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Abstract

We prove a characterization of µ-limit sets of two-dimensional cellular

automata, extending existing results in the one-dimensional case. This

sets describe the typical asymptotic behaviour of the cellular automaton,

getting rid of exceptional cases, when starting from the uniform measure.

Introduction

Cellular automata are discrete dynamical systems de�ned by a local rule, in-
troduced in the 40s by John von Neumann [12]. They model a large variety of
discrete systems and are linked with various areas of mathematics or computer
science, in particular computation theory, complex systems, ergodic theory and
combinatorics.

One of the main catalysts of the study of cellular automata was their surpris-
ingly complex and organised behaviours, even when iterated on con�gurations
with no particular structure (e.g. chosen at random). To formalise these obser-
vations, many authors tried to describe their asymptotic behaviour by consid-
ering the limit set, which is the set of con�gurations that can be reached after
arbitrarily many steps. These sets were shown to have potentially high compu-
tational complexity [11, 1], and any nontrivial property on them is undecidable
[9]. Nevertheless, the problem of characterizing which subshifts can be limit
sets of CA remains open.

In 2000, K·rka and Maass argued that limit sets did not provide a good de-
scription of empirical observations and introduced instead a measure-theoretical
version [10]. The idea of µ-limit sets is to choose the initial con�guration at
random, according to some probability measure µ, and to consider all patterns
whose probability to appear does not tend to 0. In the one-dimensional case,
similar results of high complexity and undecidability were found [4, 3, 6, 2]. An-
other approach was developped in [5], considering the limit probability measure,
with similar results.
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In this article, we consider the two-dimensional case and prove a characteri-
zation of all subshifts that can be µ-limit sets of CA for µ the uniform Bernoulli
measure. The method is constructive and inspired by the one-dimensional con-
structions in [2, 5].

1 De�nitions

1.1 Cellular automata on two dimensions

De�nition (Con�gurations, patterns, cylinders).

Let A be a �nite alphabet. We introduce AZ2

the set of (two-dimensional)
con�gurations. Denote A∗ the set of �nite patterns, that is, any element of
AU for some U ⊂

finite
Z2 (denote U = supp(u) the support of the pattern u).

Such a pattern is said to be square or rectangular if its support is.
Given u ∈ A∗ and i, j ∈ Z2, de�ne the cylinder [u]i,j = {x ∈ AZ2

x(i,j)+supp(u) =
u}.

Endowed with the product topology, AZ2

is a compact and metrisable space.
A distance inducing this topology is:

∀x, y ∈ AZ2

, dC(x, y) = 2−∆(x,y) where ∆(x, y) = min{|i|+|j| | i, j ∈ Z2, xi,j 6= yi,j}
The frequency of a pattern u ∈ A∗ in another pattern v ∈ A∗ is de�ned

as:

Freq(u, v) =

#

{
(i, j) ∈ supp(v) :

(i, j) + supp(u) ⊆ supp(v)
v(i,j)+supp(u) = u

}
# {(i, j) ∈ supp(v) : (i, j) + supp(u) ⊆ supp(v)} and 0 if it is unde�ned.

De�nition (Shift actions).

De�ne the two shifts actions σ↑, σ→ : AZ2 → AZ2

by:

∀x ∈ AZ2

, i, j ∈ Z2, σ→(x)i,j = xi−1,j and σ↑(x)i,j = xi,j−1.

De�nition (Cellular automata).

A (two-dimensional) cellular automaton is a continuous action F : AZ2 →
AZ2

that commutes with σ→ and σ↑. Equivalently, it can be de�ned by a local
rule F : AUF → A, where UF ⊂ Z2 is a �nite neighbourhood, in the sense
that

∀x ∈ AZ2

, i, j ∈ Z2, F (x)i,j = F ((x(i,j)+u)u∈UF
).

This equivalence is known as the Curtis-Hedlund-Lyndon theorem [7].

