
Rice’s Theorem for µ-Limit Sets of Cellular
Automata

Martin Delacourt?

Laboratoire d’Informatique Fondamentale de Marseille
Université de Provence, France

Abstract. Cellular automata are a parallel and synchronous computing
model, made of infinitely many finite automata updating according to the
same local rule. Rice’s theorem states that any nontrivial property over
computable functions is undecidable. It has been adapted by Kari to limit
sets of cellular automata [Kar94], that is the set of configurations that
can be reached arbitrarily late. This paper proves a new Rice theorem
for µ-limit sets, which are sets of configurations often reached arbitrarily
late.

1 Introduction

In the field of decidability, a major result is the Rice theorem [Ric53] which states
that every property over computable functions is either trivial or undecidable.
This being stated for computable functions, it is quite natural to expect a similar
result for other computational systems.

In this paper, we will focus on cellular automata, a massively parallel model
of computation introduced by von Neumann [vN66]. Cellular automata are com-
posed of infinitely many cells that evolve synchronously following the same local
rule. The dynamics of these objects have been well studied, and in particular the
notion of limit set i.e. the set of configurations that can be seen arbitrarily late.
An important step was achieved by Kari with the equivalent of Rice’s theorem
for limit sets [Kar94].

Another point of view is to look at configurations that can appear arbitrarily
late and often. This supposes to choose the initial configuration according to
a measure µ. This approach led to µ-attractors [Hur90] and then to µ-limit
sets introduced in [KM00]. Configurations of the µ-limit set are those containing
only patterns whose probability does not tend to 0, or equivalently configurations
obtained starting from a random initial configuration.

Some results on µ-limit sets are already known, such as the undecidability
of the µ-nilpotency [BPT06]. We deal here with Rice’s theorem for µ-limit sets.
With a construction similar to the one presented in [BDS10] to obtain complex
subshifts as µ-limit sets, we will reduce any nontrivial property to the question
of µ-nilpotency. First we give some definitions, then two sections are devoted

? Thanks to the project ANR EMC: ANR-09-BLAN-0164.

to the construction of an appropriate cellular automaton, and finally we will be
able to prove the reduction.

Due to a lack of space, the proofs are in the appendix.

2 Definitions

2.1 Words and Density

For a finite set Q called an alphabet, denote Q∗ =
⋃
n∈N Q

n the set of all finite
words over Q. The length of u = u0u1 . . . un−1 is |u| = n. We denote QZ the set
of configurations over Q, which are mappings from Z to Q, and for c ∈ QZ, we
denote cz the image of z ∈ Z by c. For u ∈ Q∗ and 0 ≤ i ≤ j < |u| we define the
subword u[i,j] = uiui+1 . . . uj ; this definition can be extended to a configuration
c ∈ QZ as c[i,j] = cici+1 . . . cj for i, j ∈ Z with i ≤ j. The language of S ⊂ QZ is
defined by

L(S) = {u ∈ Q∗ : ∃c ∈ S, ∃i ∈ Z such that u = c[i,i+|u|−1]}.

For every u ∈ Q∗ and i ∈ Z, we define the cylinder [u]i as the set of con-
figurations containing the word u in position i that is to say [u]i = {c ∈ QZ :
c[i,i+|u|−1] = u}. If the cylinder is at the position 0, we just denote it by [u].

For all u, v ∈ Q∗ define |v|u the number of occurences of u in v as:

|v|u = card{i ∈ [0, |v| − |u|] : v[i,i+|u|−1] = u}

For finite words u, v ∈ Q∗, if |u| < |v|, the density of u in v is defined as
dv(u) = |v|u

|v|−|u| . For a configuration c ∈ QZ, the density dc(v) of a finite word v
is:

dc(v) = lim sup
n→+∞

|c[−n,n]|v
2n+ 1− |v| .

These definitions can be generalized for a set of wordsW ⊂ Q∗, we note |u|W
and dc(W). We can give similar definitions for semi-configurations (indexed by
N) too.

Definition 1 (Generic configuration). A configuration is said to be generic
for an alphabet Q if all words over Q have a strictly positive density in the con-
figuration. If, moreover, any word of length k has density 1

|Q|k , the configuration
is said to be normal.

In this paper, we will use a particular normal configuration, that we define
here.

Definition 2 (de Bruijn sequence). A de Bruijn sequence of order n ∈ N
over an alphabet Q is a word of length |Q|n + n− 1 that contains every word of
length n as a subword.

We will consider here a specific de Bruijn sequence of order n noted DB(n)
produced as in [FK75].

Definition 3 (de Bruijn configuration). The de Bruijn configuration cDB
is the concatenation of de Bruijn sequences of orders n for every n ∈ N:

cDB = DB(1)DB(2)DB(3) . . . DB(n) . . .

Remark 1. Let n ∈ N and u ∈ Qn, we have: ∀m ∈ N, |DB(n+m)|u = |Q|m.

We can prove the following lemma on the regularity of density in prefixes of
the de Bruijn configuration.

Lemma 1. There exists l0 ∈ N such that for all l ≥ l0, for any k ≥ |Q|2l and
any u ∈ Ql, 1

2dcDB (u) ≤ dcDB[0,k−1](u) ≤ 2dcDB (u).

2.2 Cellular Automata

Definition 4 (Cellular automaton). A cellular automaton (CA) A is a triple
(QA, rA, δA) where QA is a finite set of states called the alphabet, rA is the ra-
dius of the automaton, and δA : Q2rA+1

A 7→ QA is the local rule.

