
A Model Eliminative Treatment ofQuanti�er-Free Tree Des
riptionsDenys Du
hierProgramming System Lab, Universit�at des Saarlandes, Saarbr�u
kendu
hier�ps.uni-sb.deAbstra
tTree des
riptions are widely used in
omputational linguisti
s for talking and reasoning abouttrees. For pra
ti
al appli
ations, it is essential to be able to de
ide satis�ability and enumeratesolutions eÆ
iently. This
hallenge
annot realisti
ally be met by brute for
e enumeration.However it
an be addressed very e�e
tively by
onstraint propagation as provided by modern
onstraint te
hnology.Previously, we studied the
onjun
tive fragment of tree des
riptions and showed how theproblem of �nding minimal models of a
onjun
tive tree des
ription
ould be transformedinto a
onstraint satisfa
tion problem (CSP) on �nite set variables.In this paper, we extend our a

ount to the fragment that admits both negation and disjun
-tion, but still leaves out quanti�
ation. Again we provide a redu
tion to a CSP. While ourprevious en
oding introdu
ed the reader to set
onstraints and disjun
tive propagators, wenow extend our arsenal with sele
tion propagators.1 Introdu
tionIn
omputational linguisti
s, theories are frequently
on
erned with the formulation of
onstraintsor prin
iples restri
ting the admissibility of tree representations. A large
lass of stru
tural
on-straints
an be expressed elegantly in the form of tree des
riptions, where the `parent' relationmay be relaxed into the `an
estor', or dominan
e, relation. Tree des
riptions were introdu
ed in(Mar
us et al., 1983), motivated by an appli
ation to deterministi
 parsing, and have steadilygained in popularity (Ba
kofen et al., 1995; Rogers and Vijay-Shanker, 1992). Today, they areused in su
h varied domains as Tree-Adjoining and D-Tree Grammars (Vijay-Shanker, 1992; Ram-bow et al., 1995; Du
hier and Thater, 1999), for underspe
i�ed representation of s
ope ambiguitiesin semanti
s (Muskens, 1995; Egg et al., 1998), and for underspe
i�ed des
riptions of dis
oursestru
ture (Gardent and Webber, 1998).A tree des
ription
onsists of a
onjun
tion of literals xC�y and x:f(x1 : : : xn) where variablesdenote nodes in the tree. The symbol C� notates the dominan
e relation and x:f(x1 : : : xn)expresses that the node denoted by x is formed from the n-ary
onstru
tor f and the sequen
eof daughter nodes denoted by x1 through xn. For pra
ti
al appli
ations, it is essential to be ableto de
ide satis�ability and �nd solutions of tree des
riptions eÆ
iently. While the satis�abilityproblem was shown to be NP-
omplete (Koller et al., 2000), we have des
ribed previously howto derive eÆ
ient solvers, based on
onstraint programming, by transformation to a
onstraintsatisfa
tion problem (Du
hier and Gardent, 1999; Du
hier, 1999b; Du
hier and Niehren, 2000).In (Du
hier and Niehren, 2000), we des
ribed dominan
e
onstraints with set operators. Setoperators
ontribute a
ontrolled form of disjun
tion and negation that remains eminently well-suited for
onstraint propagation. The additional expressivity is essential both for appli
ations andfor spe
ifying a
omplete system of inferen
e rules. The language of dominan
e
onstraint withset operators is less expressive than general Boolean
onne
tives: it merely admits as operatorsall relations that
an be generated from dominan
e C� by union, interse
tion,
omplementation,and inversion.

In the present paper, we propose to extend the a

ount to a language with all Boolean
on-ne
tives. In so doing, we
ombine and subsume previous work on dominan
e
onstraint as well ason feature trees (Smolka and Treinen, 1994).In Se
tion 2 we review previous work that attended to the
onjun
tive fragment of dominan
elogi
 and motivate a
hange of formalism in order to additionally a

ommodate negation. InSe
tion 3 we present a new formalism for tree des
riptions that admits all boolean
onne
tivesand formally provide its semanti
s. In Se
tion 4 we pre
isely de�ne the
onstraint programminglanguage that we require in order to solve tree des
riptions, and list all its
onstraint propagationrules. In parti
ular, we give pre
ise semanti
s for disjun
tive propagators and sele
tion propaga-tors. Finally, in Se
tion 5 we des
ribe an en
oding that turns a tree des
ription into a
onstraintprogram in the language of Se
tion 4.2 Conjun
tive FragmentIn this se
tion, we review brie
y the tree des
ription formalisms that we studied previously, dis
ussthe diÆ
ulties that a