1.2 Probability measures

De�nition (Probability measures on AZ2

).

Let B be the Borel sigma-algebra of AZ2

. Denote by M(AZ2

) the set of

probability measures on AZ2

de�ned on the sigma-algebra B. Let Mσ(AZ2

)

be the σ↑, σ→-invariant probability measures on AZ2

, that is to say the

measures µ ∈M(AZ2

) such that µ(σ−1
↑ (B)) = µ(σ−1

→ (B)) = µ(B) for all B ∈ B.

For a continuous application F : AZ2 → AZ2

, denote Fµ the image of the
measure µ by F : Fµ(X) = µ(F−1(X)).
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De�nition (Bernoulli measure).

The Bernoulli measure µλ ∈ Mσ(AZ2

) associated with λ = (λa) ∈ [0; 1]A

such that
∑
a∈A λa = 1 is de�ned as:

∀u ∈ AU, µλ([u]) =
∏

(i,j)∈U

λui,j
.

De�nition (µ-limit set).

Let F : AZ2 → AZ2

be a CA and µ an initial probability measure. The
µ-limit set of F Lµ(F ) is de�ned by:

u ∈ Lµ(F )⇐⇒ F tµ([u]) 9
t→∞

0.

1.3 Computability

The standard Turing machine model has access to a one-dimensional working
tape than can be in�nite on one or both sides. We consider in this paper that
the machines have access to a two-dimensional tape in�nite in all directions, in
order to simplify some constructions. The only di�erence is that the computing
head, when reading the current state and the letter on the tape at its current
location, has the ability to move in four di�erent directions: ↑, ↓,→,←. This
model remains exactly as powerful as a Turing machine.

De�nition (Computable sequence of patterns).
A sequence of patterns (un)n∈N ∈ (A∗)N is computable if there exists a

Turing machine that, given as input an integer n written in binary, stops and
outputs un.

In the previous de�nition, the Turing machine's alphabet contains at least A
and {0, 1}. We can assume the input is written left to right on row 0 surrounding
by a special blank state.

Proposition 1.1. Let F : AZ2 → AZ2

be a CA and µ ∈ Mσ(AZ2

) be the
uniform Bernoulli measure. Then there is a computable sequence of square
patterns (wi)i∈N such that

u ∈ Lµ(F )⇐⇒ Freq(u,wi) 9
i→∞

0.

The sequence is built using de Bruijn tori, a combinatorial object constructed
explicitely in [8]. Due to space constraints, the proof is in the appendix.

2 Main theorem

Theorem 2.1. Let µ be the uniform Bernoulli measure over A and (wi)i∈N a
computable sequence of square patterns. Then there exists an alphabet B ⊇ A
and a cellular automaton F over B such that:

u ∈ Lµ(F )⇐⇒ Freq(u,wi) 9
i→∞

0.
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This theorem along with Proposition 1.1 gives hence a characterization of
all µ-limit sets for µ the uniform Bernoulli measure.

The proof of the theorem relies on an explicit construction and we will ef-
fectively prove the result by describing the CA.

Similarly to what was done for one-dimensional CA in [2, 5], the idea is,
starting from some random con�guration according to a measure µ, to build a
partition of connex subsets of the plane using auxiliary states. In each subset,
independently, each wi is computed successively and concatenated copies of it
are written over all the subset. To ensure the density of auxiliary states tends
to 0, they merge progressively in a controlled manner, o�ering more space for
computation.

3 Construction

3.1 Overview

First, we present a sketch of the di�erent steps of the construction corresponding
to a computable sequence of patterns (wi)i∈N. The alphabet B is the product
of di�erent layers, each layer being used for a di�erent auxiliary process, plus
two special states (seed and heart). The main layer is the writing layer whose
alphabet is A; each other layer uses a di�erent alphabet containing a blank
symbol # corresponding to the absence of information. Hence we have A ⊂ B
up to the bijection a↔ (a,#, . . . ,#).

