints. PhD thesis, Université Paris Cité,

[^2]: ${ }^{4}$ Rémi Nollet. Circular representations of infinite proofs for fixed-points logics: expressiveness and complexity. PhD thesis, Université Paris Cité, 2021.

