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Reactive programming in 80s

In the 1980s, there was a demand for programming languages to work on

reactive systems.

An answer to this request was synchronous

programming languages.

Radiator example
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Reactive programming in 80s

In the 1980s, there was a demand for programming languages to work on

reactive systems. An answer to this request was synchronous

programming languages.

Definition [Hal98]
A synchronous programming language is a computer programming

language optimized for programming reactive systems.

Radiator example (using Esterel [BG92])

input OFF , TEMP(float);

do

signal SWITCH = bot in

present SWITCH then // ...

else nothing end

||

if needs_to_switch (?TEMP) then emit SWITCH

else nothing end

watching OFF;
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Timeline

1980 1985 1990 1995 2000 2005 2010 2015 2020

Esterel-1984

Lustre-1986

Signal-1989

ReactiveC-1990

SL-1995
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Reactive Programming in 90’s

Functional Reactive Animation [EH97]
FRAn is a functional reactive programming language. The purpose of

FRAN was to simplify the development of complex 2D/3D animation

program.

Principle
Data flows are split into two categories:

• Behavior A : Time → A

• Event A : Time × A

The program has a behavior which is a composition of behaviors and

events allow us to modify the behavior.

Examples

slowByTwo :: Behavior Time

slowByTwo = lift (\t → t / 2) time

5



Reactive Programming in 90’s

Functional Reactive Animation [EH97]
FRAn is a functional reactive programming language. The purpose of

FRAN was to simplify the development of complex 2D/3D animation

program.

Principle
Data flows are split into two categories:

• Behavior A : Time → A

• Event A : Time × A

The program has a behavior which is a composition of behaviors and

events allow us to modify the behavior.

Examples

slowByTwo :: Behavior Time

slowByTwo = lift (\t → t / 2) time

5



Reactive Programming in 90’s

Functional Reactive Animation [EH97]
FRAn is a functional reactive programming language. The purpose of

FRAN was to simplify the development of complex 2D/3D animation

program.

Principle
Data flows are split into two categories:

• Behavior A : Time → A

• Event A : Time × A

The program has a behavior which is a composition of behaviors and

events allow us to modify the behavior.

Examples

slowByTwo :: Behavior Time

slowByTwo = lift (\t → t / 2) time

5



Reactive Programming in 90’s

Principle
Data flows are split into two categories:

• Behavior A : Time → A

• Event A : Time × A

The program has a behavior which is a composition of behaviors and

events allow us to modify the behavior.

Examples

slowByTwo :: Behavior Time
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Reactive Programming now

Definition [Wik23]
In computing, reactive programming is a declarative programming

paradigm concerned with data streams and the propagation of change.

Definition [Tea23]
Reactive programming was created from the observer design pattern

whose flaws needed to be corrected.

Definition [Nol21]
Reactive programming describes a design paradigm that relies on

asynchronous programming logic to handle real-time updates to

otherwise static content. It provides an efficient means – the use of

automated data streams – to handle data updates to content whenever a

user makes an inquiry.

My Definition
Reactive programming is a programming paradigm concerned with data

streams handled with a synchronous or an asynchronous style in order to

preserve the coherence of the program.
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The Wormholes syntax

Introduction [WH12]
Wormholes is a functional reactive programming language based on

arrows, a generalization of Monads like Yampa. It integrates directly the

use of information from the outside world with a specific type of signal

function named rsf.
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Arrow based FRP

Arrow based FRP
Yampa [Hud+02] is an FRP language that use Arrows in order to prevent

some drawbacks of FRAN. The main idea is that all computations on

signal are done indirectly via a signal function (SF a b).

