
A Model Eliminative Treatment ofQuanti�er-Free Tree DesriptionsDenys DuhierProgramming System Lab, Universit�at des Saarlandes, Saarbr�ukenduhier�ps.uni-sb.deAbstratTree desriptions are widely used in omputational linguistis for talking and reasoning abouttrees. For pratial appliations, it is essential to be able to deide satis�ability and enumeratesolutions eÆiently. This hallenge annot realistially be met by brute fore enumeration.However it an be addressed very e�etively by onstraint propagation as provided by modernonstraint tehnology.Previously, we studied the onjuntive fragment of tree desriptions and showed how theproblem of �nding minimal models of a onjuntive tree desription ould be transformedinto a onstraint satisfation problem (CSP) on �nite set variables.In this paper, we extend our aount to the fragment that admits both negation and disjun-tion, but still leaves out quanti�ation. Again we provide a redution to a CSP. While ourprevious enoding introdued the reader to set onstraints and disjuntive propagators, wenow extend our arsenal with seletion propagators.1 IntrodutionIn omputational linguistis, theories are frequently onerned with the formulation of onstraintsor priniples restriting the admissibility of tree representations. A large lass of strutural on-straints an be expressed elegantly in the form of tree desriptions, where the `parent' relationmay be relaxed into the `anestor', or dominane, relation. Tree desriptions were introdued in(Marus et al., 1983), motivated by an appliation to deterministi parsing, and have steadilygained in popularity (Bakofen et al., 1995; Rogers and Vijay-Shanker, 1992). Today, they areused in suh varied domains as Tree-Adjoining and D-Tree Grammars (Vijay-Shanker, 1992; Ram-bow et al., 1995; Duhier and Thater, 1999), for underspei�ed representation of sope ambiguitiesin semantis (Muskens, 1995; Egg et al., 1998), and for underspei�ed desriptions of disoursestruture (Gardent and Webber, 1998).A tree desription onsists of a onjuntion of literals xC�y and x:f(x1 : : : xn) where variablesdenote nodes in the tree. The symbol C� notates the dominane relation and x:f(x1 : : : xn)expresses that the node denoted by x is formed from the n-ary onstrutor f and the sequeneof daughter nodes denoted by x1 through xn. For pratial appliations, it is essential to be ableto deide satis�ability and �nd solutions of tree desriptions eÆiently. While the satis�abilityproblem was shown to be NP-omplete (Koller et al., 2000), we have desribed previously howto derive eÆient solvers, based on onstraint programming, by transformation to a onstraintsatisfation problem (Duhier and Gardent, 1999; Duhier, 1999b; Duhier and Niehren, 2000).In (Duhier and Niehren, 2000), we desribed dominane onstraints with set operators. Setoperators ontribute a ontrolled form of disjuntion and negation that remains eminently well-suited for onstraint propagation. The additional expressivity is essential both for appliations andfor speifying a omplete system of inferene rules. The language of dominane onstraint withset operators is less expressive than general Boolean onnetives: it merely admits as operatorsall relations that an be generated from dominane C� by union, intersetion, omplementation,and inversion.

In the present paper, we propose to extend the aount to a language with all Boolean on-netives. In so doing, we ombine and subsume previous work on dominane onstraint as well ason feature trees (Smolka and Treinen, 1994).In Setion 2 we review previous work that attended to the onjuntive fragment of dominanelogi and motivate a hange of formalism in order to additionally aommodate negation. InSetion 3 we present a new formalism for tree desriptions that admits all boolean onnetivesand formally provide its semantis. In Setion 4 we preisely de�ne the onstraint programminglanguage that we require in order to solve tree desriptions, and list all its onstraint propagationrules. In partiular, we give preise semantis for disjuntive propagators and seletion propaga-tors. Finally, in Setion 5 we desribe an enoding that turns a tree desription into a onstraintprogram in the language of Setion 4.2 Conjuntive FragmentIn this setion, we review briey the tree desription formalisms that we studied previously, disussthe diÆulties that arue from admitting negation, and argue that they an be resolved bygeneralizing the language of tree desriptions in the style of the feature tree logi CFT (Smolkaand Treinen, 1994).A lassial tree desription � is a onjuntion of