
Formalization of an FRP language with

references

SeSTeRce Day

Jordan Ischard

September 13, 2023

LIFO - University of Orleans

Table of Contents

Introduction

Wormholes : An FRP language with references

Formalization in Coq

1

Table of Contents

Introduction

Wormholes : An FRP language with references

Formalization in Coq

2

Reactive programming in 80s

In the 1980s, there was a demand for programming languages to work on

reactive systems.

An answer to this request was synchronous

programming languages.

Radiator example

3

Reactive programming in 80s

In the 1980s, there was a demand for programming languages to work on

reactive systems.

An answer to this request was synchronous

programming languages.

Definition [Pnu77]
A reactive system is a system that maintains an ongoing interaction with

its environment [. . .].

Radiator example

3

Reactive programming in 80s

In the 1980s, there was a demand for programming languages to work on

reactive systems.

An answer to this request was synchronous

programming languages.

Definition [Pnu77]
A reactive system is a system that maintains an ongoing interaction with

its environment [. . .].

Radiator example

3

Reactive programming in 80s

In the 1980s, there was a demand for programming languages to work on

reactive systems.

An answer to this request was synchronous

programming languages.

Definition [Pnu77]
A reactive system is a system that maintains an ongoing interaction with

its environment [. . .].

Radiator example

3

Reactive programming in 80s

In the 1980s, there was a demand for programming languages to work on

reactive systems.

An answer to this request was synchronous

programming languages.

Definition [Pnu77]
A reactive system is a system that maintains an ongoing interaction with

its environment [. . .].

Radiator example

3

Reactive programming in 80s

In the 1980s, there was a demand for programming languages to work on

reactive systems. An answer to this request was synchronous

programming languages.

Definition [Pnu77]
A reactive system is a system that maintains an ongoing interaction with

its environment [. . .].

Radiator example

3

Reactive programming in 80s

In the 1980s, there was a demand for programming languages to work on

reactive systems. An answer to this request was synchronous

programming languages.

Definition [Hal98]
A synchronous programming language is a computer programming

language optimized for programming reactive systems.

Radiator example

3

Reactive programming in 80s

In the 1980s, there was a demand for programming languages to work on

reactive systems. An answer to this request was synchronous

programming languages.

Definition [Hal98]
A synchronous programming language is a computer programming

language optimized for programming reactive systems.

Radiator example (using Esterel [BG92])

input OFF , TEMP(float);

do

watching OFF;

3

Reactive programming in 80s

In the 1980s, there was a demand for programming languages to work on

reactive systems. An answer to this request was synchronous

programming languages.

Definition [Hal98]
A synchronous programming language is a computer programming

language optimized for programming reactive systems.

Radiator example (using Esterel [BG92])

input OFF , TEMP(float);

do

signal SWITCH = bot in

if needs_to_switch (?TEMP) then emit SWITCH

else nothing end

watching OFF;

3

Reactive programming in 80s

In the 1980s, there was a demand for programming languages to work on

reactive systems. An answer to this request was synchronous

programming languages.

Definition [Hal98]
A synchronous programming language is a computer programming

language optimized for programming reactive systems.

Radiator example (using Esterel [BG92])

input OFF , TEMP(float);

do

signal SWITCH = bot in

present SWITCH then // ...

else nothing end

||

if needs_to_switch (?TEMP) then emit SWITCH

else nothing end

watching OFF;

3

Timeline

1980 1985 1990 1995 2000 2005 2010 2015 2020

Esterel-1984

Lustre-1986

Signal-1989

ReactiveC-1990

SL-1995

FRAN-1997

Lucid-1999

SystemC-1999

4

Timeline

1980 1985 1990 1995 2000 2005 2010 2015 2020

Esterel-1984

Lustre-1986

Signal-1989

ReactiveC-1990

SL-1995

FRAN-1997

Lucid-1999

SystemC-1999

4

Timeline

1980 1985 1990 1995 2000 2005 2010 2015 2020

Esterel-1984

Lustre-1986

Signal-1989

ReactiveC-1990

SL-1995

FRAN-1997

Lucid-1999

SystemC-1999

4

Reactive Programming in 90’s

Functional Reactive Animation [EH97]
FRAn is a functional reactive programming language. The purpose of

FRAN was to simplify the development of complex 2D/3D animation

program.

Principle
Data flows are split into two categories:

• Behavior A : Time → A

• Event A : Time × A

The program has a behavior which is a composition of behaviors and

events allow us to modify the behavior.

Examples

slowByTwo :: Behavior Time

slowByTwo = lift (\t → t / 2) time

5

Reactive Programming in 90’s

Functional Reactive Animation [EH97]
FRAn is a functional reactive programming language. The purpose of

FRAN was to simplify the development of complex 2D/3D animation

program.

Principle
Data flows are split into two categories:

• Behavior A : Time → A

• Event A : Time × A

The program has a behavior which is a composition of behaviors and

events allow us to modify the behavior.

Examples

slowByTwo :: Behavior Time

slowByTwo = lift (\t → t / 2) time

5

Reactive Programming in 90’s

Functional Reactive Animation [EH97]
FRAn is a functional reactive programming language. The purpose of

FRAN was to simplify the development of complex 2D/3D animation

program.

Principle
Data flows are split into two categories:

• Behavior A : Time → A

• Event A : Time × A

The program has a behavior which is a composition of behaviors and

events allow us to modify the behavior.

Examples

slowByTwo :: Behavior Time

slowByTwo = lift (\t → t / 2) time

5

Reactive Programming in 90’s

Principle
Data flows are split into two categories:

• Behavior A : Time → A

• Event A : Time × A

The program has a behavior which is a composition of behaviors and

events allow us to modify the behavior.

Examples

slowByTwo :: Behavior Time

slowByTwo = lift (\t → t / 2) time

time 0 1 2 3 4 5 6 7 8 . . .

slowByTwo 0 0 1 1 2 2 3 3 4 . . .

switchWhenFour 0 1 2 3 2 2 3 3 4 . . .

0 1 2 3 4 5 6 7 8 9
logic time

6

Reactive Programming in 90’s

Principle
Data flows are split into two categories:

• Behavior A : Time → A

• Event A : Time × A

The program has a behavior which is a composition of behaviors and

events allow us to modify the behavior.

Examples

switchWhenFour :: Behavior Int

switchWhenFour = time untilB (constEv 4 slowByTwo)

time 0 1 2 3 4 5 6 7 8 . . .

slowByTwo 0 0 1 1 2 2 3 3 4 . . .

switchWhenFour 0 1 2 3 2 2 3 3 4 . . .