rue from admitting negation, and argue that they
an be resolved bygeneralizing the language of tree des
riptions in the style of the feature tree logi
 CFT (Smolkaand Treinen, 1994).A
lassi
al tree des
ription � is a
onjun
tion of literals x C� y and x : f(x1 : : : xn) wherevariables denote nodes in a solution tree:� ::= xC� y j x : f(x1 : : : xn) j � ^ �0The symbol C� notates the dominan
e relation and x : f(x1 : : : xn) expresses that the nodedenoted by x is formed from the n-ary
onstru
tor f and the sequen
e of daughter nodes denotedby x1, : : : , xn.The semanti
s of tree de
riptions are given by interpretation over �nite tree stru
tures. Amodel (M� ; �) of a des
ription �
onsists of a tree stru
ture M� and a variable assignment (orinterpretation) � that maps ea
h variable in � to a node in M� , and su
h that (M� ; �) j= � inthe usual Tarskian sense. We elaborate further in se
tion 3.Tree des
riptions with set operators. In (Du
hier and Niehren, 2000), we presented anextended language of des
riptions whi
h generalizes x C� y into x R y, where R denotes any oneof the possible dominan
e relationships between two nodes.� ::= x R y j x : f(x1 : : : xn) j � ^ �0where R � f=;C+;B+;?gTwo nodes are either equal (=), one is a proper an
estor of the other (C+), or the other wayaround (B+), or they lie in disjoint subtrees (?). We write x R y to say that the nodes denotedby x and y must be in a relationship
orresponding to one of the relation symbols in R. In otherwords, (M� ; �) j= x R y i� (M� ; �) j= x r y for some r 2 R. For instan
e, the literal x f=;?g yexpresses that the nodes denoted by x and y must either be equal or lie in disjoint subtrees.Set expressions. For
onvenien
e, we admit synta
ti
 sugar and allow to write x S y where S isa set expression given by:S ::= R j = j C+ j B+ j ? j :S j S1 [S2 j S1 \ S2 j S�1Obviously, every set expression
an be translated to an equivalent set R of relation symbols. Inall tree stru
tures x :S y is equivalent to :x S y and x S1 [S2 y to x S1 y _ x S2 y. Thus, thisextended formalism allows a
ontrolled form of negation and disjun
tion without admitting fullboolean
onne
tives.A

ommodating negation. While tree des
riptions with set operators gave us a limited form ofdisjun
tion and negation, we are now interested in permitting arbitrary disjun
tions and negations.For negation, we need to
onsider the 3
ases of the abstra
t syntax:

1. :(x R y) is equivalent to x :R y and thus already handled by
omplementation of R.2. :(�1 ^ �2) is equivalent to :�1 _:�2, thus will be handled by our treatment of disjun
tion.3. Only :(x : f(x1 : : : xn)) is problemati
: it is satis�ed when either x is not labeled by f , ordoes not have arity n, or its ith
hild is not xi.We address the latter problem by expressing x : f(x1 : : : xn) as a
onjun
tion of simpler
on-straints in the style of CFT (Smolka and Treinen, 1994):x : f(x1 : : : xn) � jxj = n ^ x : f ^ ^1�i�nx[i℄ = xijxj = n is an arity
onstraint, x:f is a label or sort
onstraint, and x[i℄ = y is a feature
onstraint.The problemati

ase be
omes::(x : f(x1 : : : xn)) � jxj 6= n _ :(x : f) _ _1�i�nx[i℄ := xiKoller et al. (2000) also brie
y
onsider possible extensions of dominan
e
onstraint with �nitesignatures to admit disjun
tions and negations. They suggest that negation
an be handled byexpansion into the disjun
tion of all other
ases::(x : f(x1 : : : xn)) � (_g 6=f2� x : g(x01 : : : x0ar(g))) _ (x : f(x001 : : : x00n) ^ _1�i�n x00i := xi)We reje
t their suggestion as impra
ti
al: in order to a
hieve the same expressivity as ours,they must solve mu
h larger problems. Furthermore, they do not propose an eÆ
ient way topro
ess disjun
tions, but merely suggest that non-deterministi
 sear
h
ould in prin
iple handleit. They are of
ourse well aware that for a problem of su
h
ombinatorial
omplexity, purenon-deterministi
 sear
h is utterly impra
ti
al. One essential
ontribution of the present paperis to demonstrate how to redu
e a disjun
tive des
ription to a form amenable to e�e
tive modelelimination through
onstraint propagation.3 Full Boolean FragmentWe propose a new language of tree des
riptions inspired both by the language with set operatorsof Du
hier and Niehren (2000) and the feature tree logi
 CFT of Smolka and Treinen (1994). Itsabstra
t syntax is given by:� ::= x R y j jxj = n j x : f j x[i℄ = y j �1 ^ �2 j �1 _ �2 j :�where R � f=;C+;B+;?gThe admission of disjun
tion and negation makes the set operator extension of (Du
hier andNiehren, 2000) obsolete sin
e xR1 [R2 y � xR1 y_xR2 y and x:Ry � :(xRy). Nonetheless, we
hoose to retain the notion sin
e it fa
ilitates the redu
tion to a
onstraint satisfa
tion problem.The semanti
s of tree des
riptions are given by interpretation over tree stru
tures and we makethis idea formal in the remainder of the present se
tion.We assume a signature � of fun
tion symbols written f; g; a; b; : : : and equipped with an arityar(f) � 0. We assume that �
ontains at least one
onstant and one fun
tion symbol of arity � 2.Tree, nodes, and dominan
e. We identify a node in a tree with the path that leads to itstarting from the root of the tree. A path � is a word (i.e. a sequen
e) of positive integers. Wewrite � for the empty path and �1�2 for the
on
atenation of �1 and �2. �0 is a pre�x of � i�there exists �00 su
h that � = �0�00. We write �1 C� �2 when �1 is a pre�x of �2 and say that�1 dominates �2. A tree domain is a non-empty pre�x-
losed set of paths. A (�nite) tree is apair (D;L) of a �nite tree domain D and a labeling fun
tion L : D ! � with the property that