literals x C� y and x : f(x1 : : : xn) wherevariables denote nodes in a solution tree:� ::= xC� y j x : f(x1 : : : xn) j � ^ �0The symbol C� notates the dominane relation and x : f(x1 : : : xn) expresses that the nodedenoted by x is formed from the n-ary onstrutor f and the sequene of daughter nodes denotedby x1, : : : , xn.The semantis of tree deriptions are given by interpretation over �nite tree strutures. Amodel (M� ; �) of a desription � onsists of a tree struture M� and a variable assignment (orinterpretation) � that maps eah variable in � to a node in M� , and suh that (M� ; �) j= � inthe usual Tarskian sense. We elaborate further in setion 3.Tree desriptions with set operators. In (Duhier and Niehren, 2000), we presented anextended language of desriptions whih generalizes x C� y into x R y, where R denotes any oneof the possible dominane relationships between two nodes.� ::= x R y j x : f(x1 : : : xn) j � ^ �0where R � f=;C+;B+;?gTwo nodes are either equal (=), one is a proper anestor of the other (C+), or the other wayaround (B+), or they lie in disjoint subtrees (?). We write x R y to say that the nodes denotedby x and y must be in a relationship orresponding to one of the relation symbols in R. In otherwords, (M� ; �) j= x R y i� (M� ; �) j= x r y for some r 2 R. For instane, the literal x f=;?g yexpresses that the nodes denoted by x and y must either be equal or lie in disjoint subtrees.Set expressions. For onveniene, we admit syntati sugar and allow to write x S y where S isa set expression given by:S ::= R j = j C+ j B+ j ? j :S j S1 [S2 j S1 \ S2 j S�1Obviously, every set expression an be translated to an equivalent set R of relation symbols. Inall tree strutures x :S y is equivalent to :x S y and x S1 [S2 y to x S1 y _ x S2 y. Thus, thisextended formalism allows a ontrolled form of negation and disjuntion without admitting fullboolean onnetives.Aommodating negation. While tree desriptions with set operators gave us a limited form ofdisjuntion and negation, we are now interested in permitting arbitrary disjuntions and negations.For negation, we need to onsider the 3 ases of the abstrat syntax:

1. :(x R y) is equivalent to x :R y and thus already handled by omplementation of R.2. :(�1 ^ �2) is equivalent to :�1 _:�2, thus will be handled by our treatment of disjuntion.3. Only :(x : f(x1 : : : xn)) is problemati: it is satis�ed when either x is not labeled by f , ordoes not have arity n, or its ith hild is not xi.We address the latter problem by expressing x : f(x1 : : : xn) as a onjuntion of simpler on-straints in the style of CFT (Smolka and Treinen, 1994):x : f(x1 : : : xn) � jxj = n ^ x : f ^ ^1�i�nx[i℄ = xijxj = n is an arity onstraint, x:f is a label or sort onstraint, and x[i℄ = y is a feature onstraint.The problemati ase beomes::(x : f(x1 : : : xn)) � jxj 6= n _ :(x : f) _ _1�i�nx[i℄ := xiKoller et al. (2000) also briey onsider possible extensions of dominane onstraint with �nitesignatures to admit disjuntions and negations. They suggest that negation an be handled byexpansion into the disjuntion of all other ases::(x : f(x1 : : : xn)) � (_g 6=f2� x : g(x01 : : : x0ar(g))) _ (x : f(x001 : : : x00n) ^ _1�i�n x00i := xi)We rejet their suggestion as impratial: in order to ahieve the same expressivity as ours,they must solve muh larger problems. Furthermore, they do not propose an eÆient way toproess disjuntions, but merely suggest that non-deterministi searh ould in priniple handleit. They are of ourse well aware that for a problem of suh ombinatorial omplexity, purenon-deterministi searh is utterly impratial. One essential ontribution of the present paperis to demonstrate how to redue a disjuntive desription to a form amenable to e�etive modelelimination through onstraint propagation.3 Full Boolean FragmentWe propose a new language of tree desriptions inspired both by the language with set operatorsof Duhier and Niehren (2000) and the feature tree logi CFT of Smolka and Treinen (1994). Itsabstrat syntax is given by:� ::= x R y j jxj = n j x : f j x[i℄ = y j �1 ^ �2 j �1 _ �2 j :�where R � f=;C+;B+;?gThe admission of disjuntion and negation makes the set operator extension of (Duhier andNiehren, 2000) obsolete sine xR1 [R2 y � xR1 y_xR2 y and x:Ry � :(xRy). Nonetheless, wehoose to retain the notion sine it failitates the redution to a onstraint satisfation problem.The semantis of tree desriptions are given by interpretation over tree strutures and we makethis idea formal in the remainder of the present setion.We assume a signature � of funtion symbols written f; g; a; b; : : : and equipped with an arityar(f) � 0. We assume that � ontains at least one onstant and one funtion symbol of arity � 2.Tree, nodes, and dominane. We identify a node in a tree with the path that leads to itstarting from the root of the tree. A path � is a word (i.e. a sequene) of positive integers. Wewrite � for the empty path and �1�2 for the onatenation of �1 and �2. �0 is a pre�x of � i�there exists �00 suh that � = �0�00. We write �1 C� �2 when �1 is a pre�x of �2 and say that�1 dominates �2. A tree domain is a non-empty pre�x-losed set of paths. A (�nite) tree is apair (D;L) of a �nite tree domain D and a labeling funtion L : D ! � with the property that

B ::= true j false j X1 = X2 j I 2 D j i 2 S j i 62 S j B1 ^ B2 (D � �)C ::= B j I1 � I2 j S1 k S2 j S3 � S1 [S2 j C1 ^ C2 jC1 or C2 j I = hI1 : : : Ini[J ℄ j S = hS1 : : : Sni[J ℄Figure 1: Constraint Languageequality X1 = X2 ^ B[Xj ℄ ! B[Xk℄ fj; kg = f1; 2g�nite domain integer onstraintsI 2 D1 ^ I 2 D2 ! I 2 D1 \D2I 2 ; ! falseI1 � I2 ^ I1 2 fn : : mg ! I2 2 � n f1 : : n� 1gI1 � I2 ^ I2 2 fn : : mg ! I1 2 � n fm+ 1 : : �g�nite set onstraintsi 2 S ^ i 62 S ! falseS1 k S2 ^ i 2 Sj ! i 62 Sk fj; kg = f1; 2gS3 � S1 [S2 ^ i 62 S1 ^ i 62 S2 ! i 62 S3S3 � S1 [S2 ^ i 2 S3 ^ i 62 Sj ! i 2 Sk fj; kg = f1; 2gFigure 2: Main Propagation Rulesall � 2 D and k � 1 satisfy �k 2 D i� k � ar(L(�)), i.e. that eah node has preisely as manyhildren as required by the arity of the funtion symbol with whih it is labeled. If � is a tree, wewrite D� for its domain and L� for its labeling funtion.Tree struture and set operators. A tree struture is a �rst-order strutureM� representinga tree � by the relations between its nodes. The domain of M� is the tree domain D� . For eahfuntion symbol f 2 �,M� ontains a relation :f of arity ar(f)+1 suh that (using in�x notation)�:f(�1 : : : �n) holds in M� i� L� (�) = f and �i = �i for all 1 � i � n = ar(f).We onsider tree strutures with all relations generated from dominane C� by inversion �1(i.e. argument swapping), union [, intersetion \, and omplementation :. We de�ne inversedominane B� by C��1, equality = by C� \ B�, inequality 6= by :=, proper dominane C+ byC�\ 6=, inverse proper dominane B+ by C+�1, and disjointness ? by :C� \ :B�.Semantis of tree desriptions. Tree desriptions are interpreted in the lass of tree strutureover �. For instane a desription x f=;?g y is satis�ed by a tree struture where the nodesdenoted by x and y are either equal or lie in disjoint subtrees. In general, a relation symbol R isinterpreted as the relation [R of M� for some tree � . We write Vars(�) for the set of variablesourring in �. A solution of a desription � is a pair (M� ; �) of a tree struture M� and avariable assignment � : Vars(�) ! D� . We write (M� ; �) j= � if � is satis�ed by (M� ; �) in theusual Tarskian way, where the CFT-style desriptions are interpreted as follows:(M� ; �) j= jxj = n � ar(L� (�(x))) = n(M� ; �) j= x : f � L� (�(x)) = f(M� ; �) j= x[i℄ = y � �(y) = �(x)i4 Constraint LanguageOur approah for solving a tree desription is to transform it into an equivalent onstraint satis-fation problem. More preisely, we transform a desription � into a onstraint [[�℄℄ of a onstraintlanguage. Solutions of [[�℄℄ an then be enumerated eÆiently by alternating steps of propagation

B ^ C !� falseB ^ (C or C0) ! C0 B ^ C0 !� falseB ^ (C or C0) ! CFigure 3: Disjuntive Propagator�nite domain seletion onstraintI = hI1 : : : Ini[J ℄ ! J 2 f1: :ngI = hI1 : : : Ini[J ℄ ^ J 2 D ^ 8j 2 D Ij 2 Dj ! I 2 [fDj j j 2 DgI = hI1 : : : Ini[J ℄ ^ J 2 D ^ Ij 2 Dj ^ D \Dj = ; ! j 6= JI = hI1 : : : Ini[J ℄ ^ j = J ! I = Ij�nite set seletion onstraintS = hS1 : : : Sni[I ℄ ! I 2 f1: :ngS = hS1 : : : Sni[I ℄ ^ I 2 D ^ 8i 2 D j 2 Si ! j 2 SS = hS1 : : : Sni[I ℄ ^ I 2 D ^ 8i 2 D j 62 Si ! j 62 SS = hS1 : : : Sni[I ℄ ^ j 2 S ^ j 62 Si ! i 6= IS = hS1 : : : Sni[I ℄ ^ j 62 S ^ j 2 Si ! i 6= IS = hS1 : : : Sni[I ℄ ^ i = I ! S = SiFigure 4: Seletion Propagatorand distribution. In this setion, we present a onstraint language suÆient for our purposesand speify the onstraint propagation behavior we require as a system of inferene rules. Theonurrent onstraint programming language Oz is a pratial implementation of suh a language(Smolka, 1995; Mozart, 1999).Let � = f1 : : : �g be a integer interval for some large pratial limit � suh as 134217726.We assume a set of integer variables with values in � and ranged over by I , J , or K, and a setof set variables with values in 2� and