A Model Eliminative Treatment of
Quantifier-Free Tree Descriptions

Denys Duchier
Programming System Lab, Universitat des Saarlandes, Saarbriicken
duchier@ps.uni-sb.de

Abstract

Tree descriptions are widely used in computational linguistics for talking and reasoning about
trees. For practical applications, it is essential to be able to decide satisfiability and enumerate
solutions efficiently. This challenge cannot realistically be met by brute force enumeration.
However it can be addressed very effectively by constraint propagation as provided by modern
constraint technology.

Previously, we studied the conjunctive fragment of tree descriptions and showed how the
problem of finding minimal models of a conjunctive tree description could be transformed
into a constraint satisfaction problem (CSP) on finite set variables.

In this paper, we extend our account to the fragment that admits both negation and disjunc-
tion, but still leaves out quantification. Again we provide a reduction to a CSP. While our
previous encoding introduced the reader to set constraints and disjunctive propagators, we
now extend our arsenal with selection propagators.

1 INTRODUCTION

In computational linguistics, theories are frequently concerned with the formulation of constraints
or principles restricting the admissibility of tree representations. A large class of structural con-
straints can be expressed elegantly in the form of tree descriptions, where the ‘parent’ relation
may be relaxed into the ‘ancestor’, or dominance, relation. Tree descriptions were introduced in
(Marcus et al., 1983), motivated by an application to deterministic parsing, and have steadily
gained in popularity (Backofen et al., 1995; Rogers and Vijay-Shanker, 1992). Today, they are
used in such varied domains as Tree-Adjoining and D-Tree Grammars (Vijay-Shanker, 1992; Ram-
bow et al., 1995; Duchier and Thater, 1999), for underspecified representation of scope ambiguities
in semantics (Muskens, 1995; Egg et al., 1998), and for underspecified descriptions of discourse
structure (Gardent and Webber, 1998).

A tree description consists of a conjunction of literals z <*y and z:f(z1 ... x,) where variables
denote nodes in the tree. The symbol <* notates the dominance relation and z:f(z1 ... x,)
expresses that the node denoted by zx is formed from the n-ary constructor f and the sequence
of daughter nodes denoted by z; through z,. For practical applications, it is essential to be able
to decide satisfiability and find solutions of tree descriptions efficiently. While the satisfiability
problem was shown to be NP-complete (Koller et al., 2000), we have described previously how
to derive efficient solvers, based on constraint programming, by transformation to a constraint
satisfaction problem (Duchier and Gardent, 1999; Duchier, 1999b; Duchier and Niehren, 2000).

In (Duchier and Niehren, 2000), we described dominance constraints with set operators. Set
operators contribute a controlled form of disjunction and negation that remains eminently well-
suited for constraint propagation. The additional expressivity is essential both for applications and
for specifying a complete system of inference rules. The language of dominance constraint with
set operators is less expressive than general Boolean connectives: it merely admits as operators
all relations that can be generated from dominance <* by union, intersection, complementation,
and inversion.

In the present paper, we propose to extend the account to a language with all Boolean con-
nectives. In so doing, we combine and subsume previous work on dominance constraint as well as
on feature trees (Smolka and Treinen, 1994).

In Section 2 we review previous work that attended to the conjunctive fragment of dominance
logic and motivate a change of formalism in order to additionally accommodate negation. In
Section 3 we present a new formalism for tree descriptions that admits all boolean connectives
and formally provide its semantics. In Section 4 we precisely define the constraint programming
language that we require in order to solve tree descriptions, and list all its constraint propagation
rules. In particular, we give precise semantics for disjunctive propagators and selection propaga-
tors. Finally, in Section 5 we describe an encoding that turns a tree description into a constraint
program in the language of Section 4.

2 CONJUNCTIVE FRAGMENT

In this section, we review briefly the tree description formalisms that we studied previously, discuss
the difficulties that accrue from admitting negation, and argue that they can be resolved by
generalizing the language of tree descriptions in the style of the feature tree logic CFT (Smolka
and Treinen, 1994).

A classical tree description ¢ is a conjunction of literals z <* y and = : f(z1 ... x,) where
variables denote nodes in a solution tree:

¢ = <y | x:ifler .ow) | NS

The symbol <* notates the dominance relation and = : f(z; ... z,) expresses that the node
denoted by =z is formed from the n-ary constructor f and the sequence of daughter nodes denoted
by 1, ..., Tn.