Arrow’s syntax

f

arr : (a → b) → SF a b

a b

first : SF a b → SF (a, c) (b, c)

f

arr(f) : SF a b

(a, c)

a

(a, c)

c

b

(b, c)

&&& : SF a b → SF (a, c) (b, c)

f

arr(f) : SF a c

g

arr(f) : SF a c ′

a

a

a

a

c

(c, c ′)

c ′

f

arr(f) : SF a b

g

arr(g) : SF b c

a

c

b
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The Wormholes syntax

Introduction [WH12]
Wormholes is a functional reactive programming language based on

arrows, a generalization of Monads like Yampa. It integrates directly the

use of information from the outside world with a specific type of signal

function named rsf.

Syntax

Expression t, t1, t2 ::= x | () | (t1, t2) | fst t | snd t | λx .t | t1 t2
| arr(t) | first(t) | t1 >>> t2 | rsf[r ]
| wormhole[rread , rwrite ](ti ; t)

Resource
A resource signal function is a non-local one-way communication channel.

Reference can be simulated by two resources: one for reading the other

for writing.
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The Wormholes syntax

Hypothesis

• minutes is a getter resource for the current number of minutes;

• hours is a getter resource for the current number of hours;

• console is a setter resource for display in the terminal.

Examples

displayTime = rsf[minutes] >>> arr (\n → ((),n)) >>>

first (rsf[hours]) >>> rsf[console]

minutes n→ ((),n)

hours

console
m ((),m) m

() h

(h,m)() ()
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The Wormholes syntax

Examples

counter = rsf[ctime] >>> arr(\x.((),x)) >>>

wormhole[cpt_r , cpt_w](0,

first(rsf[cpt_r ]) >>>

arr (\(cpt ,ct) → (cpt+ct,cpt) ) >>>

first(rsf[cpt_w ]) >>> arr (fst))

ctimex→ ((),x)

(...) → ...

fst

cpt_r cpt_w

()t

()

((),t)

t

c

(c,t)

()

(c’,c)

c’ ()

c

((),c)
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Typing

Types

Resource Type t ::= ⟨τin, τout⟩
Types τ, τ1, τ2 ::= unit | τ1 × τ2 | τ1 → τ2

| τ1
{r1;...}
⇝ τ2

Counting used resources
Reactive function type carries the set of used resources. Consequently,

the typing serves as a safeguard for the correct use of the language.

Example

rsf[minutes] will be typed as follows: unit
{minutes}
⇝ int.

18
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Typing

Rules

Γ,R ⊢ f : τ1→τ2

Γ,R ⊢ arr(f ) : τ1
∅
⇝τ2

Ty-Arr
Γ,R ⊢ sf : τ1

R
⇝τ3

Γ,R ⊢ first(sf ) : τ1 × τ2
R
⇝τ3 × τ2

Ty-First

Γ,R ⊢ sf1 : τ1
R1⇝τ3 R1 ∪ R2 = R

Γ,R ⊢ sf2 : τ3
R2⇝τ2 R1 ∩ R2 = ∅

Γ,R ⊢ sf1 >>> sf2 : τ1
R
⇝τ2

Ty-Comp

Γ,R∪ {r : ⟨τin, τout⟩} ⊢ rsf[r ] : τin
{r}
⇝τout

Ty-Rsf

Γ,R ⊢ t : τ R = R ′\{rread ; rwrite}
Γ,R ∪ {rread : ⟨(), τ⟩; rwrite : ⟨τ, ()⟩} ⊢ sf : τ1

R′
⇝τ2

Γ,R ⊢ wormhole[rread , rwrite ](t; sf ) : τ1
R
⇝τ2

Ty-Wh
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Semantics

Evaluation transition
A small-step operational semantics for non-reactive expression. Rules are

not given in the paper but it is defined as a lazy evaluation model.

Values
All reactive terms are values. So subterms of reactives terms are not

reduced.

Functional transition
A big-step operational semantics for reactive expression.