B ::= true j false j X1 = X2 j I 2 D j i 2 S j i 62 S j B1 ^ B2 (D � �)C ::= B j I1 � I2 j S1 k S2 j S3 � S1 [S2 j C1 ^ C2 jC1 or C2 j I = hI1 : : : Ini[J ℄ j S = hS1 : : : Sni[J ℄Figure 1: Constraint Languageequality X1 = X2 ^ B[Xj ℄ ! B[Xk℄ fj; kg = f1; 2g�nite domain integer
onstraintsI 2 D1 ^ I 2 D2 ! I 2 D1 \D2I 2 ; ! falseI1 � I2 ^ I1 2 fn : : mg ! I2 2 � n f1 : : n� 1gI1 � I2 ^ I2 2 fn : : mg ! I1 2 � n fm+ 1 : : �g�nite set
onstraintsi 2 S ^ i 62 S ! falseS1 k S2 ^ i 2 Sj ! i 62 Sk fj; kg = f1; 2gS3 � S1 [S2 ^ i 62 S1 ^ i 62 S2 ! i 62 S3S3 � S1 [S2 ^ i 2 S3 ^ i 62 Sj ! i 2 Sk fj; kg = f1; 2gFigure 2: Main Propagation Rulesall � 2 D and k � 1 satisfy �k 2 D i� k � ar(L(�)), i.e. that ea
h node has pre
isely as many
hildren as required by the arity of the fun
tion symbol with whi
h it is labeled. If � is a tree, wewrite D� for its domain and L� for its labeling fun
tion.Tree stru
ture and set operators. A tree stru
ture is a �rst-order stru
tureM� representinga tree � by the relations between its nodes. The domain of M� is the tree domain D� . For ea
hfun
tion symbol f 2 �,M�
ontains a relation :f of arity ar(f)+1 su
h that (using in�x notation)�:f(�1 : : : �n) holds in M� i� L� (�) = f and �i = �i for all 1 � i � n = ar(f).We
onsider tree stru
tures with all relations generated from dominan
e C� by inversion �1(i.e. argument swapping), union [, interse
tion \, and
omplementation :. We de�ne inversedominan
e B� by C��1, equality = by C� \ B�, inequality 6= by :=, proper dominan
e C+ byC�\ 6=, inverse proper dominan
e B+ by C+�1, and disjointness ? by :C� \ :B�.Semanti
s of tree des
riptions. Tree des
riptions are interpreted in the
lass of tree stru
tureover �. For instan
e a des
ription x f=;?g y is satis�ed by a tree stru
ture where the nodesdenoted by x and y are either equal or lie in disjoint subtrees. In general, a relation symbol R isinterpreted as the relation [R of M� for some tree � . We write Vars(�) for the set of variableso

urring in �. A solution of a des
ription � is a pair (M� ; �) of a tree stru
ture M� and avariable assignment � : Vars(�) ! D� . We write (M� ; �) j= � if � is satis�ed by (M� ; �) in theusual Tarskian way, where the CFT-style des
riptions are interpreted as follows:(M� ; �) j= jxj = n � ar(L� (�(x))) = n(M� ; �) j= x : f � L� (�(x)) = f(M� ; �) j= x[i℄ = y � �(y) = �(x)i4 Constraint LanguageOur approa
h for solving a tree des
ription is to transform it into an equivalent
onstraint satis-fa
tion problem. More pre
isely, we transform a des
ription � into a
onstraint [[�℄℄ of a
onstraintlanguage. Solutions of [[�℄℄
an then be enumerated eÆ
iently by alternating steps of propagation