ranged over by S. Integer and set variables are also bothdenoted by X . We write D for a domain, i.e. a given �xed subset of �.Basi and non-basi onstraints. We distinguish between basi onstraints B whih an berepresented diretly in the onstraint store and non-basi onstraints C whih at as propagators(see Fig 1). A propagator implements a set of inferene rules that derive new basi onstraints.For example, the non-basi disjointness onstraint S1 k S2 implements the rules:S1 k S2 ^ i 2 Sj ! i 62 Sk for fj; kg = f1; 2gWhenever a basi onstraint i 2 S1 (resp. i 2 S2) is derived, the disjointness propagator infersi 62 S2 (resp. i 62 S1). The rules for �nite domain and �nite set onstraints are given in (Fig 2).Abbreviations. S1 k S2 has the semantis S1 \ S2 = ;. We write I = i for I 2 fig, I 6= i forI 2 � n fig, S = D for ^fi 2 S j i 2 Dg^ fi 62 S j i 2 � nDg, S1 � S2 for S1 � S2 [S3 ^ S3 = ;,and S = S1 ℄S2 for S1 k S2 ^ S � S1 [S2 ^ S1 � S ^ S2 � S (i.e. ℄ represents disjoint unionaka partition).Propagation and distribution. Propagation performs heap deterministi inferene, but isnot omplete. In order to enumerate the solutions of a onstraint C, searh is required and maybe spei�ed by appliation-dependent distribution rules. For our present purpose, we need onlyonsider distribution rules of the form:I 2 D1 ℄D2 ! I 2 D1 _ I 2 D2 for D1; D2 6= ; (Æ1)S � D ! i 2 S _ i 62 S for i 2 D (Æ2)

The disjuntion in a distribution rule is interpreted non-deterministially. Thus, rule (Æ1) non-deterministially infers either I 2 D1 or I 2 D2. A onstraint program onsists of a onstraintC and a set of distribution rules. Solutions are derived by alternating steps of propagation (i.e.saturation under propagation rules) and distribution (i.e. the non-deterministi appliation of adistribution rule). The hoie of distribution rule, of variable I , and of domain partition D1 ℄D2is determined by a searh strategy, but this is outside the sope of the present paper.Disjuntive propagator. In Logi Programming, disjuntion is handled solely by the non-deterministi exploration of alternatives. For problems of high ombinatorial omplexity, suha strategy of early ommitment is highly undesirable. Modern onstraint programming o�ersa remarkable alternative: the possibility to onsider disjuntion not as a hoie point but as aonstraint.A disjuntive propagator (C or C0) infers C0 if it an be shown that C is inonsistent with thebasi onstraints derived so far. The preise semantis of the disjuntive propagator are given in(Fig 3), where we write B ^ C !� false to mean that false is in the saturation of B ^ C under thepropagation rules.Seletion propagator. A very ommon form of disjuntion is seletion out of a �nite olletionof alternative values. It an be given more spei� and e�etive support in the form of a onstraintwhih we write: X = hX1 : : : Xni[I ℄where hX1 : : : Xni represents a sequene and the notation above was hosen for its intuitivesimilarity with array-lookup. The delarative semantis are simply X=XI . Suh a onstraintmight be implemented with an n-ary disjuntive propagator:(X=X1 ^ I=1) or : : : or (X=Xn ^ I=n)However, it is possible to extrat more preise information onerning X out of the remaining (notyet inonsistent) alternatives of the disjuntion. For example, from:(X = k1 ^ I = 1)or (X = k2 ^ I = 2)or (X = k3 ^ I = 3)and I 6= 2, we should be able to derive X 2 fk1; k3g. This is known as onstrutive disjuntion.While diÆult to implement in the general ase, it an be very eÆiently supported for seletionout of homogeneous sequenes.This powerful idea was �rst introdued in CHIP (Dinbas et al., 1988) for seletion out of asequene of integer values. Duhier (1999a) extended it to seletion out of homogeneous sequenesof �nite set variables and desribed its appliation to the eÆient treatment of lexial ambiguitywhen parsing with a dependeny grammar. In (Fig 4), we give the propagation rules for bothsequenes of �nite domain variables and sequenes of �nite set variables.5 Redution To A Constraint Satisfation ProblemOur approah transforms a tree desription � into a onstraint [[�℄℄ in the language presented abovein setion 4, and thereby turns the task of �nding solutions of � into an equivalent onstraintsatisfation problem (CSP). [[�℄℄ onsists of 3 parts:[[�℄℄ = ^x2Vars(�)A1(x) ^x;y2Vars(�)A2(x; y) ^ A3[[�℄℄A1(x) introdues a node representation for eah variable x in �, A2(x; y) axiomatizes the well-formedness (i.e. treeness) of the relations between these nodes, and A3[[�℄℄ enodes the spei�restritions imposed by �.