The semantics of tree decriptions are given by interpretation over finite tree structures. A
model (M7, a) of a description ¢ consists of a tree structure M7™ and a variable assignment (or
interpretation) a that maps each variable in ¢ to a node in M7, and such that (M7, a) = ¢ in
the usual Tarskian sense. We elaborate further in section 3.

Tree descriptions with set operators. In (Duchier and Niehren, 2000), we presented an
extended language of descriptions which generalizes z <* y into = R y, where R denotes any one
of the possible dominance relationships between two nodes.

¢ = zRy | z:f(x1 ... o) | &N
where R C {=,<", >, 1}

Two nodes are either equal (=), one is a proper ancestor of the other (<), or the other way
around (>>7), or they lie in disjoint subtrees (). We write z Ry to say that the nodes denoted
by z and y must be in a relationship corresponding to one of the relation symbols in R. In other
words, (M7, a) E z Ry iff (M",a) |= x ry for some r € R. For instance, the literal z {=, L} y
expresses that the nodes denoted by = and y must either be equal or lie in disjoint subtrees.

Set expressions. For convenience, we admit syntactic sugar and allow to write = S y where S is
a set, expression given by:

S:::R‘:‘<+‘|>+‘J_|_‘S|51USQ‘51052|571

Obviously, every set expression can be translated to an equivalent set R of relation symbols. In
all tree structures = =S y is equivalent to —z Sy and S;USsy to z S;y V = Ss y. Thus, this
extended formalism allows a controlled form of negation and disjunction without admitting full
boolean connectives.

Accommodating negation. While tree descriptions with set operators gave us a limited form of
disjunction and negation, we are now interested in permitting arbitrary disjunctions and negations.
For negation, we need to consider the 3 cases of the abstract syntax:

1. =(z Ry) is equivalent to x =R y and thus already handled by complementation of R.
2. =(d1 A ¢2) is equivalent to =@y V —¢a, thus will be handled by our treatment of disjunction.

3. Only —=(z : f(x1 ... z,)) is problematic: it is satisfied when either x is not labeled by f, or
does not have arity n, or its ¢th child is not z;.

We address the latter problem by expressing x : f(x1 ... z,) as a conjunction of simpler con-
straints in the style of CFT (Smolka and Treinen, 1994):

z:f(zy ... xy) = Jzl=n ANz:f A /\az[z]:ml
1<i<n

|z| = n is an arity constraint, z:f is a label or sort constraint, and z[i] = y is a feature constraint.
The problematic case becomes:

=(z:f(zy ... zn)) = Jz|#n V =(z:f) V \/ zli] ~=x;

1<i<n

Koller et al. (2000) also briefly consider possible extensions of dominance constraint with finite
signatures to admit disjunctions and negations. They suggest that negation can be handled by
expansion into the disjunction of all other cases:

—(z: flzy oo 2,) = (\/ z:g(Ty - Th))) V(@ f(@Y) A \/ xy —=m;)

g#fEX 1<i<n

We reject their suggestion as impractical: in order to achieve the same expressivity as ours,
they must solve much larger problems. Furthermore, they do not propose an efficient way to
process disjunctions, but merely suggest that non-deterministic search could in principle handle
it. They are of course well aware that for a problem of such combinatorial complexity, pure
non-deterministic search is utterly impractical. One essential contribution of the present paper
is to demonstrate how to reduce a disjunctive description to a form amenable to effective model
elimination through constraint propagation.

3 FuLL BOOLEAN FRAGMENT

We propose a new language of tree descriptions inspired both by the language with set operators
of Duchier and Niehren (2000) and the feature tree logic CFT of Smolka and Treinen (1994). Its
abstract syntax is given by:

pu=azRy | |z|=n|x:f | 2lil=y | &1 Ad2 | 1 Vo | =6
where R C {=, <", >, 1}

The admission of disjunction and negation makes the set operator extension of (Duchier and
Niehren, 2000) obsolete since Ry U Roy = 2 Ry yVx Ryy and z—~Ry = —(x Ry). Nonetheless, we
choose to retain the notion since it facilitates the reduction to a constraint satisfaction problem.
The semantics of tree descriptions are given by interpretation over tree structures and we make
this idea formal in the remainder of the present section.
We assume a signature X of function symbols written f,g,a,b,... and equipped with an arity
ar(f) > 0. We assume that X contains at least one constant and one function symbol of arity > 2.