B ^ C !� falseB ^ (C or C0) ! C0 B ^ C0 !� falseB ^ (C or C0) ! CFigure 3: Disjun
tive Propagator�nite domain sele
tion
onstraintI = hI1 : : : Ini[J ℄ ! J 2 f1: :ngI = hI1 : : : Ini[J ℄ ^ J 2 D ^ 8j 2 D Ij 2 Dj ! I 2 [fDj j j 2 DgI = hI1 : : : Ini[J ℄ ^ J 2 D ^ Ij 2 Dj ^ D \Dj = ; ! j 6= JI = hI1 : : : Ini[J ℄ ^ j = J ! I = Ij�nite set sele
tion
onstraintS = hS1 : : : Sni[I ℄ ! I 2 f1: :ngS = hS1 : : : Sni[I ℄ ^ I 2 D ^ 8i 2 D j 2 Si ! j 2 SS = hS1 : : : Sni[I ℄ ^ I 2 D ^ 8i 2 D j 62 Si ! j 62 SS = hS1 : : : Sni[I ℄ ^ j 2 S ^ j 62 Si ! i 6= IS = hS1 : : : Sni[I ℄ ^ j 62 S ^ j 2 Si ! i 6= IS = hS1 : : : Sni[I ℄ ^ i = I ! S = SiFigure 4: Sele
tion Propagatorand distribution. In this se
tion, we present a
onstraint language suÆ
ient for our purposesand spe
ify the
onstraint propagation behavior we require as a system of inferen
e rules. The
on
urrent
onstraint programming language Oz is a pra
ti
al implementation of su
h a language(Smolka, 1995; Mozart, 1999).Let � = f1 : : : �g be a integer interval for some large pra
ti
al limit � su
h as 134217726.We assume a set of integer variables with values in � and ranged over by I , J , or K, and a setof set variables with values in 2� and ranged over by S. Integer and set variables are also bothdenoted by X . We write D for a domain, i.e. a given �xed subset of �.Basi
 and non-basi

onstraints. We distinguish between basi

onstraints B whi
h
an berepresented dire
tly in the
onstraint store and non-basi

onstraints C whi
h a
t as propagators(see Fig 1). A propagator implements a set of inferen
e rules that derive new basi

onstraints.For example, the non-basi
 disjointness
onstraint S1 k S2 implements the rules:S1 k S2 ^ i 2 Sj ! i 62 Sk for fj; kg = f1; 2gWhenever a basi

onstraint i 2 S1 (resp. i 2 S2) is derived, the disjointness propagator infersi 62 S2 (resp. i 62 S1). The rules for �nite domain and �nite set
onstraints are given in (Fig 2).Abbreviations. S1 k S2 has the semanti
s S1 \ S2 = ;. We write I = i for I 2 fig, I 6= i forI 2 � n fig, S = D for ^fi 2 S j i 2 Dg^ fi 62 S j i 2 � nDg, S1 � S2 for S1 � S2 [S3 ^ S3 = ;,and S = S1 ℄S2 for S1 k S2 ^ S � S1 [S2 ^ S1 � S ^ S2 � S (i.e. ℄ represents disjoint unionaka partition).Propagation and distribution. Propagation performs
heap deterministi
 inferen
e, but isnot
omplete. In order to enumerate the solutions of a
onstraint C, sear
h is required and maybe spe
i�ed by appli
ation-dependent distribution rules. For our present purpose, we need only
onsider distribution rules of the form:I 2 D1 ℄D2 ! I 2 D1 _ I 2 D2 for D1; D2 6= ; (Æ1)S � D ! i 2 S _ i 62 S for i 2 D (Æ2)

The disjun
tion in a distribution rule is interpreted non-deterministi
ally. Thus, rule (Æ1) non-deterministi
ally infers either I 2 D1 or I 2 D2. A
onstraint program
onsists of a
onstraintC and a set of distribution rules. Solutions are derived by alternating steps of propagation (i.e.saturation under propagation rules) and distribution (i.e. the non-deterministi
 appli
ation of adistribution rule). The
hoi
e of distribution rule, of variable I , and of domain partition D1 ℄D2is determined by a sear
h strategy, but this is outside the s
ope of the present paper.Disjun
tive propagator. In Logi
 Programming, disjun
tion is handled solely by the non-deterministi
 exploration of alternatives. For problems of high
ombinatorial
omplexity, su
ha strategy of early
ommitment is highly undesirable. Modern
onstraint programming o�ersa remarkable alternative: the possibility to
onsider disjun
tion not as a
hoi
e point but as a
onstraint.A disjun
tive propagator (C or C0) infers C0 if it
an be shown that C is in
onsistent with thebasi