In a solution (M� ; �) of �, every variable x is mapped to a node �(x) of M� . Thus from thepoint of view of x, the set Vars(�) is partitioned into 4 disjoint subsets: all variables equal to x(i.e. mapped to the same node �(x)), all anestors, all desendents, and all others (i.e. mapped tonodes in disjoint subtrees). Our tehnique is based on introduing expliit variables for these setsand expressing the onstraints that they must satisfy.5.1 RepresentationWe assume that we look for solutions in a tree struture with �nite signature �. Let max be themaximum onstrutor arity in �. For eah formal variable x in � we hoose a distint integer �xto represent it and introdue 7 + 2 � max onstraint variables written Eqx, Upx, Downx, Sidex,Equpx, Eqdownx, Childix and Downix for 1 � i � max, and , Genesisx, as well as 3 integeronstraint variables Labelx, Arityx. First, we state x = x:�x 2 Eqx (1)Eqx, Upx, Downx, Sidex enode the set of variables that are respetively equal, above, below, andto the side (i.e. disjoint) of x. Thus posing I = f�x j x 2 Vars(�)g for the set of integers enodingVars(�), we have: I = Eqx ℄ Upx ℄ Downx ℄ SidexAs desribed in (Duhier and Niehren, 2000), we an and should improve propagation by intro-duing Eqdownx and Equpx as intermediate results:I = Eqdownx ℄ Upx ℄ Sidex (2)I = Equpx ℄Downx ℄ Sidex (3)Eqdownx = Eqx ℄Downx (4)Equpx = Eqx ℄Upx (5)Downix enodes the set of variables in the subtree rooted at x's ith hild (empty if there is no suhhild): Downx = ℄1�i�maxDownix (6)Childix enodes the set of variables ourring as x's ith hild:Childix � Downix (7)We hoose a bijetion ` : �! f1 : : j�jg and enode a onstrutor f 2 � by the integer `(f). Theintent is that the literal x : f should orrespond to the onstraint Labelx = `(f).Labelx 2 f1 : : j�jg (8)The arity of a node depends on its onstrutor. Thus, Arityx and Labelx are related by thefollowing seletion onstraint:Arityx = har(`�1(1)); : : : ; ar(`�1(j�j))i[Labelx℄ (9)A node must have preisely as many hildren as required by the arity of its onstrutor:Arityx < i) jDownixj = 0 (10)Where we de�ne: I < i) C � (I < i ^ C) or (I � i)(10) is not an equivalene beause we do not want to eliminate solutions that require more nodesthan there are variables in �.A1(x) is simply the onjuntion of the onstraints presented above:A1(x) � (1) ^ : : : ^ (10)

Cxy 2 f1; 2; 3; 4g (11)B[[x= y℄℄ ^ Cxy = 1 or Cxy 6= 1 ^ B[[x := y℄℄ (12)B[[xC+ y℄℄ ^ Cxy = 2 or Cxy 6= 2 ^ B[[x :C+ y℄℄ (13)B[[xB+ y℄℄ ^ Cxy = 3 or Cxy 6= 3 ^ B[[x :B+ y℄℄ (14)B[[x? y℄℄ ^ Cxy = 4 or Cxy 6= 4 ^ B[[x :? y℄℄ (15)Figure 5: Well-formedness lausesB[[x = y℄℄ = Eqx = Eqy ^ Upx = Upy ^ Downx = Downy ^ Sidex = Sidey ^Equpx = Equpy ^ Eqdownx = Eqdowny ^Labelx = Labely ^ Arityx = Arityy ^Genesisx = Genesisy ^Downix = Downiy ^ Childix = ChildiyB[[x := y℄℄ = Eqx k EqyB[[xC+ y℄℄ = Eqdowny � Downx ^ Equpx � Upy ^ Sidex � SideyB[[x :C+ y℄℄ = Eqx k Upy ^ Downx k EqyB[[x ? y℄℄ = Eqdownx � Sidey ^ Eqdowny � SidexB[[x :? y℄℄ = Eqx k Sidey ^ Sidex k EqyFigure 6: Set onstraints harateristi of eah aseGenesisx 2 G (16)�x[i℄ 2 Genesisy ^ Childix = Eqy ^Downix = Eqdowny ^ Upy = Equpxor �x[i℄ 62 Genesisy ^ Childix k Eqy (17)Figure 7: Genesis lauses5.2 Well-FormednessIn a tree, the relationship that obtains between the nodes denoted by x and y must be either=, C+, B+ or ?. We enode this hoie expliitly with a �nite domain variable Cxy whih weall a hoie variable and ontribute the lauses of Fig 5. Where B[[x r y℄℄ are the set