The configurations of a cellular automaton are the configurations over QA.
A global behavior is induced and we will note A(c) the image of a configuration
c given by: ∀z ∈ Z,A(c)z = δA(cz−r, . . . , cz, . . . , cz+r). Studying the dynamic of
A is studying the iterations of a configuration by the map A : QZ

A → QZ
A.

When there is no ambiguity, we’ll note Q, r and δ for QA, rA, δA.
A state a ∈ QA is said to be permanent for a CA A if for any u, v ∈ QrA,

δ(uav) = a.

2.3 µ-Limit Sets

Definition 5 (Uniform Bernoulli measure). For an alphabet Q, the uniform
Bernoulli measure µ on configurations over Q is defined by:

∀u ∈ Q∗, i ∈ Z, µ([u]i) =
1
|Q||u|

.

µ will be the only considered measure through this paper, even though these
definitions can be generalized for a large set of measure.

For a CA A = (Q, r, δ) and u ∈ Q∗, we denote for all n ∈ N, Anµ([u]) =
µ (A−n([u])).

Definition 6 (Persistent set). For a CA A, we define the persistent set
Lµ(A) ⊆ Q∗ by: ∀u ∈ Q∗:

u /∈ Lµ(A)⇐⇒ lim
n→∞

Anµ([u]0) = 0.

Then the µ-limit set of A is Λµ(A) =
{
c ∈ QZ : L(c) ⊆ Lµ(A)

}
.

Remark 2. As said in [KM00], µ-limit sets are closed and shift-invariant. Two
µ-limit sets are therefore equal if and only if their languages are equal.

Definition 7 (µ-nilpotency). A CA A is said to be µ-nilpotent if Λµ(A) =
{aZ} for some a ∈ QA or equivalently Lµ(A) = a∗.

The question of the µ-nilpotency of a cellular automaton is proved undecid-
able in [BPT06]. The problem is still undecidable with CA of radius 1 and with
a permanent state. We will reduce all other properties to this problem.

Definition 8 (Set of predecessors). We define the set of predecessors at time
n of a finite word u for a CA A as PnA(u) =

{
v ∈ Q|u|+2rn : An([v]−rn) ⊆ [u]0

}
.

Remark 3. As we consider the uniform measure µ, |PnA(u)|
|Q||u|+2rn → 0 ⇔ u /∈ Lµ(A).

Remark 4. The set of normal configurations has measure 1 in QZ. Which means
that a configuration that is randomly generated according to measure µ is a
normal configuration.

The following lemma translates the belonging to the µ-limit set in terms of
density in images of a normal configuration.

Lemma 2. Given a CA A and a finite word u, for any normal configuration c:

u ∈ Λµ(A) ⇔ dAn(c)(u) 9 0 when n→ +∞

Example 1 (MAX). We consider here the “max” automaton AM : the alphabet
contains only two states 0 and 1. The radius is 1 and δAM (x, y, z) = max(x, y, z).

The probability to have a 0 at time t is the probability to have 02t+1 on the
initial configuration, which tends to 0 when t → ∞ for the uniform Bernoulli
measure, so 0 does not appear in the µ-limit set. And finally Λµ(AM) = {∞1∞}.

The limit set of a cellular automaton is defined as Λ(A) =
⋂
i∈NAi(QZ), so

Λ(AM) = (∞10∗1∞) ∪ (∞0∞) ∪ (∞10∞) ∪ (∞01∞). Actually, we can prove that
this limit-set is an example of limit-set that cannot be a µ-limit set.

2.4 Properties of µ-Limit Sets

Through all this paper, the alphabets of CA will be finite subsets of a countably
infinite set {α0, α1, α2 . . . }. A property of µ-limit sets is a family P of µ-limit
sets of CA and any µ-limit set in P is said to have this property.
A property P is said to be nontrivial if there exist CA A0 and A1 such that
Λµ(A0) ∈ P and Λµ(A1) /∈ P. For example, µ-nilpotency or the appearance of
some state in the µ-limit set are nontrivial properties.

3 Counters

In this section and the following one we describe an automaton AS , which on
normal configurations produces finite segments, separated by a special state #,
whose size increases with time. In these segments, we will make computations
described in Sect. 5.

We want to erase nearly all of the initial random configuration and only
remember some information. This information will be on states ∗ that can appear
only at time 0. Each ∗ state sends two counters to its left and right. And these
counters will erase everything except a younger counter. Therefore, when two
counters meet, they compare their age, and the younger erases the older. If
they have the same age, they stop and write a #. The notion of counters was
introduced in [DPST10] and used in [BDS10].

Counters are composed of two signals, one faster than the other, and the age
of the counter is computed between them. The whole construction (both signals
and the binary counter in it) is called a counter. Therefore, everything on the
initial configuration is erased and forgotten, except for ∗ states. Indeed, even if
some counters exist on the initial configuration, they will be older than counters
from ∗ when they meet, and hence erased.

For what follows, we will need to have random bits on the #, so we use two
states ∗0 and ∗1 instead of the unique state ∗. And the bit i is transfered from an
∗i to the # produced on its left. We then have #0 and #1 instead of #. When
it makes no difference, we will speak of # and ∗ for #i and ∗i.

∗1∗1∗1∗0∗1∗0

#

#1

#1

#1
#0

#1

#0

Fig. 1. When two counters launched by a ∗ meet, a # delimiter is produced and
counters disappear. Information between ∗ states on the initial configuration is lost
when it meets a gray area..