Temporal transition
A unique transition to move from the current instant to the next instant.
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Functional transition

Functional transition
A big-step operational semantics for reactive expression. The functional

transition is defined as follows: (V , tv , sf )⇛ (V ′, t ′v , sf
′,W )

• V ,V ′ are resource environments

• tv , t
′
v are stream values

• sf , sf ′ are signal functions

• W is the set of virtual resources

Rules

(V , tv , arr(f ))⇛ (V , f tv , arr(f ), ∅)
FT-Arr
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Functional transition
A big-step operational semantics for reactive expression. The functional

transition is defined as follows: (V , tv , sf )⇛ (V ′, t ′v , sf
′,W )

• V ,V ′ are resource environments

• tv , t
′
v are stream values

• sf , sf ′ are signal functions

• W is the set of virtual resources

Rules
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Properties

Properties of Wormholes

• Progress and preservation for the evaluation transition

• Progress and preservation for the functional transition

• Progress and preservation for the temporal transition

• Safety on the use of resources
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Formalization of a subset of Wormholes

Arrow language
For the sake of simplicity we start with a subset of Wormholes. We will

take only the lambda terms and the arrow terms.

The theorem of Progress
The formalization was going well until the theorem of progress of the

functional transition.

Theorem progress : ∀ t ts τ1 τ2,

∅ ⊢ t ∈ (τ1⇝ τ2) → ∅ ⊢ ts ∈ τ1 → ∃ ts ′ t ′, | ts; t |⇛| ts ′; t ′ |.

Why ?
Two reasons:

• FT-First asks an implicit normalisation of the stream value;

• If the term t is not a value, there is no progress;

• The concept of value provoke an interlacing between evaluation

transition and functional transition.
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The FT-First rule

sf 7→∗ sf ′ (V , t1, sf
′)⇛ (V1, t

′
1, sf

′′,W )

(V , (t1, t2), first(sf ))⇛ (V1, (t
′
1, t2), first(sf

′′),W )
FT-First

Behavior of the stream
The stream do not have to be reduced in most case, except in this case

where it needs to be normalized.

Example
The configuration below is stuck with the current version of the rules.

(V , λx .(t1, x) t2, first(sf ))⇛ (...)

Modification done
ts 7→∗ (t1, t2) sf 7→∗ sf ′ (V , t1, sf

′)⇛ (V1, t
′
1, sf

′′,W )

(V , ts , first(sf ))⇛ (V1, (t
′
1, t2), first(sf

′′),W )
FT-First
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Stuck at start

Using the functional transition implicitly asks the expression to be

normalized. Consequently, even a well typed expression can be stuck at

the start.

Example

∅, ∅ ⊢ λx .(arr(λy .(x + y))) 4 ∈ int
∅
⇝ int

Modification done
We add a rule for lift evaluation transition into functional transition. A

side effect of that is a simplification of other rules.

t 7→ t ′ (V , ts , t
′)⇛ (V1, t

′
s , sf ,W )

(V , ts , t)⇛ (V1, t
′
s , sf ,W )

FT-Eval
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The interlacing issue

Explanation
Because of the fact that reactive terms are values, each time we want to

use a functional transition we have to apply multiple times the evaluation

transition on subterms.

Example
Do a little example on a board if possible (otherwise make big gesture).

Can we avoid this ?
The modification chosen was to define reactive terms as values only if

their subterms are also values and let the evaluation transition pass

through the reactive terms.
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The equivalence issue

Explanation
Adding the remaining terms of the Wormholes’s syntax brings with him

the feared renaming problem.

Example

wormhole[rr , rw ](i ; rsf [rr ]) ⇐⇒ wormhole[rread , rw ](i ; rsf [rread ])

Possibility
Several representation can possibly saved us:

• use the locally nameless representation

−→ break because of the

Ty-wh rule

• use the HOAS/PHOAS

−→ not chosen because never used

• define our equivalence
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The End

Thanks for your attention !
Do you have any questions ?

35


	Introduction
	Wormholes : An FRP language with references
	Syntax
	Typing
	Semantics
	Properties

	Formalization in Coq
	Formalization of a subset of Wormholes
	Formalization of Wormholes