onstraintsharateristi of the ase x r y as desribed in Fig 6.Finally, we state that for any two variables x; y and integer i, x[i℄=y either holds or not. Thatis, for eah pair (x; i) with x 2 Vars(�) and 1 � i � max we hoose a distint integer �x[i℄ toenode it. We de�ne G = f�x[i℄ j x 2 Vars(�); 1 � i � maxg, and ontribute the lauses of Fig 7.A2(x; y) � (11) ^ (12) ^ (13) ^ (14) ^ (15) ^ (16) ^1�i�max(17)5.3 Problem Speifi ConstraintsThe last part A3[[�℄℄ of the translation forms the additional problem spei� onstraints that furtherrestrit the admissibility of well-formed solutions and admits only those whih are models of �.We will make use of the notion of a restrition � whih maps onstraint variables to restritionson their domains. For example, eah literal shown below ontributes a restrition with the propertyshown to its right.

C[[�1 _ �2℄℄J� = h'1 ^ '2 ^ I 2 f1; 2g ^ J�I; h�1; �2i[I ℄iwhere I is a fresh variable, h'1; �1i = C[[�1℄℄I� and h'2; �2i = C[[�2℄℄I�C[[�1 ^ �2℄℄J� = h'1 ^ '2; �1&�2iwhere h'1; �1i = C[[�1℄℄J� and h'2; �2i = C[[�2℄℄J� and �1&�2 is de�ned in Fig 9C[[::�℄℄ = C[[�℄℄C[[:(�1 ^ �2)℄℄ = C[[:�1 _ :�2℄℄C[[:(�1 _ �2)℄℄ = C[[:�1 ^ :�2℄℄C[[x R y℄℄ = htrue;>[Cxy 7! fD[[r℄℄ j r 2 Rg℄i 8>><>>: D[[=℄℄ = 1D[[C+℄℄ = 2D[[B+℄℄ = 3D[[?℄℄ = 4C[[:(x R y)℄℄ = C[[x :R y℄℄C[[jxj = n℄℄ = htrue;>[Arityx 7! fng℄iC[[:(jxj = n)℄℄ = htrue;>[Arityx 7! ar(�) n fng℄iC[[x : f ℄℄ = htrue;>[Labelx 7! f`(f)g℄iC[[:(x : f)℄℄ = htrue;>[Labelx 7! `(�) n f`(f)g℄iC[[x[i℄ = y℄℄ = htrue;>[Childix 7! hfyg; ;i℄iC[[:(x[i℄ = y)℄℄ = htrue;>[Childix 7! h;; fygi℄iFigure 8: Computing restritions(�1&�2)(Cxy) = �1(Cxy) \ �2(Cxy)(�1&�2)(Arityx) = �1(Arityx) \ �2(Arityx)(�1&�2)(Labelx) = �1(Labelx) \ �2(Labelx)(�1&�2)(Childix) = hIn1 [In2;Out1 [Out2iwhere hIn1;Out1i = �1(Childix)hIn2;Out2i = �2(Childix)Figure 9: Aumulating RestritionsxC� y �(Cxy) = f1; 2gx : f �(Labelx) = f`(f)gjxj = n �(Arityx) = fngOur intention is to translate a desription � into a orresponding restrition � suh that theproblem spei� onstraints are all of the form:Cxy 2 �(Cxy) (18)Labelx 2 �(Labelx) (19)Arityx 2 �(Arityx) (20)Additionally, literals suh as x[i℄ = y and :(x[i℄ = y) give rise to restritions on variables Childix.Suh a restrition is expressed as a pair hInix;Outixi where Inix represents the set of variables thatmust be inluded in Childix and Outix the set of those that must be exluded from it. It yields theproblem spei� onstraint: Inix � Childix ^Outix k Childix (21)Disjuntions are handled by means of the seletion onstraint. If desriptions �1 and �2 translaterespetively to restritions �1 and �2, then �1 _ �2 translates to h�1; �2i[I ℄ where I is a new�nite domain variable. The seletion onstraint applied to restritions is interpreted point-wise asfollows: h�1; �2i[I ℄(X) = h�1(X); �2(X)i[I ℄

If approahed na��vely, nested disjuntions result in spurious indeterminay. Consider:(�1 _ �2) _ (�01 _ �02)The desription above results in a restrition of the form:hh�1; �2i[I ℄; h�01; �02i[I 0℄i[J ℄where J ontrols the outermost disjuntion, I the nested disjuntion on the left, and I 0 the nesteddisjuntion on the right. If J = 1, I 0 may still take indi�erently values 1 or 2 eventhough thishoie has beome irrelevant. In order to remove suh spurious indeterminay, we add the followingonstraints: J � I ^ J � I 0Thus, when J = 1 then I 0 must be 1 and when J = 2, I must be 2.We an now proeed to de�ne formally the translation of a desription � into a restrition.For this purpose, we use