The initialization of a configuration is illustrated in Fig. 1. Counters are
schematized by gray areas. # delimiters remain, and we will see later what
happens to them.

4 Merging Segments

We saw in Sect. 3, how a special state ∗ on the initial configuration gave birth to
counters protecting everything inside them until they meet some other counter
born the same way. In this section, we will describe the evolution of the automa-
ton AS after this time of initialization. When two counters of the same age meet,
they disappear and a # is produced.

Definition 9 (Segment). A segment u is a subword of a configuration delim-
ited by two # and containing no # inside

(
u ∈ # (Q \ {#})∗#

)
. The size of a

segment is the number of cells between both #.

When a # is produced in automaton AS , it sends a signal on its right to
detect the first # on its right. If the signal catches the inside of a counter still
in activity before reaching a #, it waits until this counter produces a #. Then
both # have recognised each other and the segment between them becomes “con-
scious”. It launches a computation inside itself, and this will be the concern of
Sect. 5. But as we will need arbitrarily large space for computation, we will re-
move small segments and replace them by larger ones. Therefore, at some times,
we will erase some #, and the segments that were formerly separated will join
their space. We describe here mechanisms that lead to this merging process, and
then see how it behaves with µ-limit sets. This happens inside any segment, and
in parallel with the computation from Sect. 5.

A segment is said to be well-formed if it is delimited by two # that have
themselves been created by ∗ states on the initial configuration. To construct
AS , we additionally attribute a color to each segment. There will be Red (R)
and Blue (B) segments. So we will have 4 states to replace ∗0 and ∗1: ∗r0, ∗r1,
∗b0 and ∗b1. We still use ∗ to refer to any of them indistinctly. An initial segment
has color R when produced by ∗r0 or ∗r1, and else color B. The random bit is
still transfered to the # on the left as described in Sect. 3.

We require that any segment stores and updates its age since the initial con-
figuration. We’ll add two counters (one on each side of the segment) to perform
this task. Moreover, we want to ensure that the storage of the age of a well-
formed segment does not need more than b

√
(n)c cells where n is the size of

the segment. This means we need to know the size of the segment. This can be
computed and stored with space log(n). To maintain the property, segments will
merge when the age becomes too large for them.

Suppose we use an alphabet of size K ≥ 3 to store the age, then the space
used in a segment becomes too large at some time Ki with i ∈ N (when i+ 1 ≥
b
√

(n)c). Every segment has to decide whether it will need to merge, and to tell
its neighbors before time Ki. At that time, any segment that needs more space
will merge according to the following conditions:

1. if none of its neighbors want to merge, it merges with the left one,
2. if one only of its neighbors wants to merge, it merges with that one,

3. if both its neighbors want to merge, it merges with the left one except if this
neighbor has the same color, and the right one has the other color.

Remark 5. Each segment can decide in (i+1)2 steps, if it is larger than (i+1)2.
Then it can write on each side if it wants to merge at time Ki or not in less than
2(i+ 1)2 steps. If a segment wants to merge, it can check its neighbors’ will on
both sides and decide its own behavior in (i+ 1)2.

The # between two segments that merge together is erased with the age
counters around it. Then another cycle starts on the left side of the new segment.
Many successive # have possibly disappeared, so the merging is not necessarily
two segments becoming one but many segments becoming one. As at least one
has been erased inside the new segment, we use the bit from the leftmost #i

erased to determine the color of the new segment. If i = 0, it will be R, and else
B.

We call initial segment, a well-formed segment such that only one cell inside it
contained a ∗ on the initial configuration. That is, a segment that is well-formed
and not created from a merging. And we call successor segment, a segment well-
formed but not initial, that is, created by a merging of well-formed segments
that are its predecessors. We so define a set of predecessors at each time.

Remark 6. When two segments merge at time Ki, at least one of them wanted
to merge, which means one of them was smaller than (i+ 1)2.

If three or more segments merge at time Ki, they all wanted to merge, so
they were all smaller than (i+ 1)2.
∀i ∈ N, at time t > Ki, any segment has a size greater than (i+ 1)2. This is

clear since any segment smaller would have merged at time Ki.

Remark 7. Red and blue segments are initially randomly distributed according
to the uniform measure. When some segments merge, the new color is chosen
independently from the colors of predecessors or neighbors, and only according
to a random bit, so the distribution of colors remains random.

The general behavior of the segments among themselves is illustrated in
Fig. 2.

Thanks to the following claim, we will be able to prove the first important
result for automaton AS : Prop. 1, which says that # states tend to be sparse
enough to be left outside of Λµ(AS).

Claim. The density of cells outside well-formed segments on a normal configu-
ration tends to 0 as time passes.

Proposition 1. There is no # in the µ-limit set of AS.

This comes from the fact that well-formed segments tend to cover the image of
a normal configuration. As their growth is permanent, # states are eventually
separated by arbitrarily large words.

#1#0#1#1#1#1#0#1#0#0#1#0#0#1

!

! !

!

!! !

!

!

!

Fig. 2. A # remains until two segments merge. Blue segments are in plain gray, red
ones in hashed gray. At time Ki, small segments merge together or with their left
neighbor.

In Sect 5, we will need to have an upper bound on the size of a large propor-
tion of segments. We will prove such a bound in the following lemma.

A segment is said to be acceptable if it is well-formed and if its size is n ≤ Ki/4

at time Ki ≤ t < Ki+1. In the sequel, we consider the automaton on a normal
configuration cN .