• Colonising the space: Section 3.2.

Starting from a random con�guration drawn according to µ, we �rst want
to �clean� the randomly generated content of the auxiliary layers. B con-
tains a seed state * . Each seed, at time 1, erases the contents of a
small area around it and give birth to membranes growing in every direc-
tion except when they meet other membranes. They erase all information
contained in the auxiliary layers and membranes faking life which are rec-
ognized with the help of age counters.

• Internal metabolism: partitioning the cleaned space. Section 3.3.1.

Each seed gives birth to a heart r that will be the core of a living or-
ganism. Every organism owns an age counter making sure they are all
synchronized. Regularly, the organism around each living heart will grow
in each direction until it meets a fellow organism, thus claiming its terri-
tory.

• Internal metabolism: �ghting for survival. Section 3.3.2.

Organisms need to become larger and larger through time, hence we reg-
ularly have to remove some of the hearts. When two hearts are too close,
one of them is removed to ensure that the distance between hearts is large
and tends to in�nity.

• Internal metabolism: Computing and writing. Sections 3.3.4 and 3.3.5.

In each organism, when the territory is established, some wn is computed
and then written all over the territory. Copies of it will hence cover the
cleaned surface.
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Throughout this article, t refers to the number of steps since time 0.

3.2 Colonisation of the space

3.2.1 Growing squares

There is a particular seed state * that can be present only in the initial con-
�guration. It is the only relevant information in the initial con�guration. Every
occurrence of * triggers the birth at time 1 and subsequent growth of a living
square-shaped membrane (initially forming a 5× 5 cells square).

If seeds are too close from each other and do not have enough space to form
the initial organism, the northernmost seed is destroyed (westernmost in case
of a tie).

A layer of the alphabet, called cleaning layer is dedicated to the membrane
growth and cleaning process. The membrane spreads slowly to the outside,
thanks to a respiration process that "pushes" the membrane to the outside. A
membrane is a boundary between its inside and the outside, thus de�ning the
direction in which it expands. To each point of the membrane is associated a
binary counter that keeps track of its age (see Figure 1).

De�nition (Redundant binary basis).

Let c = cn−1 . . . c0 ∈ {0, 1, 2}n be a counter. The value of c is
∑n−1
i=0 ci2

i

(reverse order). Since 2 = 10, 2 can be seen as a 0 with a carry.

At each step, the counters are incremented by adding one to the least signif-
icant bit and the carries are propagated along the counter, which can be done
in a local manner (02→ 10, 12→ 20).

If the membrane has sides of length n, there are n such counters on each side
with the same value, with superpositions of two of them in the cells near the
corner. As they grow, they need more than one cell and form a band of growing
width along the membrane as shown in Figure 1. For a living membrane, the
counters are created with value 0 at step t = 1, ensuring their age is the current
time minus 1. In the other cases, the membrane and counters already existed
at time t = 0 (with value at least 0), which means they appear older than living
membranes.

This counter is used to control the speed of the membrane. The respiration
consists in taking a step forward (according to the direction of the membrane)
each time the age of the counter is the exact square of an integer. The successive
squares are computed under the counter, on the computation layer, using a space
O(log t) if t is the age of the membrane.

We can de�ne three kinds of membranes:

Living membranes which were created by a seed, and whose counters all have
value t− 1;

Dead membranes which have some incoherence (not closed, di�erent counter
values, no square computation...) and self-destructs when realising this;

Zombi membranes which are perfectly coherent despite not being created by
a seed, and whose counters all have the same value t′ > t− 1.
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Figure 1: Corner of a membrane extending to the north and the east.

The content of any cell outside a membrane is deleted, except for the en-
counter of another membrane. In this case the comparison process starts. The
reason membranes spread slowly is to limit the interferences between the grow-
ing and comparaison processes.