0 1 2 3 4 5 6 7 8 9
logic time

6

Timeline

1980 1985 1990 1995 2000 2005 2010 2015 2020

Esterel-1984

Lustre-1986

Signal-1989

ReactiveC-1990

SL-1995

FRAN-1997

NewFRAN-2009

Lucid-1999

SystemC-1999

Frappe-2001

RT-FRP-2001

Yampa-2002

E-FRP-2002

ReactiveML-2005

FairThreads-2006

FrTime-2006

Funloft-2010

ReactiveX-2011

CeU-2011

Wormholes-2012

Zelus-2013

Sodium-2013

FRPNow-2015

Hailstorm-2020

7

Timeline

1980 1985 1990 1995 2000 2005 2010 2015 2020

Esterel-1984

Lustre-1986

Signal-1989

ReactiveC-1990

SL-1995

FRAN-1997 NewFRAN-2009

Lucid-1999

SystemC-1999

Frappe-2001

RT-FRP-2001

Yampa-2002

E-FRP-2002

ReactiveML-2005

FairThreads-2006

FrTime-2006

Funloft-2010

ReactiveX-2011

CeU-2011

Wormholes-2012

Zelus-2013

Sodium-2013

FRPNow-2015

Hailstorm-2020

7

Reactive Programming now

Definition [Wik23]
In computing, reactive programming is a declarative programming

paradigm concerned with data streams and the propagation of change.

Definition [Tea23]
Reactive programming was created from the observer design pattern

whose flaws needed to be corrected.

Definition [Nol21]
Reactive programming describes a design paradigm that relies on

asynchronous programming logic to handle real-time updates to

otherwise static content. It provides an efficient means – the use of

automated data streams – to handle data updates to content whenever a

user makes an inquiry.

My Definition
Reactive programming is a programming paradigm concerned with data

streams handled with a synchronous or an asynchronous style in order to

preserve the coherence of the program.

8

Reactive Programming now

Definition [Wik23]
In computing, reactive programming is a declarative programming

paradigm concerned with data streams and the propagation of change.

Definition [Tea23]
Reactive programming was created from the observer design pattern

whose flaws needed to be corrected.

Definition [Nol21]
Reactive programming describes a design paradigm that relies on

asynchronous programming logic to handle real-time updates to

otherwise static content. It provides an efficient means – the use of

automated data streams – to handle data updates to content whenever a

user makes an inquiry.

My Definition
Reactive programming is a programming paradigm concerned with data

streams handled with a synchronous or an asynchronous style in order to

preserve the coherence of the program.

8

Reactive Programming now

Definition [Wik23]
In computing, reactive programming is a declarative programming

paradigm concerned with data streams and the propagation of change.

Definition [Tea23]
Reactive programming was created from the observer design pattern

whose flaws needed to be corrected.

Definition [Nol21]
Reactive programming describes a design paradigm that relies on

asynchronous programming logic to handle real-time updates to

otherwise static content. It provides an efficient means – the use of

automated data streams – to handle data updates to content whenever a

user makes an inquiry.

My Definition
Reactive programming is a programming paradigm concerned with data

streams handled with a synchronous or an asynchronous style in order to

preserve the coherence of the program.

8

Reactive Programming now

Definition [Wik23]
In computing, reactive programming is a declarative programming

paradigm concerned with data streams and the propagation of change.

Definition [Tea23]
Reactive programming was created from the observer design pattern

whose flaws needed to be corrected.

Definition [Nol21]
Reactive programming describes a design paradigm that relies on

asynchronous programming logic to handle real-time updates to

otherwise static content. It provides an efficient means – the use of

automated data streams – to handle data updates to content whenever a

user makes an inquiry.

My Definition
Reactive programming is a programming paradigm concerned with data

streams handled with a synchronous or an asynchronous style in order to

preserve the coherence of the program.

8

Timeline

1980 1985 1990 1995 2000 2005 2010 2015 2020

Esterel-1984

Lustre-1986

Signal-1989

ReactiveC-1990

SL-1995

FRAN-1997 NewFRAN-2009

Lucid-1999

SystemC-1999

Frappe-2001

RT-FRP-2001

Yampa-2002

E-FRP-2002

ReactiveML-2005

FairThreads-2006

FrTime-2006

Funloft-2010

ReactiveX-2011

CeU-2011

Wormholes-2012

Zelus-2013

Sodium-2013

FRPNow-2015

Hailstorm-2020

9

Timeline

1980 1985 1990 1995 2000 2005 2010 2015 2020

Esterel-1984

Lustre-1986

Signal-1989

ReactiveC-1990

SL-1995

FRAN-1997 NewFRAN-2009

Lucid-1999

SystemC-1999

Frappe-2001

RT-FRP-2001

Yampa-2002

E-FRP-2002

ReactiveML-2005

FairThreads-2006

FrTime-2006

Funloft-2010

ReactiveX-2011

CeU-2011

Wormholes-2012

Zelus-2013

Sodium-2013

FRPNow-2015

Hailstorm-2020

9

Table of Contents

Introduction

Wormholes : An FRP language with references

Syntax

Typing

Semantics

Properties

Formalization in Coq

10

Table of Contents

Introduction

Wormholes : An FRP language with references

Syntax

Typing

Semantics

Properties

Formalization in Coq

11

The Wormholes syntax

Introduction [WH12]
Wormholes is a functional reactive programming language based on

arrows, a generalization of Monads like Yampa. It integrates directly the

use of information from the outside world with a specific type of signal

function named rsf.

12

The Wormholes syntax

Introduction [WH12]
Wormholes is a functional reactive programming language based on

arrows, a generalization of Monads like Yampa. It integrates directly the

use of information from the outside world with a specific type of signal

function named rsf.

12

Arrow based FRP

Arrow based FRP
Yampa [Hud+02] is an FRP language that use Arrows in order to prevent

some drawbacks of FRAN. The main idea is that all computations on

signal are done indirectly via a signal function (SF a b).

Arrow’s syntax

f

arr : (a → b) → SF a b

a b

first : SF a b → SF (a, c) (b, c)

f

arr(f) : SF a b

(a, c)

a

(a, c)

c

b

(b, c)

&&& : SF a b → SF (a, c) (b, c)

f

arr(f) : SF a c

g

arr(f) : SF a c ′

a

a

a

a

c

(c, c ′)

c ′

f

arr(f) : SF a b

g

arr(g) : SF b c

a

c

b

13

Arrow based FRP

Arrow based FRP
Yampa [Hud+02] is an FRP language that use Arrows in order to prevent

some drawbacks of FRAN. The main idea is that all computations on

signal are done indirectly via a signal function (SF a b).