We will show that large segments exist with low probability. First we use the
merging protocol, and the colors to justify that a lot of segments rarely merge all
together. Then, we show that large initial segments are quite unlikely. In both
cases, we give bounds on the probability of large segments.

We can now prove the next lemma:

Lemma 3. The density of non acceptable segments tends to 0 as time passes.

To do this, each non acceptable segment is seen as either initial, the product
of a merging, or a successor of some non acceptable segment. In the third case, we
consider the first predecessor that was in another case and show that it concerns
few segments only.

Denote St, t ∈ N the set of acceptable segments successors of acceptable
segments at time t. This set contains all possible segments, it is finite for any
time, and it does not depend of the initial configuration.

Remark 8. The same proof as for previous lemma shows that dcN (St)→t→∞ 1.

Thanks to this, we only need to look at the behavior of the automaton inside
segments of St, the words that will remain in the µ-limit set will be the words
that appear often in these segments.

5 Rice Theorem

The idea here is to copy the principle of the proof of Rice’s theorem for limit
sets from [Kar94]. We want to reduce any nontrivial property over µ-limit sets
to the µ-nilpotency of a CA H of radius 1 having a permanent state q.

First we construct an automaton to prove the following proposition:

Proposition 2. For any CA H of radius 1, where a state q is permanent, and
CA A, there exists a CA B such that:

– if H is µ-nilpotent, Λµ(B) = Λµ(A).
– if H is not µ-nilpotent, Λµ(B) = αZ, for some chosen α ∈ QA.

Then, given a property P, for two automata A1 and A2, such that one exactly
of Λµ(A1) and Λµ(A2) has property P, we construct B1 and B2. If there existed
an algorithm to decide whether a µ-limit set has property P, we could use this
algorithm with B1 and B2. If only one among Λµ(B1) and Λµ(B2) has property
P, they have different µ-limit sets and H is µ-nilpotent. In the other case, their
µ-limit sets cannot be Λµ(A1) and Λµ(A2), and H is not µ-nilpotent.

5.1 Construction

The automaton B is based upon AS from previous sections. The whole construc-
tion of counters and segments is exactly as described in Sect(s). 3 and 4. We now
describe the computation in a segment. We will only concern ourselves with well-
formed segments as, for a normal configuration, every cell is eventually reached
by such a segment. We partially test the µ-nilpotency of H in every segment, if
the test is conlusive, we simulate A, meaning we write an image of a prefix of
the de Bruijn configuration, if not, we write the uniform word αn.

Remark 9. We will use the de Bruijn configuration cDB over the alphabet QA
defined in 2.1. Thanks to [FK75], a de Bruijn sequence of order k can be com-
puted in space O(k) and time O(|Q|k). Therefore we can fill a segment of length
n with a prefix of cDB in space O(log(n)) and time O(n).

Remark 10. As q is a permanent state in the radius 1 CA H, it behaves like a
wall, which means no information can travel through a q state. So a simulation
of H over a word u ∈ q (QH \ {q})l q needs only space l for any l.

In any well-formed segment of size n ∈ N, the computation of a Turing
machine starts on the left of the segment at every time Ki for i ∈ N.

1. it measures and stores on each side the segment’s size.
2. it simulates H on every u ∈ q (QH \ {q})l q for l ≤ 1

2

(
log|QH|(K

i/4)
)
− 1

during |QH|l timesteps. This is how we test the µ-nilpotency of H. If one of
the computed images is not ql, the segment does not simulate A. If all the
images are ql, the segment simulates A.

3. on the left of the segment, it computes j(i) = blog(log(i))c.

4. if the segment simulates A, the machine computes a prefix of length n of
cDB , then computes and writes its j(i)-th image by A. If the segment does
not simulate A, the head writes αn over the segment.

5. the machine stops when the whole computation and writing is over or when
it has reached time Ki+1. At that time, the machine erases itself, leaving
what was written.

Remark 11. Each cell in a segment contains a couple:

– a state for computation, storage of the age or the length of the segment,
– a state from QA.

The first state (computation) is for most cells left blank, then the couple is seen
as a state of QA.

Remark 12. The machine needs only O(j(i) + log(n)) cells to compute. There
are O(

√
(n)) additional cells used to count the age on each side, and O(1) cells

for signals moving through the segment. And only O(j(i)n) steps are required
to perform it.

When a segment is formed by a merging, the data of its cells (on the first
layer) is not removed until a new state of QA has to be written.

To prove Prop. 2, we will need two lemmas:

Lemma 4. There exists i0 such that, for i ≥ i0, the computation is finished
before Ki+1 − 1 in every segment that is acceptable at time Ki.

This is easily proved, since the length of acceptable segments is bounded.
And the second lemma, that will let us test the µ-nilpotency of H:

Lemma 5. If H is not µ-nilpotent, there exists l ∈ N and u ∈ q(QH \ {q})lq
such that H|QH|l(u) 6= ql+2.

To prove it, we just use the fact that words which cannot have any perma-
nent state in their antecedents cannot be persistent, since the measure of their
predecessors’ set tends to 0.

5.2 H µ-Nilpotent

In this section, we suppose H is µ-nilpotent and we will show Λµ(B) ⊆ Λµ(A).
First, we make sure that the simulation happens everywhere in this case.

Claim. If H is µ-nilpotent, every well-formed segment simulates A.

Then we prove the following lemma:

Lemma 6. If H is µ-nilpotent, then Λµ(B) ⊆ Λµ(A)

The proof needs a description of the content of a segment with computation
parts, and words computed by the simulation of A.