C[[�℄℄J� where � is either � or �. J and � are used to remove spuriousindeterminaies as outlined above. C[[�℄℄J� atually returns a pair:h'; �i = C[[�℄℄J�where ' is a onstraint and � is a restrition. We write > for the most general restrition, whihis de�ned point-wise as follows: >(Cxy) = f1; 2; 3; 4g>(Arityx) = f0 : : maxg>(Labelx) = f1 : : j�jg>(Childix) = h;; ;iand we write �[X 7! V ℄ for the restrition suh that:�[X 7! V ℄(Y) = � V if Y is X�(Y) otherwiseWe an now put it all together and de�ne C[[�℄℄J� in Fig 8. If we pose h'; �i = C[[�℄℄1� andhInix;Outixi = �(Childix), the problem spei� onstraints are:A3[[�℄℄ = '̂x;y2Vars(�)Cxy 2 �(Cxy)^x2Vars(�) Arityx 2 �(Arityx)^ Labelx 2 �(Labelx)^1�i�max Inix � Childix ^Outix k Childix5.4 Distribution RulesThere are three types of hoies that may have to be made when propagation alone is not suÆientto resolve them automatially: what branh of a disjuntion �1 _ �2 to selet, in what dominanerelationship two variables x and y stand, and whether y is the ith hild of x. Thus we need threedistribution rule shemas. The �rst one allows us to pik a non-determined hoie variable andmake a ase distintion:Cxy 2 D1 ℄D2 ! Cxy 2 D1 _ Cxy 2 D2 D1; D2 6= ;The seond one allows us to pik a non-determined seletor I , introdued when translating �1_�2into h�1; �2i[I ℄, and try eah alternative:I 2 f1; 2g ! I=1 _ I=2

The third one is an instane of (Æ2) and allows us to pik a set variable Genesisy and an integer�x[i℄ 2 G to deide whether or not x[i℄ = y holds:�x[i℄ 2 Genesisy _ �x[i℄ 62 GenesisyCompleteness. For every solution (M� ; �) of � there is onsistent solved form of [[�℄℄. We donot provide formal proof, however it should be lear that the onstraints of our enoding are validin all tree strutures, and that, given a solution (M� ; �) of �, we an onstrut a solved form of[[�℄℄ simply by reading o� the value for eah variable.Soundness. For every onsistent solved form of [[�℄℄ there exists a orresponding solution (M� ; �)of �. In other words, propagation is strong enough to derive a ontradition whenever a desriptionis not satis�able. To prove this, we should exhibit a proedure that onstruts a solution (M� ; �)of � from a onsistent solved form [[�℄℄. This result has not been established yet, but we are workingon an approah in the style of Duhier and Niehren (2000).6 ConlusionIn this paper, we addressed the following open question: is it possible to give a onstraint-basedtreatment to the lass of tree desriptions admitting all Boolean onnetives? Is it possible todevise a solver for this lass that may still perform e�etive model elimination through onstraintpropagation? We have shown that this is indeed the ase.We presented a new formalism for tree desriptions that ombines the set operators formalismof Duhier and Niehren (2000) with the feature tree logi of Smolka and Treinen (1994), andextends them by additionally admitting disjuntion and negation.Then we showed that every tree desription in our formalism an be transformed into a CSPexpressible as a onstraint program, and thus solvable by ontraint programming. We gave preisepropagation and distribution rules that we assume of a pratial implementation. In partiular,we gave preise operational semantis to disjuntive propagators and seletion propagators, thusproviding seure foundation for an important tehnial ontribution: our treatment of disjuntionby redution to the seletion onstraint.Future work. We are urrently working on formal proofs of ompleteness