Arrow’s syntax

f

arr : (a → b) → SF a b

a b

first : SF a b → SF (a, c) (b, c)

f

arr(f) : SF a b

(a, c)

a

(a, c)

c

b

(b, c)

&&& : SF a b → SF (a, c) (b, c)

f

arr(f) : SF a c

g

arr(f) : SF a c ′

a

a

a

a

c

(c, c ′)

c ′

f

arr(f) : SF a b

g

arr(g) : SF b c

a

c

b

13

The Wormholes syntax

Introduction [WH12]
Wormholes is a functional reactive programming language based on

arrows, a generalization of Monads like Yampa. It integrates directly the

use of information from the outside world with a specific type of signal

function named rsf.

Syntax

Expression t, t1, t2 ::= x | () | (t1, t2) | fst t | snd t | λx .t | t1 t2
| arr(t) | first(t) | t1 >>> t2 | rsf[r]
| wormhole[rread , rwrite](ti ; t)

Resource
A resource signal function is a non-local one-way communication channel.

Reference can be simulated by two resources: one for reading the other

for writing.

14

The Wormholes syntax

Introduction [WH12]
Wormholes is a functional reactive programming language based on

arrows, a generalization of Monads like Yampa. It integrates directly the

use of information from the outside world with a specific type of signal

function named rsf.

Syntax

Expression t, t1, t2 ::= x | () | (t1, t2) | fst t | snd t | λx .t | t1 t2
| arr(t) | first(t) | t1 >>> t2 | rsf[r]
| wormhole[rread , rwrite](ti ; t)

Resource
A resource signal function is a non-local one-way communication channel.

Reference can be simulated by two resources: one for reading the other

for writing.

14

The Wormholes syntax

Introduction [WH12]
Wormholes is a functional reactive programming language based on

arrows, a generalization of Monads like Yampa. It integrates directly the

use of information from the outside world with a specific type of signal

function named rsf.

Syntax

Expression t, t1, t2 ::= x | () | (t1, t2) | fst t | snd t | λx .t | t1 t2
| arr(t) | first(t) | t1 >>> t2 | rsf[r]
| wormhole[rread , rwrite](ti ; t)

Resource
A resource signal function is a non-local one-way communication channel.

Reference can be simulated by two resources: one for reading the other

for writing.

14

The Wormholes syntax

Introduction [WH12]
Wormholes is a functional reactive programming language based on

arrows, a generalization of Monads like Yampa. It integrates directly the

use of information from the outside world with a specific type of signal

function named rsf.

Syntax

Expression t, t1, t2 ::= x | () | (t1, t2) | fst t | snd t | λx .t | t1 t2
| arr(t) | first(t) | t1 >>> t2 | rsf[r]
| wormhole[rread , rwrite](ti ; t)

Resource
A resource signal function is a non-local one-way communication channel.

Reference can be simulated by two resources: one for reading the other

for writing.

14

The Wormholes syntax

Introduction [WH12]
Wormholes is a functional reactive programming language based on

arrows, a generalization of Monads like Yampa. It integrates directly the

use of information from the outside world with a specific type of signal

function named rsf.

Syntax

Expression t, t1, t2 ::= x | () | (t1, t2) | fst t | snd t | λx .t | t1 t2
| arr(t) | first(t) | t1 >>> t2 | rsf[r]
| wormhole[rread , rwrite](ti ; t)

Resource
A resource signal function is a non-local one-way communication channel.

Reference can be simulated by two resources: one for reading the other

for writing.

14

The Wormholes syntax

Introduction [WH12]
Wormholes is a functional reactive programming language based on

arrows, a generalization of Monads like Yampa. It integrates directly the

use of information from the outside world with a specific type of signal

function named rsf.

Syntax

Expression t, t1, t2 ::= x | () | (t1, t2) | fst t | snd t | λx .t | t1 t2
| arr(t) | first(t) | t1 >>> t2 | rsf[r]
| wormhole[rread , rwrite](ti ; t)

Resource
A resource signal function is a non-local one-way communication channel.

Reference can be simulated by two resources: one for reading the other

for writing.

14

The Wormholes syntax

Hypothesis

• minutes is a getter resource for the current number of minutes;

• hours is a getter resource for the current number of hours;

• console is a setter resource for display in the terminal.

Examples

displayTime = rsf[minutes] >>> arr (\n → ((),n)) >>>

first (rsf[hours]) >>> rsf[console]

minutes n→ ((),n)

hours

console
m ((),m) m

() h

(h,m)() ()

15

The Wormholes syntax

Hypothesis

• minutes is a getter resource for the current number of minutes;

• hours is a getter resource for the current number of hours;

• console is a setter resource for display in the terminal.

Examples

displayTime = rsf[minutes] >>> arr (\n → ((),n)) >>>

first (rsf[hours]) >>> rsf[console]

minutes n→ ((),n)

hours

console
m ((),m) m

() h

(h,m)() ()

15

The Wormholes syntax

Hypothesis

• minutes is a getter resource for the current number of minutes;

• hours is a getter resource for the current number of hours;

• console is a setter resource for display in the terminal.

Examples

displayTime = rsf[minutes] >>> arr (\n → ((),n)) >>>

first (rsf[hours]) >>> rsf[console]

minutes n→ ((),n)

hours

console
m ((),m) m

() h

(h,m)() ()

15

The Wormholes syntax

Examples

counter = rsf[ctime] >>> arr(\x.((),x)) >>>

wormhole[cpt_r , cpt_w](0,

first(rsf[cpt_r]) >>>

arr (\(cpt ,ct) → (cpt+ct,cpt)) >>>

first(rsf[cpt_w]) >>> arr (fst))

ctimex→ ((),x)

(...) → ...

fst

cpt_r cpt_w

()t

()

((),t)

t

c

(c,t)

()

(c’,c)

c’ ()

c

((),c)

16

The Wormholes syntax

Examples

counter = rsf[ctime] >>> arr(\x.((),x)) >>>

wormhole[cpt_r , cpt_w](0,

first(rsf[cpt_r]) >>>

arr (\(cpt ,ct) → (cpt+ct,cpt)) >>>

first(rsf[cpt_w]) >>> arr (fst))

ctimex→ ((),x)

(...) → ...

fst

cpt_r cpt_w

()t

()

((),t)

t

c

(c,t)

()

(c’,c)

c’ ()

c

((),c)

16

Table of Contents

Introduction

Wormholes : An FRP language with references

Syntax

Typing

Semantics

Properties

Formalization in Coq

17

Typing

Types

Resource Type t ::= ⟨τin, τout⟩
Types τ, τ1, τ2 ::= unit | τ1 × τ2 | τ1 → τ2

| τ1
{r1;...}
⇝ τ2

Counting used resources
Reactive function type carries the set of used resources. Consequently,

the typing serves as a safeguard for the correct use of the language.

Example

rsf[minutes] will be typed as follows: unit
{minutes}
⇝ int.