Tree, nodes, and dominance. We identify a node in a tree with the path that leads to it
starting from the root of the tree. A path 7 is a word (i.e. a sequence) of positive integers. We
write € for the empty path and w7 for the concatenation of m; and m5. 7' is a prefix of 7 iff
there exists ' such that 7 = #'z"". We write m; <* m3 when 7 is a prefix of my and say that
m dominates my. A tree domain is a non-empty prefix-closed set of paths. A (finite) tree is a

pair (D, L) of a finite tree domain D and a labeling function L : D — ¥ with the property that

Bu=true | false | Xy =X, | I€D | i€S |i¢gS | BiAB; (D CA)
CI::B | [1§12 | Sl ||SQ ‘ Sg§5'1U5'2 ‘ Cl/\CQ |
C] or CQ | I:<I] In)[']] | S:<S] Sn>[.]]

Figure 1: Constraint Language

equality
Xi = Xo ABIXj] = B[X4] {5.k} ={1,2}
finite domain integer constraints
Ie€eDiANIE€E Dy I € DyNDs
Ief false
]1§IQ/\I1€{n..m} IzGA\{ln—l}
L <L AL €e{n..m} L e A\{m+1.. u}
finite set constraints

L1l

i€ESANIES — false
S1 || So A ESj — 7€Sk {7,k}:{1:2}
53§51U5'2/\73€51/\i€52 — 7€Sa;
53§S1U52/\i653/\i€5j — i€ Sy {]k}:{LQ}

Figure 2: Main Propagation Rules

all 7 € D and k > 1 satisty nk € D iff k < ar(L(w)), i.e. that each node has precisely as many
children as required by the arity of the function symbol with which it is labeled. If 7 is a tree, we
write D, for its domain and L, for its labeling function.

Tree structure and set operators. A tree structure is a first-order structure M7 representing
a tree 7 by the relations between its nodes. The domain of M is the tree domain D.. For each
function symbol f € ¥, M7 contains a relation : f of arity ar(f)+ 1 such that (using infix notation)
m:f(m ... wy) holds in MT™ iff L (w) = f and m; = mi for all 1 <i <n = ar(f).

We consider tree structures with all relations generated from dominance <* by inversion
(i.e. argument swapping), union U, intersection N, and complementation —. We define inverse
dominance >* by <* ', equality = by <* N >*, inequality # by ==, proper dominance <* by
<*N #, inverse proper dominance > by <1+71, and disjointness 1 by —<1* N —>*.

-1

Semantics of tree descriptions. Tree descriptions are interpreted in the class of tree structure
over ¥. For instance a description = {=, L} y is satisfied by a tree structure where the nodes
denoted by = and y are either equal or lie in disjoint subtrees. In general, a relation symbol R is
interpreted as the relation UR of M7 for some tree 7. We write Vars(¢) for the set of variables
occurring in ¢. A solution of a description ¢ is a pair (M7, «) of a tree structure M” and a
variable assignment « : Vars(¢) — D,. We write (M7,a) |= ¢ if ¢ is satisfied by (M7,) in the
usual Tarskian way, where the CFT-style descriptions are interpreted as follows:

M7 a)Elzl=n = ar(L;(a(z))) =n
(M7, a) Fz: = Ly(a(z)=Ff
(M) Ealil=y = aly) = a()

4 CONSTRAINT LANGUAGE

Our approach for solving a tree description is to transform it into an equivalent constraint satis-
faction problem. More precisely, we transform a description ¢ into a constraint [¢] of a constraint
language. Solutions of [¢] can then be enumerated efficiently by alternating steps of propagation

BAC —* false BAC —* false
BA(C or C') = (' BA(C or C') —» C

Figure 3: Disjunctive Propagator

finite domain selection constraint

I=(L ... I,)]J] — Je{l..n}
I=(L ...)JJ] N JeD AVjeDI;€D, — IeU{D;|je D}
I=0 ... L)J]ANJeD ANIjeDi NDND;j=0 — j#J