Remark 13. Thanks to Lemma 4, any s ∈ St with |s| = n at timeKi ≤ t < Ki+1

contains:

– O(
√

(n)) cells for computation, they will not appear in Lµ(B).
– a subword of Aj(i)(cDB[0..n−1]) computed between times Ki and t.
– a concatenation of subwords of Aj(i−1)(cDB[0..n−1]) computed before time
Ki that were not erased during the merging.

To prove the lemma, we show that any word of Lµ(B) appears often in large
acceptable segments. Then we prove that if a word appears often in an accept-
able segment, thanks to the previous remark, it appears often in at least an
image of cDB by A. As cDB is normal, we can conclude.

Now we show the second inclusion:

Lemma 7. If H is µ-nilpotent, then Λµ(A) ⊆ Λµ(B)

To prove this lemma, we consider a word in Lµ(A). There exists necessarily
a sequence of images (Atx(cDB))x∈N in which the density of u does not tend
to 0. We take a sequence (τx)x∈N of times at which Bτx simulates Atx . Then,
thanks to the regularity property of cDB , we can prove that the density of u in
the images of a normal configuration by B does not tend to 0.

5.3 H not µ-Nilpotent

In this case, we first make sure that after some time, A is not simulated in any
segment anymore.

Claim. If H is not µ-nilpotent, there exists i0 such that, for all i ≥ i0, no well-
formed segment at time Ki ≤ t < Ki+1 simulates A.

Then we conclude by saying that any letter different from α has a density
that tends to 0. Which forces αZ to be the unique configuration in Lµ(B).

Lemma 8. If H is not µ-nilpotent, then α∗ = Lµ(B).

This ends the proof of Prop. 2.

5.4 Rice Theorem

First we need to consider two automata A1 and A2 over the same alphabet:

Lemma 9. For any nontrivial property, there exist CA A0 and A1 over the
same alphabet QA such that one among Λµ(A0) and Λµ(A1) has this property,
and the other not.

We can prove this lemma by taking multiple copies of each state of both
automata, in order to get an alphabet which size is the least common multiple
of both sizes.

And finally, we complete the proof of the theorem:

Theorem 1. Any nontrivial property of µ-limit sets of cellular automata is un-
decidable.

As announced, from A1 and A2, we construct B1 and B2, then deciding a
property P leads to deciding the µ-nilpotency of H.

6 Conclusion

The result presented in this article is that no algorithmic property over µ-limit
sets can be decided, except for trivial ones. This, as [BDS10], shows the com-
plexity and hence the interest of this object. We have the same restriction as in
[Kar94], that is, we work on an unlimited set of states. One property at least
becomes decidable if we limit the set of possible states, it is having the fullshift
as µ-limit set. Which is equivalent to being surjective.

In [GR10], it was proved that surjectivity was the only decidable problem
on limit sets with a fixed alphabet. This extension could perhaps be adapted to
µ-limit sets and then show another parallel between limit and µ-limit sets.

This is also another use of counters and segments, showing how powerful this
tool can be for cellular automata. Especially concerning µ-limit sets.

References

[BDS10] Laurent Boyer, Martin Delacourt, and Mathieu Sablik. Construction of µ-
limit sets. Journées Automates Cellulaires, 76–87, 2010.

[BPT06] Laurent Boyer, Victor Poupet, and Guillaume Theyssier. On the Complexity
of Limit Sets of Cellular Automata Associated with Probability Measures.
MFCS 2006, LNCS 4162:190–201, 2006.

[DPST10] Martin Delacourt, Victor Poupet, Mathieu Sablik, and Guillaume Theyssier.
Directional Dynamics along Arbitrary Curves in Cellular Automata. Theo-
retical Computer Science, A paraître, 2010.

[FK75] Harold Fredricksen and Irving Kessler. Lexicographic compositions and de-
Bruijn sequences. Journal of combinatorial theory, A 22:17-30, 1977

[GR10] Pierre Guillon and Gaétan Richard. Revisiting the Rice Theorem for Cellular
Automata. STACS, 2010, pages 441–452, 2010.

[Hur90] Mike Hurley. Ergodic aspects of cellular automata. Ergodic Theory Dynam.
Systems, 10(4):671–685, 1990.

[Kar94] Jarkko Kari. Rice’s Theorem for the Limit Sets of Cellular Automata. Theor.
Comput. Sci., 127(2):229–254, 1994.

[KM00] Petr K ‌urka and Alejandro Maass. Limit sets of cellular automata associated
to probability measures. Journal of Statistical Physics, 100(5):1031–1047,
2000.

[Ric53] Henry Gordon Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society, 74(2):358–
366, 1953.

[vN66] John von Neumann. Theory of Self-Reproducing Automata. University of
Illinois Press, Champaign, IL, USA, 1966.

A Proofs

A.1 Proofs for Sect. 2

Lemma 1. There exists l0 ∈ N such that for all l ≥ l0, for any k ≥ |Q|2l and
any u ∈ Ql, 1

2dcDB (u) ≤ dcDB[0,k−1](u) ≤ 2dcDB (u).

Proof. Let l ∈ N. The length of the concatenation of the l first de Bruijn se-
quences is: s(l) =

∑l
i=1(|Q|i + i − 1) = |Q|l+1−1

|Q|−1 + l(l−1)
2 . Let k ≥ s(l), there

exists m ∈ N such that s(l + m) ≤ k ≤ s(l + m + 1). Now dcDB[0,k−1](u) ≥
1
k

(∑l+m
i=l |DB(i)|u

)
and there are at least |Q|i words of size l + i containing u.