18

Typing

Types

Resource Type t ::= ⟨τin, τout⟩
Types τ, τ1, τ2 ::= unit | τ1 × τ2 | τ1 → τ2

| τ1
{r1;...}
⇝ τ2

Counting used resources
Reactive function type carries the set of used resources. Consequently,

the typing serves as a safeguard for the correct use of the language.

Example

rsf[minutes] will be typed as follows: unit
{minutes}
⇝ int.

18

Typing

Types

Resource Type t ::= ⟨τin, τout⟩
Types τ, τ1, τ2 ::= unit | τ1 × τ2 | τ1 → τ2

| τ1
{r1;...}
⇝ τ2

Counting used resources
Reactive function type carries the set of used resources. Consequently,

the typing serves as a safeguard for the correct use of the language.

Example

rsf[minutes] will be typed as follows: unit
{minutes}
⇝ int.

18

Typing

Rules

Γ,R ⊢ f : τ1→τ2

Γ,R ⊢ arr(f) : τ1
∅
⇝τ2

Ty-Arr
Γ,R ⊢ sf : τ1

R
⇝τ3

Γ,R ⊢ first(sf) : τ1 × τ2
R
⇝τ3 × τ2

Ty-First

Γ,R ⊢ sf1 : τ1
R1⇝τ3 R1 ∪ R2 = R

Γ,R ⊢ sf2 : τ3
R2⇝τ2 R1 ∩ R2 = ∅

Γ,R ⊢ sf1 >>> sf2 : τ1
R
⇝τ2

Ty-Comp

Γ,R∪ {r : ⟨τin, τout⟩} ⊢ rsf[r] : τin
{r}
⇝τout

Ty-Rsf

Γ,R ⊢ t : τ R = R ′\{rread ; rwrite}
Γ,R ∪ {rread : ⟨(), τ⟩; rwrite : ⟨τ, ()⟩} ⊢ sf : τ1

R′
⇝τ2

Γ,R ⊢ wormhole[rread , rwrite](t; sf) : τ1
R
⇝τ2

Ty-Wh

19

Typing

Rules

Γ,R ⊢ f : τ1→τ2

Γ,R ⊢ arr(f) : τ1
∅
⇝τ2

Ty-Arr
Γ,R ⊢ sf : τ1

R
⇝τ3

Γ,R ⊢ first(sf) : τ1 × τ2
R
⇝τ3 × τ2

Ty-First

Γ,R ⊢ sf1 : τ1
R1⇝τ3 R1 ∪ R2 = R

Γ,R ⊢ sf2 : τ3
R2⇝τ2 R1 ∩ R2 = ∅

Γ,R ⊢ sf1 >>> sf2 : τ1
R
⇝τ2

Ty-Comp

Γ,R∪ {r : ⟨τin, τout⟩} ⊢ rsf[r] : τin
{r}
⇝τout

Ty-Rsf

Γ,R ⊢ t : τ R = R ′\{rread ; rwrite}
Γ,R ∪ {rread : ⟨(), τ⟩; rwrite : ⟨τ, ()⟩} ⊢ sf : τ1

R′
⇝τ2

Γ,R ⊢ wormhole[rread , rwrite](t; sf) : τ1
R
⇝τ2

Ty-Wh

19

Typing

Rules

Γ,R ⊢ f : τ1→τ2

Γ,R ⊢ arr(f) : τ1
∅
⇝τ2

Ty-Arr
Γ,R ⊢ sf : τ1

R
⇝τ3

Γ,R ⊢ first(sf) : τ1 × τ2
R
⇝τ3 × τ2

Ty-First

Γ,R ⊢ sf1 : τ1
R1⇝τ3 R1 ∪ R2 = R

Γ,R ⊢ sf2 : τ3
R2⇝τ2 R1 ∩ R2 = ∅

Γ,R ⊢ sf1 >>> sf2 : τ1
R
⇝τ2

Ty-Comp

Γ,R∪ {r : ⟨τin, τout⟩} ⊢ rsf[r] : τin
{r}
⇝τout

Ty-Rsf

Γ,R ⊢ t : τ R = R ′\{rread ; rwrite}
Γ,R ∪ {rread : ⟨(), τ⟩; rwrite : ⟨τ, ()⟩} ⊢ sf : τ1

R′
⇝τ2

Γ,R ⊢ wormhole[rread , rwrite](t; sf) : τ1
R
⇝τ2

Ty-Wh

19

Typing

Rules

Γ,R ⊢ f : τ1→τ2

Γ,R ⊢ arr(f) : τ1
∅
⇝τ2

Ty-Arr
Γ,R ⊢ sf : τ1

R
⇝τ3

Γ,R ⊢ first(sf) : τ1 × τ2
R
⇝τ3 × τ2

Ty-First

Γ,R ⊢ sf1 : τ1
R1⇝τ3 R1 ∪ R2 = R

Γ,R ⊢ sf2 : τ3
R2⇝τ2 R1 ∩ R2 = ∅

Γ,R ⊢ sf1 >>> sf2 : τ1
R
⇝τ2

Ty-Comp

Γ,R∪ {r : ⟨τin, τout⟩} ⊢ rsf[r] : τin
{r}
⇝τout

Ty-Rsf

Γ,R ⊢ t : τ R = R ′\{rread ; rwrite}
Γ,R ∪ {rread : ⟨(), τ⟩; rwrite : ⟨τ, ()⟩} ⊢ sf : τ1

R′
⇝τ2

Γ,R ⊢ wormhole[rread , rwrite](t; sf) : τ1
R
⇝τ2

Ty-Wh

19

Typing

Rules

Γ,R ⊢ f : τ1→τ2

Γ,R ⊢ arr(f) : τ1
∅
⇝τ2

Ty-Arr
Γ,R ⊢ sf : τ1

R
⇝τ3

Γ,R ⊢ first(sf) : τ1 × τ2
R
⇝τ3 × τ2

Ty-First

Γ,R ⊢ sf1 : τ1
R1⇝τ3 R1 ∪ R2 = R

Γ,R ⊢ sf2 : τ3
R2⇝τ2 R1 ∩ R2 = ∅

Γ,R ⊢ sf1 >>> sf2 : τ1
R
⇝τ2

Ty-Comp

Γ,R∪ {r : ⟨τin, τout⟩} ⊢ rsf[r] : τin
{r}
⇝τout

Ty-Rsf

Γ,R ⊢ t : τ R = R ′\{rread ; rwrite}
Γ,R ∪ {rread : ⟨(), τ⟩; rwrite : ⟨τ, ()⟩} ⊢ sf : τ1