I=(L ... L)J Nj=J - I=1I

finite set selection constraint

S=(S ... Sp)] — Te{l.n}
S=(S; ... S,)I] NITeD AVYieDjes; - j€S

S=(S1 ... S)) I ANIe€D AVieDj;gs; - jé€S
S=(S1 ... S))I] NJjES N JeES; = i#£T

S=(S ... Sp)I] ANi=1 - S=5;

Figure 4: Selection Propagator

and distribution. In this section, we present a constraint language sufficient for our purposes
and specify the constraint propagation behavior we require as a system of inference rules. The
concurrent constraint programming language Oz is a practical implementation of such a language
(Smolka, 1995; Mozart, 1999).

Let A = {1 ... u} be a integer interval for some large practical limit g such as 134217726.
We assume a set of integer variables with values in A and ranged over by I, J, or K, and a set
of set variables with values in 22 and ranged over by S. Integer and set variables are also both
denoted by X. We write D for a domain, i.e. a given fixed subset of A.

Basic and non-basic constraints. We distinguish between basic constraints B which can be
represented directly in the constraint store and non-basic constraints C which act as propagators
(see Fig 1). A propagator implements a set of inference rules that derive new basic constraints.
For example, the non-basic disjointness constraint Sy || Sy implements the rules:

S1 || Ss A iESj - i¢g S for {7,k}:{1:2}

Whenever a basic constraint i € Sy (resp. i € Ss) is derived, the disjointness propagator infers
i & Sy (resp. i € S1). The rules for finite domain and finite set constraints are given in (Fig 2).

Abbreviations. S; || S2 has the semantics S; NSy = . We write I =i for I € {i}, I # i for
IEA\{i},S:DfOr/\{iES‘iED}/\{igs‘iEA\D},Sl C Sy for S; C S,US; A 53:@,
and S=S5,WSy for S; || Sa A SCS;USy AS; CS A Sy CS (i.e. Wrepresents disjoint union
aka partition).

Propagation and distribution. Propagation performs cheap deterministic inference, but is
not complete. In order to enumerate the solutions of a constraint C, search is required and may
be specified by application-dependent distribution rules. For our present purpose, we need only
consider distribution rules of the form:

1€ DiwWDsy — 1€eDy VvV I€eD,s fOI"Dl,DQ#w ((51)
SCcD — ie€eSVigs fori e D (62)

The disjunction in a distribution rule is interpreted non-deterministically. Thus, rule (d;) non-
deterministically infers either I € Dy or I € Dy. A constraint program consists of a constraint
C and a set of distribution rules. Solutions are derived by alternating steps of propagation (i.e.
saturation under propagation rules) and distribution (i.e. the non-deterministic application of a
distribution rule). The choice of distribution rule, of variable I, and of domain partition D & Dy
is determined by a search strategy, but this is outside the scope of the present paper.

Disjunctive propagator. In Logic Programming, disjunction is handled solely by the non-
deterministic exploration of alternatives. For problems of high combinatorial complexity, such
a strategy of early commitment is highly undesirable. Modern constraint programming offers
a remarkable alternative: the possibility to consider disjunction not as a choice point but as a
constraint.

A disjunctive propagator (C or C') infers C' if it can be shown that C is inconsistent with the
basic constraints derived so far. The precise semantics of the disjunctive propagator are given in
(Fig 3), where we write BAC —* false to mean that false is in the saturation of B A C under the
propagation rules.

Selection propagator. A very common form of disjunction is selection out of a finite collection
of alternative values. It can be given more specific and effective support in the form of a constraint
which we write:

X =(X, ... X,))[]]

where (X; ... X,,) represents a sequence and the notation above was chosen for its intuitive
similarity with array-lookup. The declarative semantics are simply X=Xj;. Such a constraint
might be implemented with an n-ary disjunctive propagator:

(X=Xi1AI=1) or ... or (X=X, AI=n)

However, it is possible to extract more precise information concerning X out of the remaining (not
yet inconsistent) alternatives of the disjunction. For example, from:

(X=kAI=1)
or (X=kAI=2)
or (X=kAI=23)

and I # 2, we should be able to derive X € {kq,k3}. This is known as constructive disjunction.
While difficult to implement in the general case, it can be very efficiently supported for selection
out of homogeneous sequences.