onstraints derived so far. The pre
ise semanti
s of the disjun
tive propagator are given in(Fig 3), where we write B ^ C !� false to mean that false is in the saturation of B ^ C under thepropagation rules.Sele
tion propagator. A very
ommon form of disjun
tion is sele
tion out of a �nite
olle
tionof alternative values. It
an be given more spe
i�
 and e�e
tive support in the form of a
onstraintwhi
h we write: X = hX1 : : : Xni[I ℄where hX1 : : : Xni represents a sequen
e and the notation above was
hosen for its intuitivesimilarity with array-lookup. The de
larative semanti
s are simply X=XI . Su
h a
onstraintmight be implemented with an n-ary disjun
tive propagator:(X=X1 ^ I=1) or : : : or (X=Xn ^ I=n)However, it is possible to extra
t more pre
ise information
on
erning X out of the remaining (notyet in
onsistent) alternatives of the disjun
tion. For example, from:(X = k1 ^ I = 1)or (X = k2 ^ I = 2)or (X = k3 ^ I = 3)and I 6= 2, we should be able to derive X 2 fk1; k3g. This is known as
onstru
tive disjun
tion.While diÆ
ult to implement in the general
ase, it
an be very eÆ
iently supported for sele
tionout of homogeneous sequen
es.This powerful idea was �rst introdu
ed in CHIP (Din
bas et al., 1988) for sele
tion out of asequen
e of integer values. Du
hier (1999a) extended it to sele
tion out of homogeneous sequen
esof �nite set variables and des
ribed its appli
ation to the eÆ
ient treatment of lexi
al ambiguitywhen parsing with a dependen
y grammar. In (Fig 4), we give the propagation rules for bothsequen
es of �nite domain variables and sequen
es of �nite set variables.5 Redu
tion To A Constraint Satisfa
tion ProblemOur approa
h transforms a tree des
ription � into a
onstraint [[�℄℄ in the language presented abovein se
tion 4, and thereby turns the task of �nding solutions of � into an equivalent
onstraintsatisfa
tion problem (CSP). [[�℄℄
onsists of 3 parts:[[�℄℄ = ^x2Vars(�)A1(x) ^x;y2Vars(�)A2(x; y) ^ A3[[�℄℄A1(x) introdu
es a node representation for ea
h variable x in �, A2(x; y) axiomatizes the well-formedness (i.e. treeness) of the relations between these nodes, and A3[[�℄℄ en
odes the spe
i�
restri
tions imposed by �.

In a solution (M� ; �) of �, every variable x is mapped to a node �(x) of M� . Thus from thepoint of view of x, the set Vars(�) is partitioned into 4 disjoint subsets: all variables equal to x(i.e. mapped to the same node �(x)), all an
estors, all des
endents, and all others (i.e. mapped tonodes in disjoint subtrees). Our te
hnique is based on introdu
ing expli
it variables for these setsand expressing the
onstraints that they must satisfy.5.1 RepresentationWe assume that we look for solutions in a tree stru
ture with �nite signature �. Let max be themaximum
onstru
tor arity in �. For ea
h formal variable x in � we
hoose a distin
t integer �xto represent it and introdu
e 7 + 2 � max
onstraint variables written Eqx, Upx, Downx, Sidex,Equpx, Eqdownx, Childix and Downix for 1 � i � max, and , Genesisx, as well as 3 integer
onstraint variables Labelx, Arityx. First, we state x = x:�x 2 Eqx (1)Eqx, Upx, Downx, Sidex en
ode the set of variables that are respe
tively equal, above, below, andto the side (i.e. disjoint) of x. Thus posing I = f�x j x 2 Vars(�)g for the set of integers en
odingVars(�), we have: I = Eqx ℄ Upx ℄ Downx ℄ SidexAs des
ribed in (Du
hier and Niehren, 2000), we
an and should improve propagation by intro-du
ing Eqdownx and Equpx as intermediate results:I = Eqdownx ℄ Upx ℄ Sidex (2)I = Equpx ℄Downx ℄ Sidex (3)Eqdownx = Eqx ℄Downx (4)Equpx = Eqx ℄Upx (5)Downix en
odes the set of variables in the subtree rooted at x's ith
hild (empty if there is no su
h
hild): Downx = ℄1�i�maxDownix (6)Childix en
odes the set of variables o

urring as x's ith
hild:Childix � Downix (7)We
hoose a bije
tion ` : �! f1 : : j�jg and en
ode a
onstru
tor f 2 � by the integer `(f). Theintent is that the literal x : f should
orrespond to the
onstraint Labelx = `(f).Labelx 2 f1 : : j�jg (8)The arity of a node depends on its
onstru
tor. Thus, Arityx and Labelx are related by thefollowing sele
tion
onstraint:Arityx = har(`�1(1)); : : : ; ar(`�1(j�j))i[Labelx℄ (9)A node must have pre
isely as many
hildren as required by the arity of its
onstru
tor:Arityx < i) jDownixj = 0 (10)Where we de�ne: I < i) C � (I < i ^ C) or (I � i)(10) is not an equivalen
e be
ause we do not want to eliminate solutions that require more nodesthan there are variables in �.A1(x) is simply the
onjun
tion of the
onstraints presented above:A1(x) � (1) ^ : : : ^ (10)