R′
⇝τ2

Γ,R ⊢ wormhole[rread , rwrite](t; sf) : τ1
R
⇝τ2

Ty-Wh

19

Typing

Rules

Γ,R ⊢ f : τ1→τ2

Γ,R ⊢ arr(f) : τ1
∅
⇝τ2

Ty-Arr
Γ,R ⊢ sf : τ1

R
⇝τ3

Γ,R ⊢ first(sf) : τ1 × τ2
R
⇝τ3 × τ2

Ty-First

Γ,R ⊢ sf1 : τ1
R1⇝τ3 R1 ∪ R2 = R

Γ,R ⊢ sf2 : τ3
R2⇝τ2 R1 ∩ R2 = ∅

Γ,R ⊢ sf1 >>> sf2 : τ1
R
⇝τ2

Ty-Comp

Γ,R∪ {r : ⟨τin, τout⟩} ⊢ rsf[r] : τin
{r}
⇝τout

Ty-Rsf

Γ,R ⊢ t : τ R = R ′\{rread ; rwrite}
Γ,R ∪ {rread : ⟨(), τ⟩; rwrite : ⟨τ, ()⟩} ⊢ sf : τ1

R′
⇝τ2

Γ,R ⊢ wormhole[rread , rwrite](t; sf) : τ1
R
⇝τ2

Ty-Wh

19

Table of Contents

Introduction

Wormholes : An FRP language with references

Syntax

Typing

Semantics

Properties

Formalization in Coq

20

Semantics

Evaluation transition
A small-step operational semantics for non-reactive expression. Rules are

not given in the paper but it is defined as a lazy evaluation model.

Values
All reactive terms are values. So subterms of reactives terms are not

reduced.

Functional transition
A big-step operational semantics for reactive expression.

Temporal transition
A unique transition to move from the current instant to the next instant.

21

Semantics

Evaluation transition
A small-step operational semantics for non-reactive expression. Rules are

not given in the paper but it is defined as a lazy evaluation model.

Values
All reactive terms are values. So subterms of reactives terms are not

reduced.

Functional transition
A big-step operational semantics for reactive expression.

Temporal transition
A unique transition to move from the current instant to the next instant.

21

Semantics

Evaluation transition
A small-step operational semantics for non-reactive expression. Rules are

not given in the paper but it is defined as a lazy evaluation model.

Values
All reactive terms are values. So subterms of reactives terms are not

reduced.

Functional transition
A big-step operational semantics for reactive expression.

Temporal transition
A unique transition to move from the current instant to the next instant.

21

Semantics

Evaluation transition
A small-step operational semantics for non-reactive expression. Rules are

not given in the paper but it is defined as a lazy evaluation model.

Values
All reactive terms are values. So subterms of reactives terms are not

reduced.

Functional transition
A big-step operational semantics for reactive expression.

Temporal transition
A unique transition to move from the current instant to the next instant.

21

Functional transition

Functional transition
A big-step operational semantics for reactive expression. The functional

transition is defined as follows: (V , tv , sf)⇛ (V ′, t ′v , sf
′,W)

• V ,V ′ are resource environments

• tv , t
′
v are stream values

• sf , sf ′ are signal functions

• W is the set of virtual resources

Rules

(V , tv , arr(f))⇛ (V , f tv , arr(f), ∅)
FT-Arr

22

Functional transition

Functional transition
A big-step operational semantics for reactive expression. The functional

transition is defined as follows: (V , tv , sf)⇛ (V ′, t ′v , sf
′,W)

• V ,V ′ are resource environments

• tv , t
′
v are stream values

• sf , sf ′ are signal functions

• W is the set of virtual resources

Rules

(V , tv , arr(f))⇛ (V , f tv , arr(f), ∅)
FT-Arr

22

Functional transition

Functional transition
A big-step operational semantics for reactive expression. The functional

transition is defined as follows: (V , tv , sf)⇛ (V ′, t ′v , sf
′,W)

• V ,V ′ are resource environments

• tv , t
′
v are stream values

• sf , sf ′ are signal functions

• W is the set of virtual resources

Rules

sf 7→∗ sf ′ (V , t1, sf
′)⇛ (V1, t

′
1, sf

′′,W)

(V , (t1, t2), first(sf))⇛ (V1, (t
′
1, t2), first(sf

′′),W)
FT-First

22

Functional transition

Functional transition
A big-step operational semantics for reactive expression. The functional

transition is defined as follows: (V , tv , sf)⇛ (V ′, t ′v , sf
′,W)

• V ,V ′ are resource environments

• tv , t
′
v are stream values

• sf , sf ′ are signal functions

• W is the set of virtual resources

Rules

sf1 7→∗ sf ′1 (V , tv , sf
′
1)⇛ (V1, t

′
v , sf

′′
1 ,W1)

sf2 7→∗ sf ′2 (V1, t
′
v , sf

′
2)⇛ (V2, t

′′
v , sf

′′
2 ,W2)

(V , tv , sf1 >>> sf2)⇛ (V2, t
′′
v , sf

′′
1 >>> sf ′′2 ,W1 ∪W2)

FT-Comp

22

Functional transition

Functional transition
A big-step operational semantics for reactive expression. The functional

transition is defined as follows: (V , tv , sf)⇛ (V ′, t ′v , sf
′,W)

• V ,V ′ are resource environments

• tv , t
′
v are stream values

• sf , sf ′ are signal functions

• W is the set of virtual resources

Rules

(V ∪ {(r , tr , .)}, tv , rsf[r])⇛ (V ∪ {(r , ., tv)}, tr , rsf[r], ∅)
FT-Rsf

22

Functional transition

Functional transition
A big-step operational semantics for reactive expression. The functional

transition is defined as follows: (V , tv , sf)⇛ (V ′, t ′v , sf
′,W)

• V ,V ′ are resource environments

• tv , t
′
v are stream values

• sf , sf ′ are signal functions

• W is the set of virtual resources

Rules

sf 7→∗ sf ′ (V ∪ {(rr , ti , .); (rw , (), .)}, tv , sf ′)⇛ (V1, t
′
v , sf

′′,W)