3.2.2 Comparison

When two membranes meet, membranes �ght for survival, which is only granted
to the youngest. Indeed, we saw that only living membranes can have age t− 1,
all other membranes' counters having value greater than t. Comparing the age
of both counters is achieved on a dedicated comparison layer.

Two special states a are written on the comparison layer as membranes
meet to trigger the process. Each of them progress along its corresponding
counter and copy the value of the counter on the comparison layer after it. In-
crementation and carry progagation continue in the original counter. However,
it is not necessary to increment and propagate carries in the copied counter
since they would increase by the same amount during the comparison anyway.
During the copy into the comparison layer, all carries are taken into account
and resolved, thus, at the end of the copy, remain two pure binary counters.

Both copied counters progress towards the encounter point at speed 1 and
a comparison is performed bit-by-bit, starting from the least signi�cant. When
the last bits of the counters arrive, we can decide which counter corresponds to
the youngest membrane.

As shown in Figure 2, if at time t1 two membranes meet, comparison of the
age of counters takes place at each contact cell. Here the same process takes
place at cells A, B, C and D.

Proposition 3.1. During a comparison process, a living membrane may grow
only once (including the initial growth that triggered the comparison)

Proof. If the comparison process started at time t0, the counters of a living
membrane have length less than log(t0). The comparison process takes at most
twice as many steps as the length of the counter. The respiration process hap-
pens when t is a perfect square. Therefore the time between two successive
growths, at time t0 or later, is at least d√t0e steps.

Let us consider the various possible results:
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Figure 2: At time t1, the membranes m1 and m2 meet on cells A, B, C and
D. The counters are represented by grey areas. At t2, when the comparison is
�nished, one of the squares may have grown (here m2).
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Figure 3: At the end of the comparison, if membrane counters share a common
value, the common part of their boudaries is erased and & symbols mark the
corners.

The membranes have the same age: they are both alive or both zombi. In
any case, both membranes turn into a single one as shown in Figure 3.
Some & symbols are written at the corners, so that, when both sides will
grow again, they remember they are part of the same membrane.

A membrane is younger: the oldest one is zombi and can be safely destroyed.
A death signal A spread in both directions along the oldest membrane,
erasing it. The surviving membrane resumes its growth, with its age
counters still accurate. The same happens if a membrane grows twice,
disrupting the comparison process.

Notice that only the membrane and not the "insides" of the zombi are cleaned
since it can contain other living membranes.

None of the signals or processes described in the following sections can en-
ter or leave a membrane, or interact with it or counters, except if explicitely
mentioned.

For t ∈ N, denote

Pr(t) = {F t(c) | c ∈ BZ2

, ∃(i, j) ∈ Z2, d∞((i, j), (0, 0)) ≤ b
√
tc, cij = * }

the set of images of con�gurations containing a seed * at distance b
√
tc at most

of (0, 0). As µ is the uniform Bernoulli measure, the following lemma is clear:
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Lemma 3.2. F tµ(Pr(t)) = 1− (1− µ( * ))
(2
√
t+1)2 →t 1

This means that, with probability 1, for almost any con�guration the central
cell eventually belongs to the insides of a living membrane.

3.3 Working in the clean surface

We now consider only the protected area, which is the union of all insides of
living membranes. Thus every construction presented in this section remains
inside this area and stops if it reaches the membrane. They will take place on
four new layers: the age, partitioning, computating and writing layers.

At some time tn = K2n, n ∈ N for some integer K that will be speci�ed
later, various operations are performed simultaneously inside all membranes.
First, a simulated Turing machine computes wn. Then, repeated copies of wn
are copied everywhere inside the membrane. Meanwhile, the heart checks that
it is not too close to a neighbour, and one of them is deleted if it is the case.

These operations all happen in the time between tn and tn+1 − 1, which is
called the nth generation.