Therefore dcDB[0,k−1](u) ≥
Pm
i=0 |Q|

i

s(l+m+1) . And
Pm
i=0 |Q|

i

s(l+m+1) →m→∞
1
|Q|l .

As dcDB (u) = lim supk→+∞
|cDB[0,k−1]|u

k−|u| , we have proved that dcDB (u) ≥
1
|Q|l , but as

∑
u∈Ql dcDB (u) = 1, this means that cDB is effectively a normal

configuration.
Then, there exists l0 such that ∀l ≥ l0, k ≥ |Q|2l, 1

2|Q|l ≤ dcDB[0,k−1](u) ≤ 2
|Q|l .
ut

Lemma 2. Given a CA A and a finite word u, for any normal configuration c:

u ∈ Λµ(A). ⇔ dAn(c)(u) 9 0 when n→ +∞.

Proof. Actually, we prove here that for any n ∈ N:
dAn(c)(u) = Anµ(u) = |PnA(u)|

|Q||u|+2rn .
The second equality is clear.
Let n ∈ N. We note r the radius of A. Since any occurence of u in An(c)
corresponds to an occurence of a predecessor of u in c :

dAn(c)(u) = lim
k→+∞

|An(c)[−k,k]|u
2k + 1− |u| = lim

k→+∞

∑
v∈PnA(u)

|c[−k−rn,k+rn]|v
2k + 2rn+ 1− (|u|+ 2rn)

.

And as c is normal, for any v ∈ PnA(u) : |c[−k−rn,k+rn]|v ∼k→+∞
2k+1

|Q||u|+2rn .

Then:

dAn(c)(u) =
∑

v∈PnA(u)

lim
k→+∞

(
1

2k + 1− |u|
2k + 1
|Q||u|+2rn

)

=
∑

v∈PnA(u)

1
|Q||u|+2rn

=
|PnA(u)|
|Q||u|+2rn

.

ut

A.2 Proofs for Sect. 4

Claim. The density of cells outside well-formed segments on a normal configu-
ration tends to 0.

Proof. The proof is clear since such a cell needs predecessors without states ∗
on each side in the initial configuration. ut

Proposition 1. There is no # in the µ-limit set of AS.

Proof. Let ε > 0. We consider a normal configuration. previous claim tells that
there exists t0 ∈ N such that ∀t > t0, the density of cells outside well-formed
segments is less than ε/2. Take i0 such that ∀i > i0, 1/(i + 1)2 ≤ ε/2, thanks
to remark 6, for t > t1 with t1 = max(t0,Ki), the size of any segment is bigger
than (i+1)2. For t > t1, as the # have to come either from well-formed segments
(density less than 1/(i+ 1)2), or from the rest of the configuration (density less
than ε/2), the total density of # is less than ε.

And finally, this density tends to 0 and Lemma 2 concludes. ut

Claim. A segment produced by the merging of three or more segments at time
Ki has size n with probability less than 4n

(i+1)2 2−
n

(i+1)2 .

Proof. Consider such a segment of size n. All the predecessors of it were smaller
than (i+1)2, or they would not have merged together. So n

(i+1)2 segments at least
have merged. Now consider the colors of these segments. As they prefer to merge
with a segment of the same color, and if not possible on their left, the colors’
distribution among them was: R(RB)lRk, (RB)lRk, R(RB)lBk or R(RB)lBk

(or symmetrically if starting with B) for some k, l ∈ N. So the distribution is
determined by its shape (among four possible shapes), its length and k. Therefore
the probability of such a succession of segments is less than 4 n

(i+1)2 2−
n

(i+1)2 .
ut

Claim. An initial segment has length n with probability less than n
(

2
q

)3 (
q−2
q

)2n

where q is the number of states of the automaton.

Proof. An initial segment of length n is produced by three ∗ distant from l1 and

l2, with (l1 + l2)/2 = n. So the probability is less than 2
q

(
q−2
q

)l1
2
q

(
q−2
q

)l2
2
q .

Considering the n possibilities for the choice of l1 and l2, we have n
(

2
q

)3 (
q−2
q

)2n

ut

Lemma 3. The density of non acceptable segments tends to 0 as time passes.

Proof. Consider time Ki ≤ t < Ki+1. Thanks to remark 6, and for large enough
i (such that Ki/4 ≥ 2i2), if a segment is larger than Ki/4 at time t, then it is:

1. either an initial segment.
2. either a segment produced by the merging of many segments.

3. or the successor of a segment that was larger than K(i−1)/4 at time Ki−1,
and that possibly merged with a segment smaller than i2 at time Ki.

For case 3, we consider the chain of non acceptable predecessors of the seg-
ment at time Kj , j ≤ i. The oldest predecessor of this chain is either case 1 or
case 2: there exists h ≤ i minimal such that at time Kj , for all h ≤ j ≤ i, one
predecessor of the segment is larger than Kj/4. If this predecessor’s size at Kh

was n, its size at Ki is less than n +
∑i

0 j
2 since it merged with at most one

small segment at each Kj .
There exists i0 such that ∀i ≥ i0,

∑i
0 j

2 ≤ Ki/4−1, therefore, as n+
∑i

0 j
2 ≥

Ki/4, we have n ≥ Ki/4−1. The predecessor was either case 1 or case 2 and its
size doubled at most between steps h and i. We treat both cases (with h ≤ i)
thanks to the two previous claims.