(V , tv , wormhole[rr , rw](ti ; sf))⇛ (V1, t
′
v , sf

′′,W ∪ {[rr , rw , ti]})
FT-Wh

22

Table of Contents

Introduction

Wormholes : An FRP language with references

Syntax

Typing

Semantics

Properties

Formalization in Coq

23

Properties

Properties of Wormholes

• Progress and preservation for the evaluation transition

• Progress and preservation for the functional transition

• Progress and preservation for the temporal transition

• Safety on the use of resources

24

Properties

Properties of Wormholes

• Progress and preservation for the evaluation transition

• Progress and preservation for the functional transition

• Progress and preservation for the temporal transition

• Safety on the use of resources

24

Properties

Properties of Wormholes

• Progress and preservation for the evaluation transition

• Progress and preservation for the functional transition

• Progress and preservation for the temporal transition

• Safety on the use of resources

24

Properties

Properties of Wormholes

• Progress and preservation for the evaluation transition

• Progress and preservation for the functional transition

• Progress and preservation for the temporal transition

• Safety on the use of resources

24

Properties

Properties of Wormholes

• Progress and preservation for the evaluation transition

• Progress and preservation for the functional transition

• Progress and preservation for the temporal transition

• Safety on the use of resources

24

Properties

Properties of Wormholes

• Progress and preservation for the evaluation transition

• Progress and preservation for the functional transition

• Progress and preservation for the temporal transition

• Safety on the use of resources

24

Properties

Properties of Wormholes

• Progress and preservation for the evaluation transition

• Progress and preservation for the functional transition

• Progress and preservation for the temporal transition

• Safety on the use of resources

24

Table of Contents

Introduction

Wormholes : An FRP language with references

Formalization in Coq

Formalization of a subset of Wormholes

Formalization of Wormholes

25

Table of Contents

Introduction

Wormholes : An FRP language with references

Formalization in Coq

Formalization of a subset of Wormholes

Formalization of Wormholes

26

Formalization of a subset of Wormholes

Arrow language
For the sake of simplicity we start with a subset of Wormholes. We will

take only the lambda terms and the arrow terms.

The theorem of Progress
The formalization was going well until the theorem of progress of the

functional transition.

Theorem progress : ∀ t ts τ1 τ2,

∅ ⊢ t ∈ (τ1⇝ τ2) → ∅ ⊢ ts ∈ τ1 → ∃ ts ′ t ′, | ts; t |⇛| ts ′; t ′ |.

Why ?
Two reasons:

• FT-First asks an implicit normalisation of the stream value;

• If the term t is not a value, there is no progress;

• The concept of value provoke an interlacing between evaluation

transition and functional transition.

27

Formalization of a subset of Wormholes

Arrow language
For the sake of simplicity we start with a subset of Wormholes. We will

take only the lambda terms and the arrow terms.

The theorem of Progress
The formalization was going well until the theorem of progress of the

functional transition.

Theorem progress : ∀ t ts τ1 τ2,

∅ ⊢ t ∈ (τ1⇝ τ2) → ∅ ⊢ ts ∈ τ1 → ∃ ts ′ t ′, | ts; t |⇛| ts ′; t ′ |.

Why ?
Two reasons:

• FT-First asks an implicit normalisation of the stream value;

• If the term t is not a value, there is no progress;

• The concept of value provoke an interlacing between evaluation

transition and functional transition.

27

Formalization of a subset of Wormholes

Arrow language
For the sake of simplicity we start with a subset of Wormholes. We will

take only the lambda terms and the arrow terms.

The theorem of Progress
The formalization was going well until the theorem of progress of the

functional transition.

Theorem progress : ∀ t ts τ1 τ2,

∅ ⊢ t ∈ (τ1⇝ τ2) → ∅ ⊢ ts ∈ τ1 → ∃ ts ′ t ′, | ts; t |⇛| ts ′; t ′ |.

Why ?
Two reasons:

• FT-First asks an implicit normalisation of the stream value;

• If the term t is not a value, there is no progress;

• The concept of value provoke an interlacing between evaluation

transition and functional transition.

27

Formalization of a subset of Wormholes

Arrow language
For the sake of simplicity we start with a subset of Wormholes. We will

take only the lambda terms and the arrow terms.

The theorem of Progress
The formalization was going well until the theorem of progress of the

functional transition.

Theorem progress : ∀ t ts τ1 τ2,

∅ ⊢ t ∈ (τ1⇝ τ2) → ∅ ⊢ ts ∈ τ1 → ∃ ts ′ t ′, | ts; t |⇛| ts ′; t ′ |.

Why ?
Two reasons:

• FT-First asks an implicit normalisation of the stream value;

• If the term t is not a value, there is no progress;

• The concept of value provoke an interlacing between evaluation

transition and functional transition.

27

Formalization of a subset of Wormholes

Arrow language
For the sake of simplicity we start with a subset of Wormholes. We will

take only the lambda terms and the arrow terms.

The theorem of Progress
The formalization was going well until the theorem of progress of the

functional transition.

Theorem progress : ∀ t ts τ1 τ2,

∅ ⊢ t ∈ (τ1⇝ τ2) → ∅ ⊢ ts ∈ τ1 → ∃ ts ′ t ′, | ts; t |⇛| ts ′; t ′ |.

Why ?
Two reasons:

• FT-First asks an implicit normalisation of the stream value;

• If the term t is not a value, there is no progress;

• The concept of value provoke an interlacing between evaluation

transition and functional transition.

27

Formalization of a subset of Wormholes

Arrow language
For the sake of simplicity we start with a subset of Wormholes. We will

take only the lambda terms and the arrow terms.

The theorem of Progress
The formalization was going well until the theorem of progress of the

functional transition.

Theorem progress : ∀ t ts τ1 τ2,

∅ ⊢ t ∈ (τ1⇝ τ2) → ∅ ⊢ ts ∈ τ1 → ∃ ts ′ t ′, | ts; t |⇛| ts ′; t ′ |.

Why ?
Two reasons:

• FT-First asks an implicit normalisation of the stream value;

• If the term t is not a value, there is no progress;

• The concept of value provoke an interlacing between evaluation

transition and functional transition.

27

Formalization of a subset of Wormholes

Arrow language
For the sake of simplicity we start with a subset of Wormholes. We will

take only the lambda terms and the arrow terms.

The theorem of Progress
The formalization was going well until the theorem of progress of the

functional transition.

Theorem progress : ∀ t ts τ1 τ2,

∅ ⊢ t ∈ (τ1⇝ τ2) → ∅ ⊢ ts ∈ τ1 → ∃ ts ′ t ′, | ts; t |⇛| ts ′; t ′ |.

Why ?
Two reasons:

• FT-First asks an implicit normalisation of the stream value;

• If the term t is not a value, there is no progress;

• The concept of value provoke an interlacing between evaluation

transition and functional transition.

27

The FT-First rule

sf 7→∗ sf ′ (V , t1, sf
′)⇛ (V1, t

′
1, sf

′′,W)

(V , (t1, t2), first(sf))⇛ (V1, (t
′
1, t2), first(sf

′′),W)
FT-First

Behavior of the stream
The stream do not have to be reduced in most case, except in this case

where it needs to be normalized.

Example
The configuration below is stuck with the current version of the rules.

(V , λx .(t1, x) t2, first(sf))⇛ (...)