3.3.1 Claiming its territory

At time 1, while creating a membrane, each seed * transforms itself into a
heart r . Any heart is the centre of an organism to which it provides life.
At the same time, a binary counter is given to each heart, thus giving it the
knowledge of its age. This age is exactly the same for any heart inside a living
membrane. This counter is the only thing contained in the age layer.

In the rest of this section, only the partitioning layer is concerned.
At time tn, every heart send signals at speed 1 in each direction until they

meet a fellow signal, in which case they disappear and the symbol # is writ-
ten where they met. These signals erase everything on the partitioning and
computating layers but disappear if they reach a membrane. In this case, #
is written along the membrane. The territory of heart H ∈ Z2 is the largest
set of 4-connected cells containing H that does not contain the symbol # . An
organism is composed of a heart and its territory.

Simultaneously, at t = tn, signals leave H and draw the body of H: a square
of size 2n+1 centered in H. The body is supposed to be entirely in the territory
of H; if not, the organism is in con�ict with every other organism whose body
superimpose with its own. At the end of each generation, we will make sure
there does not remain any con�ict by removing some of the hearts.

Thus, the global dynamics partitions the protected space by rede�ning terri-
tories during each generation, then resolves con�icts: during the nth generation,
the distance between two surviving hearts is at least 2n− 1 (remember we use
the distance d∞).

3.3.2 Choosing its destiny

In this section, we describe con�icts. To get organisms larger and larger through
time, we want them to contain at least their entire body, whose size depends of
the current generation. We need as well to control the growth of the organisms to
avoid the case of too large ones. Indeed, we have to write the computed pattern
all over the organism before the beginning of the next generation. Thus, if at
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some step a chain of con�icts between organisms appear, we do not want to
erase all hearts simultaneously.

To avoid this, we add an algorithmic device and give to each heart some bit of
information with the constraint that these bits have to be mutually independent
at any given time. Then, for each con�ict between two organisms, we choose
the one to delete thanks to the sum of their two random bits.

First, we use two versions of the state * in the initial con�guration: * 0

and * 1. This bit is transmitted to r which has two versions r 0 or r 1. In
both cases, we keep the notations * and r when the value of the bit does
not matter. The bit is also known by the whole boundary of the corresponding
organism.

Second, note that, given some heart H living at generation n, the con�icting
hearts are at distance 2n− 1 or 2n or they would have con�icted before. Thus,
they all belong to a square of side 4n+ 1 centered in H. The distance between
each other is also 2n−1 or 2n, hence there are at most 8 simultaneous con�icts,
one at most in each eighth part of the plane centered in H: NNE, ENE, ESE,
SSE, SSW, WSW, WNW and NNW.

To ensure that independence remains true, each time a heart is deleted, it
should give some new information to its killer. Hence, we give 8 other binary
bits to each seed, and therefore to each heart. Each eighth part of the territory's
boundary carries one of these reserve bits alongside with the main one.

During the nth generation, when two organisms O and O′ of hearts respec-
tively r b at (x, y) and r b′ at (x′, y′) meet, the sum β = b ⊕ b′ is computed
where the boundaries meet. If β = 0 then the northernmost heart wins (west-
ernmost in case of a tie) and the other way around if β = 1. Then the boundary
of the killed organism (say O′) o�ers its reserve bit br to the winner whose main
bit becomes b⊕ br. If some organism kills many others simultaneously (at most
8), it sums all the reserve bits that are given to its. The key point is that all
main bits are and remain independent. This is ensured since the reserve bits
are not used until they pass to the winner.

On the other hand, a death signal is sent to the heart of the loser, which
dies at the reception. This does not interrupt the processes of computation or
copying that will be described later, but the organism will not grow again and
signals from other hearts will erase it during the next generation.

De�nition. De�ne the radius r of an organism as the largest distance from
a cell inside its territory to its heart. The territory of the organism is hence
bounded by 4r2.

Lemma 3.3. There exists a constant K, such that pn →n 1, where pn is the
probability that at least one living heart remains in a square of radius Kn during
the nth generation.