So the density di of cells in segments larger than Ki/4 at time Ki is the sum
of:

– cells in initial segments larger than Ki/4−1, that at most doubled;
– cells in case 2 segments created before i and that at most doubled.

di ≤
∑

n≥Ki/4−1

2n

(
n

(
2
q

)3(
q − 2
q

)2n
)

+
∑
h≤i

∑
n≥Ki/4−1

2n
(

4n
(h+ 1)2

2−
n

(h+1)2

)
.

di ≤
∑

n≥Ki/4−1

2n

(
n

(
2
q

)3(
q − 2
q

)2n
)

+ i
∑

n≥Ki/4−1

2n
(
4n× 2−

n
(i+1)2

)
Finally, di → 0. ut

A.3 Proofs for Sect. 5

Lemma 4. There exists i0 such that, for i ≥ i0, the computation is finished
before Ki+1 − 1 in every segment that is acceptable at time Ki.

Proof. As said in remark 12, the computation needs O(j(i)n) = O(n log(log(i))),
and as n log(log(i)) = o(Ki) for n ≤ Ki/4, there exists i0 such that the com-
putation is finished within Ki steps for acceptable segments. And then, at time
Ki+1 − 1 ≥ Ki +Ki, the computation is over. ut

Lemma 5. If H is not µ-nilpotent, there exists l ∈ N and u ∈ q(QH \ {q})lq
such that H|QH|l(u) 6= ql+2.

Proof. As q is a wall for H, the behavior between two q is ultimately periodic. If
any word in these periods is uniform, non uniform words will disappear as time
passes.

Suppose that for any u ∈ q(QH \ {q})∗q, H(u) = q|u|+2. Now consider v ∈
Lµ(H). Suppose for all x ∈ [t− log(log(t)), t] and y ∈ [t+ |v|, t+ |v|+ log(log(t))],
for any u of length |v| + 2t with ux = q = uy, we have Ht(u) 6= v. In this case,
the density of predecessors of v is 0.

Therefore, there exists u ∈ Q|v|+2t
H such that Ht(u) = v and ux = q = uy

with x ∈ [t− log(log(t)), t] and y ∈ [t+ |v|, t+ |v|+ log(log(t))].
Then, as y−x ≤ |v|+2 log(log(t)), and for large enough t ≥ |QH||v|+2 log(log(t)),

v = Ht(u) = q|v| by hypothesis. And H is µ-nilpotent. ut

Claim. If H is µ-nilpotent, every well-formed segment simulates A.

Proof. Let s a well-formed segment. It simulates H on every u ∈ q (QH \ {q})p q
during |QH|p for a finite number of values for p. Thanks to Lemma 5, every such
simulation computes qp+2, so s decides to simulate A. ut

Claim. Let u ∈ Lµ(B) (|u| = k) and ε > 0. Let s ∈ St for Ki ≤ t < Ki+1(i ∈ N)
such that |QA|2(k+2j(i)) ≤ (i− 1)2 and ds(u) ≥ ε, then:

– either dAj(i−1)(cDB)(u) ≥ ε
4 ,

– or dAj(i)(cDB)(u) ≥ ε
4

Proof. If the computation is over in the segment, as |s| ≥ |QA|2(k+2j(i)), Lemma
1 applies for antecedents of u by Aj(i) and:

ds(u) ≤ dcDB[0,|s|](P
j(i)
A (u)) ≤ 2dcDB (P j(i)A (u)) ≤ 2dAj(i)(cDB)(u).

If the computation is not even begun, s contains the concatenation of words
written by the computation in its predecessors. As they were all larger than
(i − 1)2 ≥ |QA|2(k+2j(i−1)), the same reasoning shows that the density of u in
each of them was less than 2dAj(i−1)(cDB)(u). So ds(u) ≤ 2dAj(i−1)(cDB)(u).

And finally, we conclude since the density is less than the sum of both:

ds(u) ≤ 2dAj(i)(cDB)(u) + 2dAj(i−1)(cDB)(u).

ut

Lemma 6. If H is µ-nilpotent, then Λµ(B) ⊆ Λµ(A)

Proof. We will prove Lµ(B) ⊆ Lµ(A).
Let u ∈ Lµ(B) (|u| = k), there exists ε > 0 and (tx)x such that ∀x ∈

N, dBtx (cN)(u) ≥ ε. Thanks to Lemma 3 and remark 8, dBt(cN)(St) → 1, so
there exists x0 ∈ N such that ∀x ≥ x0, there exists an acceptable segment
sx ∈ Stx ∩ L (Btx(cN)) with dsx(u) ≥ ε.

There exists i0 ∈ N such that for all i ≥ i0 − 1, |QA|2(k+2j(i)) ≤ i2. Consider
x1 ≥ x0 minimal such that tx1 ≥ Ki0 . Now previous claim ensures that there
exists jx ∈ {j(i − 1), j(i)} such that dAjx (cDB)(u) ≥ ε

4 . As jx →x→∞ ∞, u ∈
Lµ(A).

ut

Lemma 7. If H is µ-nilpotent, then Λµ(A) ⊆ Λµ(B)

Proof. Let u ∈ Lµ(A) (|u| = k). There exists (tx)x such that dAtx (cDB)(u) 9x→∞

0. Denote ix = KKtx , clearly, there exists x0 ∈ N such that ∀x ≥ x0, i2x ≥
|QA|2(k+2tx). Now, denote τx = Kix+1 − 1, at time τx, any acceptable segment
of the automaton B contains the image by Atx of a prefix of cDB .