This powerful idea was first introduced in CHIP (Dincbas et al., 1988) for selection out of a
sequence of integer values. Duchier (1999a) extended it to selection out of homogeneous sequences
of finite set variables and described its application to the efficient treatment of lexical ambiguity
when parsing with a dependency grammar. In (Fig 4), we give the propagation rules for both
sequences of finite domain variables and sequences of finite set variables.

5 REDUCTION TO A CONSTRAINT SATISFACTION PROBLEM

Our approach transforms a tree description ¢ into a constraint [¢] in the language presented above
in section 4, and thereby turns the task of finding solutions of ¢ into an equivalent constraint
satisfaction problem (CSP). [¢] consists of 3 parts:

= A (z As(z A
=AM Aswy) A Al

A, (z) introduces a node representation for each variable z in ¢, As(z,y) axiomatizes the well-
formedness (i.e. treeness) of the relations between these nodes, and Az[¢] encodes the specific
restrictions imposed by ¢.

In a solution (M7, a) of ¢, every variable z is mapped to a node a(z) of M™. Thus from the
point of view of z, the set Vars(¢) is partitioned into 4 disjoint subsets: all variables equal to
(i.e. mapped to the same node a(z)), all ancestors, all descendents, and all others (i.e. mapped to
nodes in disjoint subtrees). Our technique is based on introducing explicit variables for these sets
and expressing the constraints that they must satisfy.

5.1 REPRESENTATION

We assume that we look for solutions in a tree structure with finite signature X. Let MAX be the
maximum constructor arity in X.. For each formal variable z in ¢ we choose a distinct integer ¢,
to represent it and introduce 7 4+ 2 X MAX constraint variables written Egq,, Up,, Down,, Side,,
Equp,, Eqdown,, Child., and Down! for 1 < i < MAX, and , Genesis,, as well as 3 integer
constraint variables Label,, Arity,. First, we state z = x:

Le € Fq, (1)

Eq,, Up,, Down,, Side, encode the set of variables that are respectively equal, above, below, and
to the side (i.e. disjoint) of z. Thus posing Z = {1, | € Vars(¢)} for the set of integers encoding
Vars(¢), we have:

T = Eq. ¥ Up, & Down, ¥ Side,

As described in (Duchier and Niehren, 2000), we can and should improve propagation by intro-

ducing Eqdown, and FEqup, as intermediate results:

7 = Eqdown, ¥ Up, W Side, (2)

7 = Equp, ¥ Down, W Side, (3)
Eqdown, = Eq, ¥ Down, (4)
Equp, = Eq, & Up, (5)

Downl, encodes the set of variables in the subtree rooted at x’s ith child (empty if there is no such
child):

Down, = E—J Down, (6)

1<i<MAX
Child:, encodes the set of variables occurring as z’s ith child:
Child., C Down’ (7)

We choose a bijection £: ¥ — {1..|X|} and encode a constructor f € ¥ by the integer £(f). The
intent is that the literal & : f should correspond to the constraint Label, = £(f).

Label, € {1.. 2|} (8)

The arity of a node depends on its constructor. Thus, Arity, and Label, are related by the
following selection constraint:

Arity, = (ar((7'(1)),... ,ar((7'(|Z])))[Label,] 9)
A node must have precisely as many children as required by the arity of its constructor:
Arity, <i = |Down}| =0 (10)
Where we define:
I<i=C = ({I<iAC)or (I>i)

(10) is not an equivalence because we do not want to eliminate solutions that require more nodes
than there are variables in ¢.
A;(z) is simply the conjunction of the constraints presented above:

Ai(z) = (1) A ... A(10)

Cyy € {1,2,3,4)
yIANCyy =1 or Cpy #1AB
Blz <" y]ACyy =2 or Cpy #2AB
Blz>ty]ACyy =3 or Cpy #3AB

Blz LyJ]ACyy =4 or Cpy #4AB

(11)
Blz = z ~=y] (12)
z =<t y] (13)
z>" y] (14)
z Lyl (15)