Cxy 2 f1; 2; 3; 4g (11)B[[x= y℄℄ ^ Cxy = 1 or Cxy 6= 1 ^ B[[x := y℄℄ (12)B[[xC+ y℄℄ ^ Cxy = 2 or Cxy 6= 2 ^ B[[x :C+ y℄℄ (13)B[[xB+ y℄℄ ^ Cxy = 3 or Cxy 6= 3 ^ B[[x :B+ y℄℄ (14)B[[x? y℄℄ ^ Cxy = 4 or Cxy 6= 4 ^ B[[x :? y℄℄ (15)Figure 5: Well-formedness
lausesB[[x = y℄℄ = Eqx = Eqy ^ Upx = Upy ^ Downx = Downy ^ Sidex = Sidey ^Equpx = Equpy ^ Eqdownx = Eqdowny ^Labelx = Labely ^ Arityx = Arityy ^Genesisx = Genesisy ^Downix = Downiy ^ Childix = ChildiyB[[x := y℄℄ = Eqx k EqyB[[xC+ y℄℄ = Eqdowny � Downx ^ Equpx � Upy ^ Sidex � SideyB[[x :C+ y℄℄ = Eqx k Upy ^ Downx k EqyB[[x ? y℄℄ = Eqdownx � Sidey ^ Eqdowny � SidexB[[x :? y℄℄ = Eqx k Sidey ^ Sidex k EqyFigure 6: Set
onstraints
hara
teristi
 of ea
h
aseGenesisx 2 G (16)�x[i℄ 2 Genesisy ^ Childix = Eqy ^Downix = Eqdowny ^ Upy = Equpxor �x[i℄ 62 Genesisy ^ Childix k Eqy (17)Figure 7: Genesis
lauses5.2 Well-FormednessIn a tree, the relationship that obtains between the nodes denoted by x and y must be either=, C+, B+ or ?. We en
ode this
hoi
e expli
itly with a �nite domain variable Cxy whi
h we
all a
hoi
e variable and
ontribute the
lauses of Fig 5. Where B[[x r y℄℄ are the set
onstraints
hara
teristi
 of the
ase x r y as des
ribed in Fig 6.Finally, we state that for any two variables x; y and integer i, x[i℄=y either holds or not. Thatis, for ea
h pair (x; i) with x 2 Vars(�) and 1 � i � max we
hoose a distin
t integer �x[i℄ toen
ode it. We de�ne G = f�x[i℄ j x 2 Vars(�); 1 � i � maxg, and
ontribute the
lauses of Fig 7.A2(x; y) � (11) ^ (12) ^ (13) ^ (14) ^ (15) ^ (16) ^1�i�max(17)5.3 Problem Spe
ifi
 ConstraintsThe last part A3[[�℄℄ of the translation forms the additional problem spe
i�

onstraints that furtherrestri
t the admissibility of well-formed solutions and admits only those whi
h are models of �.We will make use of the notion of a restri
tion � whi
h maps
onstraint variables to restri
tionson their domains. For example, ea
h literal shown below
ontributes a restri
tion with the propertyshown to its right.

C[[�1 _ �2℄℄J� = h'1 ^ '2 ^ I 2 f1; 2g ^ J�I; h�1; �2i[I ℄iwhere I is a fresh variable, h'1; �1i = C[[�1℄℄I� and h'2; �2i = C[[�2℄℄I�C[[�1 ^ �2℄℄J� = h'1 ^ '2; �1&�2iwhere h'1; �1i = C[[�1℄℄J� and h'2; �2i = C[[�2℄℄J� and �1&�2 is de�ned in Fig 9C[[::�℄℄ = C[[�℄℄C[[:(�1 ^ �2)℄℄ = C[[:�1 _ :�2℄℄C[[:(�1 _ �2)℄℄ = C[[:�1 ^ :�2℄℄C[[x R y℄℄ = htrue;>[Cxy 7! fD[[r℄℄ j r 2 Rg℄i 8>><>>: D[[=℄℄ = 1D[[C+℄℄ = 2D[[B+℄℄ = 3D[[?℄℄ = 4C[[:(x R y)℄℄ = C[[x :R y℄℄C[[jxj = n℄℄ = htrue;>[Arityx 7! fng℄iC[[:(jxj = n)℄℄ = htrue;>[Arityx 7! ar(�) n fng℄iC[[x : f ℄℄ = htrue;>[Labelx 7! f`(f)g℄iC[[:(x : f)℄℄ = htrue;>[Labelx 7! `(�) n f`(f)g℄iC[[x[i℄ = y℄℄ = htrue;>[Childix 7! hfyg; ;i℄iC[[:(x[i℄ = y)℄℄ = htrue;>[Childix 7! h;; fygi℄iFigure 8: Computing restri
tions(�1&�2)(Cxy) = �1(Cxy) \ �2(Cxy)(�1&�2)(Arityx) = �1(Arityx) \ �2(Arityx)(�1&�2)(Labelx) = �1(Labelx) \ �2(Labelx)(�1&�2)(Childix) = hIn1 [In2;Out1 [Out2iwhere hIn1;Out1i = �1(Childix)hIn2;Out2i = �2(Childix)Figure 9: A

umulating Restri
tionsxC� y �(Cxy) = f1; 2gx : f �(Labelx) = f`(f)gjxj = n �(Arityx) = fngOur intention is to translate a des
ription � into a
orresponding restri
tion � su
h that theproblem spe
i�

onstraints are all of the form:Cxy 2 �(Cxy) (18)Labelx 2 �(Labelx) (19)Arityx 2 �(Arityx) (20)Additionally, literals su
h as x[i℄ = y and :(x[i℄ = y) give rise to restri
tions on variables Childix.Su
h a restri
tion is expressed as a pair hInix;Outixi where Inix represents the set of variables thatmust be in
luded in Childix and Outix the set of those that must be ex
luded from it. It yields theproblem spe
i�

onstraint: Inix � Childix ^Outix k Childix (21)Disjun
tions are handled by means of the sele
tion
onstraint. If des
riptions �1 and �2 translaterespe
tively to restri
tions �1 and �2, then �1 _ �2 translates to h�1; �2i[I ℄ where I is a new�nite domain variable. The sele
tion
onstraint applied to restri
tions is interpreted point-wise asfollows: h�1; �2i[I ℄(X) = h�1(X); �2(X)i[I ℄

If approa
hed na��vely, nested disjun
tions result in spurious indetermina
y. Consider:(�1 _ �2) _ (�01 _ �02)The des
ription above results in a restri
tion of the form:hh�1; �2i[I ℄; h�01; �02i[I 0℄i[J ℄where J
ontrols the outermost disjun
tion, I the nested disjun
tion on the left, and I 0 the nesteddisjun
tion on the right. If J = 1, I 0 may still take indi�erently values 1 or 2 eventhough this
hoi
e has be
ome irrelevant. In order to remove su
h spurious indetermina
y, we add the following
onstraints: J � I ^ J � I 0Thus, when J = 1 then I 0 must be 1 and when J = 2, I must be 2.We
an now pro
eed to de�ne formally the translation of a des
ription � into a restri
tion.For this purpose, we use C[[�℄℄J� where � is either � or �. J and � are used to remove spuriousindetermina
ies as outlined above. C[[�℄℄J� a
tually returns a pair:h'; �i = C[[�℄℄J�where ' is a
onstraint and � is a restri
tion. We write > for the most general restri
tion, whi
his de�ned point-wise as follows: >(Cxy) = f1; 2; 3; 4g>(Arityx) = f0 : : maxg>(Labelx) = f1 : : j�jg>(Childix) = h;; ;iand we write �[X 7! V ℄ for the restri
tion su
h that:�[X 7! V ℄(Y) = � V if Y is X�(Y) otherwiseWe
an now put it all together and de�ne C[[�℄℄J� in Fig 8. If we pose h'; �i = C[[�℄℄1� andhInix;Outixi = �(Childix), the problem spe
i�

onstraints are:A3[[�℄℄ = '̂x;y2Vars(�)Cxy 2 �(Cxy)^x2Vars(�) Arityx 2 �(Arityx)^ Labelx 2 �(Labelx)^1�i�max Inix � Childix ^Outix k Childix5.4 Distribution RulesThere are three types of
hoi
es that may have to be made when propagation alone is not suÆ
ientto resolve them automati
ally: what bran
h of a disjun
tion �1 _ �2 to sele
t, in what dominan
erelationship two variables x and y stand, and whether y is the ith
hild of x. Thus we need threedistribution rule s
hemas. The �rst one allows us to pi
k a non-determined
hoi
e variable andmake a
ase distin
tion:Cxy 2 D1 ℄D2 ! Cxy 2 D1 _ Cxy 2 D2 D1; D2 6= ;The se
ond one allows us to pi
k a non-determined sele
tor I , introdu
ed when translating �1_�2into h�1; �2i[I ℄, and try ea
h alternative:I 2 f1; 2g ! I=1 _ I=2