For any x ≥ x0, dBτx (cN)(u) ≥ dBτx (cN)(Sτx) mins∈Sτx ds(u).
Thanks to Lemma 3, dBτx (cN)(Sτx)→ 1.
Now, consider an acceptable segment s at time τx. The computation in s is

over and the word Atx(cDB)[0, |s|−1] is written. As remarked in 12, there exists

β > 0 such that less than βs = β

√
(|s|)
|s| cells are used for computation in s.

We have ds(u) ≥ dAtx (cDB[0,|s|−1])(u)−βs. And ds(u) ≥ dcDB[0,|s|−1](P
tx
A (u))−

βs.
As s is acceptable, |s| ≥ i2x ≥ |QA|2(k+2tx), so, we can apply Lemma 1 with

words in P txA (u), which are all k+2tx long: dcDB[0,|s|−1](P
tx
A (u)) ≥ 1

2dcDB (P txA (u)).
Therefore ds(u) ≥ 1

2dAtx (cDB)(u)− βs.
And thanks to remark 6, |s| ≥ (ix + 1)2, hence βs ≤ β

ix+1 .
We finally have:

dBτx (cN)(u) ≥ dBτx (cN)(Sτx)
(

1
2
dAtx (cDB)(u)−

β

ix + 1

)
.

Therefore dBτx (cN)(u) 9x→∞ 0 and u ∈ Lµ(B).
ut

Claim. If H is not µ-nilpotent, there exists i0 such that, for all i ≥ i0, no well-
formed segment at time Ki ≤ t < Ki+1 simulates A.

Proof. Thanks to 5, there exists l ∈ N and u ∈ QlH such that H|QH|l(u) 6= ql.
There exists i0 such that l ≤ 1

2

(
log|QH|(K

i0/4)
)
− 1. Then for any well-formed

segment at time Ki0 ≤ t, the simulation of u is done and the segment does not
simulate A. ut

Lemma 8. If H is not µ-nilpotent, then α∗ = Lµ(B).

Proof. For each segment of length n, there are O(
√

(n)) cells used for compu-
tation and signals. As the length of the segments tends to infinity, the density
of computation cells tends to 0. So they do not appear in Lµ(B). Thanks to the
previous claim, we know that α is written all over the segment, therefore other
cells can only contain α. So any word in Lµ(B) is in α∗. ut

Lemma 9. For any nontrivial property, there exist CA A0 and A1 over the
same alphabet QA such that one among Λµ(A0) and Λµ(A1) has this property,
and the other not.

Proof. Consider some nontrivial property, there exist two CA DO and D1 over
alphabetsQ0 andQ1, such that one among Λµ(D0) and Λµ(D1) has this property,
and the other not. For simplicity, we suppose they both have radius 1, other cases
could be treated the same way. We will take multiple copies of each state of each
alphabet in order to obtain two CA with the same alphabet. Then, the new
automata will consider a copy of a state as the equivalent of it. Copies will not
appear after the initial configuration.

Suppose |Q0| = c and |Q1| = d. We take the alphabet Q = {αi0 , αi1 , . . . , αie}
with e = lcm(c, d) and Q0 ∪ Q1 ⊆ Q. Then, we partition twice Q into c sets
{S0(γ), γ ∈ Q0} with |S0(γ)| = |S0(γ′)|, and into d sets {S1(γ), γ ∈ Q1} with
|S1(γ)| = |S1(γ′)|. Then let A0 and A1 be CA over Q, of radius 1 and with the
following rules:

– δA0(αx, αy, αz) = αt if δD0(αx′ , αy′ , αz′) = αt with αx ∈ S0(αx′), αy ∈
S0(αy′) and αz ∈ S0(αz′),

– δA1(αx, αy, αz) = αt if δD1(αx′ , αy′ , αz′) = αt with αx ∈ S1(αx′), αy ∈
S1(αy′) and αz ∈ S1(αz′),

Then:

– ∀n ∈ N,∀u ∈ Q∗0,A0
nµ([u]) = D0

nµ([u]),
– ∀n ∈ N,∀u /∈ Q∗0,A0

nµ([u]) = 0,
– ∀n ∈ N,∀u ∈ Q∗1,A1

nµ([u]) = D1
nµ([u]),

– ∀n ∈ N,∀u /∈ Q∗1,A1
nµ([u]) = 0.

ut

Theorem 2. Any nontrivial property of µ-limit sets of cellular automata is un-
decidable.

Proof. We consider a nontrivial property P over µ-limit sets. There exist CA
A0 and A1 such that Λµ(A0) ∈ P and Λµ(A1) /∈ P. With a CA H containing
a permanent state, we construct two CA Bi (i = 0 or 1) with the construction
described in 5.1, such that:

1. if H is µ-nilpotent then Λµ(Bi) = Λµ(Ai)} for i = 0, 1.
2. if H is not µ-nilpotent then Λµ(B0) = Λµ(B1).

If there exists an algorithm that determines if the µ-limit set of a given CA
has property P, we apply it on CA B0 and B1. If the algorithm gives different
answers for both CA, necessarily we have case 1 and H is µ-nilpotent. If on the
other hand, both answers are identic, we have case 2 and H is not µ-nilpotent.
Therefore, we have an algorithm to determine if a CA is µ-nilpotent. Which is
a contradiction with [BPT06], where this problem was proved undecidable.

ut