Modification done
ts 7→∗ (t1, t2) sf 7→∗ sf ′ (V , t1, sf

′)⇛ (V1, t
′
1, sf

′′,W)

(V , ts , first(sf))⇛ (V1, (t
′
1, t2), first(sf

′′),W)
FT-First

28

The FT-First rule

sf 7→∗ sf ′ (V , t1, sf
′)⇛ (V1, t

′
1, sf

′′,W)

(V , (t1, t2), first(sf))⇛ (V1, (t
′
1, t2), first(sf

′′),W)
FT-First

Behavior of the stream
The stream do not have to be reduced in most case, except in this case

where it needs to be normalized.

Example
The configuration below is stuck with the current version of the rules.

(V , λx .(t1, x) t2, first(sf))⇛ (...)

Modification done
ts 7→∗ (t1, t2) sf 7→∗ sf ′ (V , t1, sf

′)⇛ (V1, t
′
1, sf

′′,W)

(V , ts , first(sf))⇛ (V1, (t
′
1, t2), first(sf

′′),W)
FT-First

28

The FT-First rule

sf 7→∗ sf ′ (V , t1, sf
′)⇛ (V1, t

′
1, sf

′′,W)

(V , (t1, t2), first(sf))⇛ (V1, (t
′
1, t2), first(sf

′′),W)
FT-First

Behavior of the stream
The stream do not have to be reduced in most case, except in this case

where it needs to be normalized.

Example
The configuration below is stuck with the current version of the rules.

(V , λx .(t1, x) t2, first(sf))⇛ (...)

Modification done
ts 7→∗ (t1, t2) sf 7→∗ sf ′ (V , t1, sf

′)⇛ (V1, t
′
1, sf

′′,W)

(V , ts , first(sf))⇛ (V1, (t
′
1, t2), first(sf

′′),W)
FT-First

28

The FT-First rule

sf 7→∗ sf ′ (V , t1, sf
′)⇛ (V1, t

′
1, sf

′′,W)

(V , (t1, t2), first(sf))⇛ (V1, (t
′
1, t2), first(sf

′′),W)
FT-First

Behavior of the stream
The stream do not have to be reduced in most case, except in this case

where it needs to be normalized.

Example
The configuration below is stuck with the current version of the rules.

(V , λx .(t1, x) t2, first(sf))⇛ (...)

Modification done
ts 7→∗ (t1, t2) sf 7→∗ sf ′ (V , t1, sf

′)⇛ (V1, t
′
1, sf

′′,W)

(V , ts , first(sf))⇛ (V1, (t
′
1, t2), first(sf

′′),W)
FT-First

28

Stuck at start

Using the functional transition implicitly asks the expression to be

normalized. Consequently, even a well typed expression can be stuck at

the start.

Example

∅, ∅ ⊢ λx .(arr(λy .(x + y))) 4 ∈ int
∅
⇝ int

Modification done
We add a rule for lift evaluation transition into functional transition. A

side effect of that is a simplification of other rules.

t 7→ t ′ (V , ts , t
′)⇛ (V1, t

′
s , sf ,W)

(V , ts , t)⇛ (V1, t
′
s , sf ,W)

FT-Eval

29

Stuck at start

Using the functional transition implicitly asks the expression to be

normalized. Consequently, even a well typed expression can be stuck at

the start.

Example

∅, ∅ ⊢ λx .(arr(λy .(x + y))) 4 ∈ int
∅
⇝ int

Modification done
We add a rule for lift evaluation transition into functional transition. A

side effect of that is a simplification of other rules.

t 7→ t ′ (V , ts , t
′)⇛ (V1, t

′
s , sf ,W)

(V , ts , t)⇛ (V1, t
′
s , sf ,W)

FT-Eval

29

Stuck at start

Using the functional transition implicitly asks the expression to be

normalized. Consequently, even a well typed expression can be stuck at

the start.

Example

∅, ∅ ⊢ λx .(arr(λy .(x + y))) 4 ∈ int
∅
⇝ int

Modification done
We add a rule for lift evaluation transition into functional transition. A

side effect of that is a simplification of other rules.

t 7→ t ′ (V , ts , t
′)⇛ (V1, t

′
s , sf ,W)

(V , ts , t)⇛ (V1, t
′
s , sf ,W)

FT-Eval

29

Stuck at start

Using the functional transition implicitly asks the expression to be

normalized. Consequently, even a well typed expression can be stuck at

the start.

Example

∅, ∅ ⊢ λx .(arr(λy .(x + y))) 4 ∈ int
∅
⇝ int

Modification done
We add a rule for lift evaluation transition into functional transition. A

side effect of that is a simplification of other rules.

t 7→ t ′ (V , ts , t
′)⇛ (V1, t

′
s , sf ,W)

(V , ts , t)⇛ (V1, t
′
s , sf ,W)

FT-Eval

29

The interlacing issue

Explanation
Because of the fact that reactive terms are values, each time we want to

use a functional transition we have to apply multiple times the evaluation

transition on subterms.

Example
Do a little example on a board if possible (otherwise make big gesture).

Can we avoid this ?
The modification chosen was to define reactive terms as values only if

their subterms are also values and let the evaluation transition pass

through the reactive terms.

30

The interlacing issue

Explanation
Because of the fact that reactive terms are values, each time we want to

use a functional transition we have to apply multiple times the evaluation

transition on subterms.

Example
Do a little example on a board if possible (otherwise make big gesture).

Can we avoid this ?
The modification chosen was to define reactive terms as values only if

their subterms are also values and let the evaluation transition pass

through the reactive terms.

30

The interlacing issue

Explanation
Because of the fact that reactive terms are values, each time we want to

use a functional transition we have to apply multiple times the evaluation

transition on subterms.

Example
Do a little example on a board if possible (otherwise make big gesture).

Can we avoid this ?
The modification chosen was to define reactive terms as values only if

their subterms are also values and let the evaluation transition pass

through the reactive terms.

30

Table of Contents

Introduction

Wormholes : An FRP language with references

Formalization in Coq

Formalization of a subset of Wormholes

Formalization of Wormholes

31

The equivalence issue

Explanation
Adding the remaining terms of the Wormholes’s syntax brings with him

the feared renaming problem.

Example

wormhole[rr , rw](i ; rsf [rr]) ⇐⇒ wormhole[rread , rw](i ; rsf [rread])

Possibility
Several representation can possibly saved us:

• use the locally nameless representation

−→ break because of the

Ty-wh rule

• use the HOAS/PHOAS

−→ not chosen because never used

• define our equivalence

32

The equivalence issue

Explanation
Adding the remaining terms of the Wormholes’s syntax brings with him

the feared renaming problem.