and soundness. Wealso plan to develop a onrete implementation in Oz and perform an experimental evaluation ofthe tehnique presented here.Aknowledgments. We are greatful to Joahim Niehren. The present paper borrows and greatlybene�ts from previous joint work with him.ReferenesBakofen, R., Rogers, J., and Vijay-Shanker, K. (1995). A �rst-order axiomatization of the theoryof �nite trees. Journal of Logi, Language, and Information, 4:5{39.Blakburn, P., Gardent, C., and Meyer-Viol, W. (1993). Talking about trees. In Proeedings ofthe European Chapter of the Assoiation of Computational Linguistis, Utreht.Dinbas, M., Van Hentenryk, P., Simonis, H., Aggoun, A., Graf, T., and Berthier, F. (1988). Theonstraint logi programming language CHIP. In Proeedings of the International Confereneon Fifth Generation Computer Systems FGCS-88, pages 693{702, Tokyo, Japan.Duhier, D. (1999a). Axiomatizing dependeny parsing using set onstraints. In Sixth Meeting onMathematis of Language, pages 115{126, Orlando, Florida.Duhier, D. (1999b). Set onstraints in omputational linguistis { solving tree desriptions. InWorkshop on Delarative Programming with Sets (DPS'99), pages 91{98.

Duhier, D. and Gardent, C. (1999). A onstraint-based treatment of desriptions. In Int. Work-shop on Computational Semantis, Tilburg.Duhier, D. and Niehren, J. (2000). Dominane onstraints with set operators. In Proeedings ofthe First International Conferene on Computational Logi (CL2000), LNCS. Springer.Duhier, D. and Thater, S. (1999). Parsing with tree desriptions: a onstraint-based approah. InInt. Workshop on Natural Language Understanding and Logi Programming, Las Crues, NewMexio.Egg, M., Niehren, J., Ruhrberg, P., and Xu, F. (1998). Constraints over lambda-strutures insemanti underspei�ation. In Joint Conf. COLING/ACL, pages 353{359.Gardent, C. and Webber, B. (1998). Desribing disourse semantis. In Proeedings of the 4thTAG+ Workshop, Philadelphia.Koller, A., Niehren, J., and Treinen, R. (2000). Dominane onstraints: Algorithms and omplex-ity. In Logial Aspets of Comp. Linguistis 98. To appear in LNCS.Marus, M. (1987). Deterministi parsing and desription theory. In Whitelok, P., Wood, M.,Somers, H., Johnson, R., and Bennett, P., editors, Linguisti Theory and Computer Applia-tions. Aademi Press.Marus, M. P., Hindle, D., and Flek, M. M. (1983). D-theory: Talking about talking about trees.In 21st ACL, pages 129{136.Mozart (1999). The Mozart Programming System http://www.mozart-oz.org/.M�uller, T. and M�uller, M. (1997). Finite set onstraints in Oz. In Bry, F., Freitag, B., and Seipel,D., editors, 13. Workshop Logishe Programmierung, pages 104{115, Tehnishe Universit�atM�unhen.Muskens, R. (1995). Order-Independene and Underspei�ation. In Groenendijk, J., editor, Ellip-sis, Underspei�ation, Events and More in Dynami Semantis. DYANA Deliverable R.2.2.C.Rambow, O., Vijay-Shanker, K., and Weir, D. (1995). D-tree grammars. In Proeedings of ACL'95,pages 151{158, MIT, Cambridge.Rogers, J. and Vijay-Shanker, K. (1992). Reasoning with desriptions of trees. In Annual Meetingof the Assoiation for Comp. Linguistis (ACL).Smolka, G. (1995). The Oz Programming Model. In van Leeuwen, J., editor, Computer SieneToday, pages 324{343. Springer-Verlag, Berlin.Smolka, G. and Treinen, R. (1994). Reords for logi programming. Journal of Logi Programming,18(3):229{258.Vijay-Shanker, K. (1992). Using desriptions of trees in a tree adjoining grammar. ComputationalLinguistis, 18:481{518.