The third one is an instan
e of (Æ2) and allows us to pi
k a set variable Genesisy and an integer�x[i℄ 2 G to de
ide whether or not x[i℄ = y holds:�x[i℄ 2 Genesisy _ �x[i℄ 62 GenesisyCompleteness. For every solution (M� ; �) of � there is
onsistent solved form of [[�℄℄. We donot provide formal proof, however it should be
lear that the
onstraints of our en
oding are validin all tree stru
tures, and that, given a solution (M� ; �) of �, we
an
onstru
t a solved form of[[�℄℄ simply by reading o� the value for ea
h variable.Soundness. For every
onsistent solved form of [[�℄℄ there exists a
orresponding solution (M� ; �)of �. In other words, propagation is strong enough to derive a
ontradi
tion whenever a des
riptionis not satis�able. To prove this, we should exhibit a pro
edure that
onstru
ts a solution (M� ; �)of � from a
onsistent solved form [[�℄℄. This result has not been established yet, but we are workingon an approa
h in the style of Du
hier and Niehren (2000).6 Con
lusionIn this paper, we addressed the following open question: is it possible to give a
onstraint-basedtreatment to the
lass of tree des
riptions admitting all Boolean
onne
tives? Is it possible todevise a solver for this
lass that may still perform e�e
tive model elimination through
onstraintpropagation? We have shown that this is indeed the
ase.We presented a new formalism for tree des
riptions that
ombines the set operators formalismof Du
hier and Niehren (2000) with the feature tree logi
 of Smolka and Treinen (1994), andextends them by additionally admitting disjun
tion and negation.Then we showed that every tree des
ription in our formalism
an be transformed into a CSPexpressible as a
onstraint program, and thus solvable by
ontraint programming. We gave pre
isepropagation and distribution rules that we assume of a pra
ti
al implementation. In parti
ular,we gave pre
ise operational semanti
s to disjun
tive propagators and sele
tion propagators, thusproviding se
ure foundation for an important te
hni
al
ontribution: our treatment of disjun
tionby redu
tion to the sele
tion
onstraint.Future work. We are
urrently working on formal proofs of
ompleteness and soundness. Wealso plan to develop a
on
rete implementation in Oz and perform an experimental evaluation ofthe te
hnique presented here.A
knowledgments. We are greatful to Joa
him Niehren. The present paper borrows and greatlybene�ts from previous joint work with him.Referen
esBa
kofen, R., Rogers, J., and Vijay-Shanker, K. (1995). A �rst-order axiomatization of the theoryof �nite trees. Journal of Logi
, Language, and Information, 4:5{39.Bla
kburn, P., Gardent, C., and Meyer-Viol, W. (1993). Talking about trees. In Pro
eedings ofthe European Chapter of the Asso
iation of Computational Linguisti
s, Utre
ht.Din
bas, M., Van Hentenry
k, P., Simonis, H., Aggoun, A., Graf, T., and Berthier, F. (1988). The
onstraint logi
 programming language CHIP. In Pro
eedings of the International Conferen
eon Fifth Generation Computer Systems FGCS-88, pages 693{702, Tokyo, Japan.Du
hier, D. (1999a). Axiomatizing dependen
y parsing using set
onstraints. In Sixth Meeting onMathemati
s of Language, pages 115{126, Orlando, Florida.Du
hier, D. (1999b). Set
onstraints in
omputational linguisti
s { solving tree des
riptions. InWorkshop on De
larative Programming with Sets (DPS'99), pages 91{98.

Du
hier, D. and Gardent, C. (1999). A
onstraint-based treatment of des
riptions. In Int. Work-shop on Computational Semanti
s, Tilburg.Du
hier, D. and Niehren, J. (2000). Dominan
e
onstraints with set operators. In Pro
eedings ofthe First International Conferen
e on Computational Logi
 (CL2000), LNCS. Springer.Du
hier, D. and Thater, S. (1999). Parsing with tree des
riptions: a
onstraint-based approa
h. InInt. Workshop on Natural Language Understanding and Logi
 Programming, Las Cru
es, NewMexi
o.Egg, M., Niehren, J., Ruhrberg, P., and Xu, F. (1998). Constraints over lambda-stru
tures insemanti
 underspe
i�
ation. In Joint Conf. COLING/ACL, pages 353{359.Gardent, C. and Webber, B. (1998). Des
ribing dis
ourse semanti
s. In Pro
eedings of the 4thTAG+ Workshop, Philadelphia.Koller, A., Niehren, J., and Treinen, R. (2000). Dominan
e
onstraints: Algorithms and
omplex-ity. In Logi
al Aspe
ts of Comp. Linguisti
s 98. To appear in LNCS.Mar
us, M. (1987). Deterministi
 parsing and des
ription theory. In Whitelo
k, P., Wood, M.,Somers, H., Johnson, R., and Bennett, P., editors, Linguisti
 Theory and Computer Appli
a-tions. A
ademi
 Press.Mar
us, M. P., Hindle, D., and Fle
k, M. M. (1983). D-theory: Talking about talking about trees.In 21st ACL, pages 129{136.Mozart (1999). The Mozart Programming System http://www.mozart-oz.org/.M�uller, T. and M�uller, M. (1997). Finite set
onstraints in Oz. In Bry, F., Freitag, B., and Seipel,D., editors, 13. Workshop Logis
he Programmierung, pages 104{115, Te
hnis
he Universit�atM�un
hen.Muskens, R. (1995). Order-Independen
e and Underspe
i�
ation. In Groenendijk, J., editor, Ellip-sis, Underspe
i�
ation, Events and More in Dynami
 Semanti
s. DYANA Deliverable R.2.2.C.Rambow, O., Vijay-Shanker, K., and Weir, D. (1995). D-tree grammars. In Pro
eedings of ACL'95,pages 151{158, MIT, Cambridge.Rogers, J. and Vijay-Shanker, K. (1992). Reasoning with des
riptions of trees. In Annual Meetingof the Asso
iation for Comp. Linguisti
s (ACL).Smolka, G. (1995). The Oz Programming Model. In van Leeuwen, J., editor, Computer S
ien
eToday, pages 324{343. Springer-Verlag, Berlin.Smolka, G. and Treinen, R. (1994). Re
ords for logi
 programming. Journal of Logi
 Programming,18(3):229{258.Vijay-Shanker, K. (1992). Using des
riptions of trees in a tree adjoining grammar. ComputationalLinguisti
s, 18:481{518.