Example

wormhole[rr , rw](i ; rsf [rr]) ⇐⇒ wormhole[rread , rw](i ; rsf [rread])

Possibility
Several representation can possibly saved us:

• use the locally nameless representation

−→ break because of the

Ty-wh rule

• use the HOAS/PHOAS

−→ not chosen because never used

• define our equivalence

32

The equivalence issue

Explanation
Adding the remaining terms of the Wormholes’s syntax brings with him

the feared renaming problem.

Example

wormhole[rr , rw](i ; rsf [rr]) ⇐⇒ wormhole[rread , rw](i ; rsf [rread])

Possibility
Several representation can possibly saved us:

• use the locally nameless representation

−→ break because of the

Ty-wh rule

• use the HOAS/PHOAS

−→ not chosen because never used

• define our equivalence

32

The equivalence issue

Explanation
Adding the remaining terms of the Wormholes’s syntax brings with him

the feared renaming problem.

Example

wormhole[rr , rw](i ; rsf [rr]) ⇐⇒ wormhole[rread , rw](i ; rsf [rread])

Possibility
Several representation can possibly saved us:

• use the locally nameless representation

−→ break because of the

Ty-wh rule

• use the HOAS/PHOAS

−→ not chosen because never used

• define our equivalence

32

The equivalence issue

Explanation
Adding the remaining terms of the Wormholes’s syntax brings with him

the feared renaming problem.

Example

wormhole[rr , rw](i ; rsf [rr]) ⇐⇒ wormhole[rread , rw](i ; rsf [rread])

Possibility
Several representation can possibly saved us:

• use the locally nameless representation

−→ break because of the

Ty-wh rule

• use the HOAS/PHOAS

−→ not chosen because never used

• define our equivalence

32

The equivalence issue

Explanation
Adding the remaining terms of the Wormholes’s syntax brings with him

the feared renaming problem.

Example

wormhole[rr , rw](i ; rsf [rr]) ⇐⇒ wormhole[rread , rw](i ; rsf [rread])

Possibility
Several representation can possibly saved us:

• use the locally nameless representation

−→ break because of the

Ty-wh rule

• use the HOAS/PHOAS

−→ not chosen because never used

• define our equivalence

32

The equivalence issue

Explanation
Adding the remaining terms of the Wormholes’s syntax brings with him

the feared renaming problem.

Example

wormhole[rr , rw](i ; rsf [rr]) ⇐⇒ wormhole[rread , rw](i ; rsf [rread])

Possibility
Several representation can possibly saved us:

• use the locally nameless representation −→ break because of the

Ty-wh rule

• use the HOAS/PHOAS

−→ not chosen because never used

• define our equivalence

32

The equivalence issue

Explanation
Adding the remaining terms of the Wormholes’s syntax brings with him

the feared renaming problem.

Example

wormhole[rr , rw](i ; rsf [rr]) ⇐⇒ wormhole[rread , rw](i ; rsf [rread])

Possibility
Several representation can possibly saved us:

• use the locally nameless representation −→ break because of the

Ty-wh rule

• use the HOAS/PHOAS −→ not chosen because never used

• define our equivalence

32

The equivalence issue

Explanation
Adding the remaining terms of the Wormholes’s syntax brings with him

the feared renaming problem.

Example

wormhole[rr , rw](i ; rsf [rr]) ⇐⇒ wormhole[rread , rw](i ; rsf [rread])

Possibility
Several representation can possibly saved us:

• use the locally nameless representation −→ break because of the

Ty-wh rule

• use the HOAS/PHOAS −→ not chosen because never used

• define our equivalence

32

References i

[BG92] Gérard Berry and Georges Gonthier. “The Esterel synchronous programming

language: design, semantics, implementation”. In: Science of Computer

Programming 19.2 (Nov. 1, 1992), pp. 87–152. issn: 0167-6423. doi:

10.1016/0167-6423(92)90005-V.

[EH97] Conal Elliott and Paul Hudak. “Functional Reactive Animation”. In: Proceedings

of the 1997 ACM SIGPLAN International Conference on Functional Programming

(ICFP). Ed. by Simon L. Peyton Jones, Mads Tofte, and A. Michael Berman.

Amsterdam, The Netherlands: ACM, 1997, pp. 263–273. doi:

10.1145/258948.258973.

[Hal98] Nicolas Halbwachs. “Synchronous programming of reactive systems”. In:

Computer Aided Verification. Ed. by Alan J. Hu and Moshe Y. Vardi. Lecture

Notes in Computer Science. Berlin, Heidelberg: Springer, 1998, pp. 1–16. isbn:

978-3-540-69339-0. doi: 10.1007/BFb0028726.

[Hud+02] Paul Hudak et al. “Arrows, Robots, and Functional Reactive Programming”. In:

Advanced Functional Programming, 4th International School (AFP). Ed. by

Johan Jeuring and Simon L. Peyton Jones. Vol. 2638. Lecture Notes in Computer

Science. Oxford, UK: Springer, 2002, pp. 159–187. doi:

10.1007/978-3-540-44833-4_6.

33

https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1145/258948.258973
https://doi.org/10.1007/BFb0028726
https://doi.org/10.1007/978-3-540-44833-4_6

References ii

[Nol21] Tom Nolle. Reactive programming. https:

//www.techtarget.com/searchapparchitecture/definition/reactive-

programming. 2021.

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Symposium on

Foundations of Computer Science (FOCS). Providence, Rhode Island, USA: IEEE

Computer Society, 1977, pp. 46–57. doi: 10.1109/SFCS.1977.32.

[Tea23] Ryax Team. La programmation réactive : c’est quoi ?

https://ryax.tech/fr/la-programmation-reactive-cest-quoi/. 2023.

[WH12] Daniel Winograd-Cort and Paul Hudak. “Wormholes: introducing effects to FRP”.

In: ACM SIGPLAN Notices 47.12 (Sept. 13, 2012), pp. 91–104. issn: 0362-1340.

doi: 10.1145/2430532.2364519.

[Wik23] Wikipedia. Reactive programming.

https://en.wikipedia.org/wiki/Reactive_programming. 2023.

34

https://www.techtarget.com/searchapparchitecture/definition/reactive-programming
https://www.techtarget.com/searchapparchitecture/definition/reactive-programming
https://www.techtarget.com/searchapparchitecture/definition/reactive-programming
https://doi.org/10.1109/SFCS.1977.32
https://ryax.tech/fr/la-programmation-reactive-cest-quoi/
https://doi.org/10.1145/2430532.2364519
https://en.wikipedia.org/wiki/Reactive_programming

The End

Thanks for your attention !
Do you have any questions ?

35

	Introduction
	Wormholes : An FRP language with references
	Syntax
	Typing
	Semantics
	Properties

	Formalization in Coq
	Formalization of a subset of Wormholes
	Formalization of Wormholes