Proof. Denote qn, n ∈ N the probability for a cell to be a living heart during
generation n. For n = 0, q0 > 0 is a constant given by µ. Then, during each
generation k ≤ n, a heart survives with probability at least (1/2)8 (1/2 for each
con�ict). Hence qn ≥ q0 ∗ (1/2)8n.

Two di�erent cells have each independently probability qn to be a heart
as long as there is no chain of con�icts between them. At generation n, they
have been a�ected only by hearts at distance n2 at most. So there are dn =
b(2Kn + 1)/(2n2 + 1)c2 independent cells in a square of radius Kn.
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Figure 4: Two hearts H1 and H2 are con�icting. Cells A0 to A4 form the
common boundary of their territory. The red triangle is a set of cells inside the
territory of H1.

Now we have 1− pn ≤ (1− qn)dn . This tends to 0 for K ≥ 17.

This lemma means that we only need to consider organisms of radius less
than Kn. The other ones are su�ciently sparse.

De�nition. An organism is said to be healthy during the nth generation when
its radius is less than Kn (K being given in the previous lemma).

3.3.3 Shape of organisms

Lemma 3.4. If a cell A is in the organism of heart H, then each cell B such
that d∞(B,H) ≤ d∞(A,H)− d∞(A,B) is in the same organism.

Proof. The triangle inequality gives the result automatically, for any other heart
H ′:

d∞(B,H) ≤ d∞(A,H)− d∞(A,B) ≤ d∞(A,H ′)− d∞(A,B) ≤ d∞(B,H ′).

Lemma 3.5. F tnµ([ # ] ∩ Pr(tn)) = O(1/n)

Proof. Given n ∈ N, consider the set of cells containing state # at time tn+1

within the protected area. It is possible to cut this set into horizontal, vertical
or diagonal segments such that each one of them is the common boundary of two
speci�c hearts. When two hearts claim their territory, they send signals in every
direction at speed one. These signals may eventually cross to give birth to the
boundary. Except if they cross exactly in their corners (hence four cells for each
organism, which is negligible), the length of their common boundary is at least
2. Consider one of these boundary segments containing cells {A0, A1, . . . Ak}
and denote H0 and H1 the associated hearts.

The proof is illustrated on Figure 4 in the case of a diagonal segment. Denote
d the line supporting the segment, as d∞(H0, H1) ≥ 2n, ∃j ∈ {0, 1} such that
d∞(Hj , d) ≥ n. Denote Oj the organism centered in Hj . Since A0, A1, . . . Ak
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are on the boundary of Oj , there exist distinct points B0, B1, . . . , Bk−1 adjacent
to A0, A1, . . . Ak and inside Oj .

Claim 3.6. Every cell inside the triangle B0Bk−1Hj is inside Oj.

Proof. For any such cell x, there exists l ∈ [0, k − 1] such that d∞(Hj , Bl) =
d∞(Hj , x) + d∞(x,Bl), hence, using Lemma 3.4, x belongs to Oj .

There are b(k − 1)(n − 1)/2c cells in the triangle B0Bk−1Hj , which means
that for each cell of the boundary segment, we produced O(n) cells inside an
organism.

Any cell inside an organism can be attached this way at two segments at
most (the border of the triangle can be shared). Thus, for any cell containing # ,
there are at least Θ(n) cells that do not contain # , hence F tnµ([ # ]∩Pr(tn)) =
O(1/n).

3.3.4 Computing

In this section, we deal only with the computing layer. At time tn, n ∈ N, at
each heart of an organism, the same computation starts. While signals leave
the heart to determine the boundaries of their territory, other signals draw the
limits of a square of side

√
n whose downleft corner is the heart. This is the

space allowed for computation. The heart creates a Turing machine head and
the computation starts. It has to remain in this space and halt in less than K2n.

Without loss of generality, we can choose the computable sequence of pat-
terns (wi)i∈N such that wn is the pattern computed during the nth generation.
Indeed, we can transform the original sequence by repeting each pattern until
there is enough space and time to compute the following one. Denote Un the
support of wn and ln its size: Un = supp(wn) = [0, ln]× [0, ln]. Considering the
space allowed for computation, we have that ln ≤

√
n.

3.3.5 Copying

Finally, our concern is the copying layer. After computing a pattern on the
computing layer of an organism, we will write copies of it over the whole territory
of this organism.

During the nth generation, the computation takes less than K2n steps, which
leaves K2n+2 − K2n steps before tn+1. We will show that this is enough to
periodically write copies of the result all over the organism, as long as the
organism is healthy.

Consider an organism of heart H = (xH , yH) during generation n. We �rst
write 4 copies of wn around H at (xH − ln, yH − ln) + Un, (xH − ln, yH) + Un,
(xH , yH − ln) + Un and H + Un. To copy a square, a machine copies all the
states sequentially. First, the sides of the squares are marked on the copying
layer with a state G (this takes O(ln) steps using counters initialised with value
ln), then the machine needs 2ln steps to go to the copy emplacement, make the
copy and come back. There are ln

2 cells to copy, hence the whole process of
copying a square takes O(ln

3) steps.
Starting with these 4 copies of wn, 4 di�erent copying processes will take

place, each one in its quarter of the plane: north-east, north-west, south-west
and south-east. We only detail the process in the north-east quarter.
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Figure 5: The square pattern is copied all over the whole territory both on axes
and along diagonals, starting from the heart.

The base square is copied along the vertical and horizontal axes until it
reaches the limit of the territory. Simultaneously, each of these copies replicates
itself in diagonal towards the north-east. This way, the whole territory is even-
tually covered with copies of the computed pattern wn. The set of states G

draw a grid of step ln. The copying process is actually a wave starting at the
heart of the organism and extending the area where the pattern wn is written.
See Figure 5.

Lemma 3.7. For any healthy organism, copying takes less than O(nKn) timesteps
during the nth generation.

Proof. Consider a healthy organism, as the radius is bounded by Kn and the
grid step is ln, there are sequences of at most Kn/ln square copies to do in each
quarter. Each one of these copies requires O(l3n) steps, hence the total copy
time is O(nKn) (recall ln ≤

√
n).

Lemma 3.8. During the nth generation, any cell in a healthy organism that
was not reached by the copying process is at distance

√
n or less of the boundary

of the territory.

Proof. Again, we prove it in the north-east quarter, the proof is symmetric in
the other cases. Take a cell A in the territory of a healthy organism and at
distance more than ln of the boundary of the territory. A is in a square S of the
G grid (or would be by extending the grid). Thanks to the hypothesis we know
that S entirely belongs to the organism. The copy process reached S, arriving
from a square S′ at the south, east or south-east of S depending of the position
of S. Now, according to Lemma 3.4, S′ entirely belongs to the organism.

We can this way go recursively all the way back to the heart, and the copy
process is necessarily successful at each step.

4 Proof of the main theorem

We saw in previous sections, that a con�guration tends to contain only healthy
organisms, and that in a healthy organism, computing and copying can be both
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achieved in less than tn+1 − tn timesteps. Hence we can conlude.

Proof. Given a sequence (wn)n, we build the cellular automaton F over the
alphabet B as described in the previous sections.

Suppose t = tn+1 − 1, n ∈ N. First, if s ∈ BrA, a cell can have state s if it
is:

• outside the protected area, use Lemma 3.2;

• outside a healthy organism, use Lemma 3.3;

• in the border of a healthy organism, use Lemma 3.5;

• in the computation area of an organism, which are negligible since this
area is a square of side

√
n in territories that contain a square of side n;

• in the grid drawn in each territory (states G ), negligible as well since the
grid occupies less than 4ln cells in each square of side ln.

Therefore Lµ(F ) ⊆ A∗.
Now, we show that we only need to consider the squares of the grid entirely

located in a healthy organism. As said before, it is enough to restrict ourselves
to healthy organisms. Every square that is only partially inside a healthy �eld
is located into a band of width less than

√
n adjacent to the boundary of the

�eld, hence there are at most O(1/
√
n) such cells thanks to Lemma 3.2. As we

forced i ≤ √n, we can e�ectively neglect those partial squares. In any other
square, thanks to Lemma 3.8, we know that the copy was achieved successfully.

For all these reasons, for a square pattern u, F tnµ([u]) ∼n→∞ Freq(u,wn).
Moreover, during the nth generation, while the copying process is engaged

but not �nished, some part of the main layer contains copies of wn and the rest
is still �lled with copies of wn−1, hence, for some 0 ≤ α ≤ 1:

F tµ([u]) ∼n→∞
(
αF tnµ([u]) + (1− α)F tnµ([u])

)

Perspectives

As for the one-dimensional case, we have a characterization of all subshifts
that are µ-limit sets of CA. Some corollaries can be derived from this result,
but the main open problem is to generalize it to larger classes of measures.
In dimension 1, the di�erence is that there is no need for a trick such as the
one used in Section 3.3.2 to resolve con�icts while avoiding erasing too many
hearts. As this trick only works with the uniform Bernoulli measure, hence, a
better understanding of the dynamics of disparition of the hearts should allow
to generalize the result.
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A Proof for Proposition 1.1

Proof. In [8], Hurlbert and Isaak provided a construction of (k2n2

, k2n2

, n, n)k-de

Bruijn tori for every integers k and n, that is, square patterns Tn ∈ {0, . . . , k}2
2n2
×22n2

such that all square subpatterns of side length at most 2n are present with the
same frequency (assuming the subpattern are allowed to �wrap around� the
border of the bigger pattern). Since the construction in [8] is explicit, one can
devise an algorithm that, on input n ∈ N, stops and outputs Tn.

Assume for clarity that the neighbourhood of F is {−1, 0, 1}2 and let f :

A{−1,0,1}2 → A be its local rule. De�ne the image of a square pattern u under
F , as an abuse of notation:

F :
An×n → An−2×n−2

u = (ui,j)0≤i,j≤n 7→ (F (ui±1,j±1))1≤i,j≤n−1

By de�nition, it is clear that for any square pattern u ∈ An×n,

Fµ([u]) =
∑

v∈An+2×n+2

F (v)=u

µ([v]) =
∑

v∈An+2×n+2

F (v)=u

1

|A|n2 .

Since all square patterns u of side length at most 2n are present with uniform
frequency µ([u]) = 1

|A|n2 in Tn, all square patterns of side length at most 2n− 2

are present with frequency Fµ([u]) in Ftor(Tn) (where Ftor corresponds to the
previous function applied in a toroidal manner, i.e., �wrapping around at the
border�). This process can be iterated.

Now de�ne (wn)n∈N = (Fntor(Tn))n∈N. The sequence wn is computable by
computing u2n and applying the local rule of F . We show that this sequence
satis�es the resquested property.

Let u ∈ An×n.

u ∈ Lµ(F )⇔ ∃(ti)i∈N,∃d > 0, F tiµ([u])→ d

⇔ ∃(ti)i∈N,∃d > 0,⇒ Freq(u,wti)→ d,

the second line being obtained by considering that, as soon as ti ≥ n, u is present
with frequency F tiµ([u]) in F titor(Tti). Actually, this is not exactly true since
our de�nition of frequency does not allow for �wrapping around� the border as
in [8]. However, when determining the frequency of a pattern of side length n

in wti ∈ A2ti
2×2ti

2

, this removes only n× 4ti
2 possible positions out of 4t4i , and

thus does not a�ect the density by more than n
t2i
→ 0.
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