— /= == ==

Figure 5: Well-formedness clauses

Blz =y] = Eg» = Egy A Up, = Upy A Down, = Down, A Side, = Side, A
Equp, = Equp, N Eqdown, = Eqdown, A
Label,, = Label, N Arity, = Arity, N\ Genesis, = Genesis, A
Down, = Down}, A Child,, = Child,
[[]] EQz || qu
B[z <" y] = Eqdown, C Down, A Equp, C Up, A Side, C Side,
B[z =< 9] = Eq. || Upy A Down, || Eq,
Blz L y] = Eqdown, C Side, A Eqdown,, C Side,
Blz —L y] = Eq, || Side, A Side, || Eq,

Figure 6: Set constraints characteristic of each case

Genesis, € G (16)

Le[i] € Genesisy A Child; = Egy A Douwn!, = Eqdowny A Upy = Equp,
or i, & Genesis, A Child, || Eq,

Figure 7: Genesis clauses

5.2 WELL-FORMEDNESS
In a tree, the relationship that obtains between the nodes denoted by z and y must be either
=, <7, >t or L. We encode this choice explicitly with a finite domain variable C,, which we
call a choice variable and contribute the clauses of Fig 5. Where B[z r y] are the set constraints
characteristic of the case x r y as described in Fig 6.

Finally, we state that for any two variables z,y and integer i, x[i]=y either holds or not. That
is, for each pair (z,i) with € Vars(¢) and 1 < i < MAX we choose a distinct integer 1,7 to
encode it. We define G = {1, | z € Vars(¢), 1 <i < MaX}, and contribute the clauses of Fig 7.

As(z,y) = (11) A (12) A (13) A (14) A (15) A (16) A (17)

1<i<MAX

5.3 PROBLEM SPECIFIC CONSTRAINTS

The last part A3[@] of the translation forms the additional problem specific constraints that further

restrict the admissibility of well-formed solutions and admits only those which are models of ¢.
We will make use of the notion of a restriction o which maps constraint variables to restrictions

on their domains. For example, each literal shown below contributes a restriction with the property

shown to its right.

Clor vV dol) = (o1 Apa AT €{1,2} A JpI,{o1,09)[1])
where [is a fresh variable, (p1,01) = C[[qzﬁl]]lS and (pq,02) = C[[qzﬁg]]lZ
Clor Aol = (1 A g2, 01&02)
where (p1,01) = C[[gzﬁl]]i and {p9,09) = C[[gzﬁg]]i and o1&03 is defined in Fig 9

C[~—¢] = Cl¢]
Cl[~(¢1 A ¢2)] = C[=¢1 V =¢2] D[=] =1
Cl[~(¢1 V ¢2)] = C[=¢1 A =¢2] D[<*] = 2
Clz Ry] = (true, T[Cyy — {D[r] | r € R}]) D[>+] = 3
C[-(zRy)] =Clz-Ry] D[L] =4
Cllz| = n] = (true, T[Arity, — {n}])
Cl[-(Jz| = n)] = (true, T[Arity, — ar(X) \ {n}])
Clz : f] = (true, T[Label, — {£(f)}])
Cl=(z: f)] = (true, T[Label, — £(X) \ {£(f)}])
Clzli] =y] = (true, T[Child}, — ({y},0)])
Cl-(x[i] = y)] = (true, T[Child;, — (0, {y})])
Figure 8: Computing restrictions
(01&02)(Cay) = 01(Cay) N 02(Cay)
(o1& 09) (Arity,) = o1 (Arity,) N os(Arity,)
(01&04)(Label,) = o1(Label,) N oo (Label,)
(01&02) (Childi) = (In, U In,, Out, U Out,)

where (In,, Out,) = o1(Child.)
(In,, Out,) = a(Child:)

Figure 9: Accumulating Restrictions

sy o(Cy) ={1,2}

x:f o(Label,) = {{(f)}
|z| = n o(Arity,) = {n}

Our intention is to translate a description ¢ into a corresponding restriction o such that the
problem specific constraints are all of the form:

Cay € 0(Chy) (18)
Label, € o(Label,) (19)
Arity, € o(Arity,) (20)

Additionally, literals such as z[i] = y and —(z[i] = y) give rise to restrictions on variables Child..
Such a restriction is expressed as a pair (Inl, Out) where Inl represents the set of variables that
must be included in Child. and Out! the set of those that must be excluded from it. It yields the
problem specific constraint:

In'. C Child., A Out., || Child’ (21)

Disjunctions are handled by means of the selection constraint. If descriptions ¢; and ¢, translate
respectively to restrictions oy and o9, then ¢ V ¢ translates to (o1,09)[I] where I is a new
finite domain variable. The selection constraint applied to restrictions is interpreted point-wise as
follows:

(o1, 09)[T](X) = (01 (X), 02(X)) 1]

If approached naively, nested disjunctions result in spurious indeterminacy. Consider:

(f1V ¢2) V (@) V @)

The description above results in a restriction of the form:

({01, 02) (1], (o1, o) I')[T]

where .J controls the outermost disjunction, I the nested disjunction on the left, and I’ the nested
disjunction on the right. If J = 1, I’ may still take indifferently values 1 or 2 eventhough this
choice has become irrelevant. In order to remove such spurious indeterminacy, we add the following
constraints:

J<I AN J>T

Thus, when J = 1 then I' must be 1 and when J = 2, T must be 2.

We can now proceed to define formally the translation of a description ¢ into a restriction.
For this purpose, we use C[[gb]]g where p is either < or >. J and p are used to remove spurious
indeterminacies as outlined above. C[[qﬁ]];{ actually returns a pair:

(¢, 0) = Clg];

where ¢ is a constraint and ¢ is a restriction. We write T for the most general restriction, which
is defined point-wise as follows:

T(Cay) =1{1,2,3,4}

T(Arity,) = {0 .. MAX}
T(Label,) = {1 .. 2|}

T(Child.) = (D, 0)

and we write o[X — V] for the restriction such that:

v ifYis X
o X = VIY) = { a(Y) otherwise

We can now put it all together and define C[[gzﬁ]]i in Fig 8. If we pose (p,0) = C[[(ﬁ]]]S and
(Ini, Out) = o(Child:), the problem specific constraints are:

Az [[¢]] =@
A Coy € 0(Cry)

z,y€Vars(¢)
A Arity, € o(Arity,)
veVars(d) A Label, € o(Label,)
A Ini C Child. A Outi, || Child:

1<i<MAX
5.4 DISTRIBUTION RULES
There are three types of choices that may have to be made when propagation alone is not sufficient
to resolve them automatically: what branch of a disjunction ¢; V ¢2 to select, in what dominance
relationship two variables z and y stand, and whether y is the ith child of . Thus we need three

distribution rule schemas. The first one allows us to pick a non-determined choice variable and
make a case distinction:

CmyEDlLﬂDQ — CmyEDl \Y CmyEDQ Dl,DQ#@

The second one allows us to pick a non-determined selector I, introduced when translating ¢ V ¢2
into (o1, 09)[I], and try each alternative:

Ie{1,2} — I=1V I=2

The third one is an instance of (d2) and allows us to pick a set variable Genesis, and an integer
tz1i] € G to decide whether or not z[i] = y holds:

Lo[i] € Genesisy V 1,5 & Genesisy

Completeness. For every solution (M7, a) of ¢ there is consistent solved form of [¢]. We do
not provide formal proof, however it should be clear that the constraints of our encoding are valid
in all tree structures, and that, given a solution (M7, «) of ¢, we can construct a solved form of
[#] simply by reading off the value for each variable.

Soundness. For every consistent solved form of [¢] there exists a corresponding solution (M7, a)
of ¢. In other words, propagation is strong enough to derive a contradiction whenever a description
is not satisfiable. To prove this, we should exhibit a procedure that constructs a solution (M7, a)
of ¢ from a consistent solved form [¢]. This result has not been established yet, but we are working
on an approach in the style of Duchier and Niehren (2000).

6 CONCLUSION

In this paper, we addressed the following open question: is it possible to give a constraint-based
treatment to the class of tree descriptions admitting all Boolean connectives? Is it possible to
devise a solver for this class that may still perform effective model elimination through constraint
propagation? We have shown that this is indeed the case.

We presented a new formalism for tree descriptions that combines the set operators formalism
of Duchier and Niehren (2000) with the feature tree logic of Smolka and Treinen (1994), and
extends them by additionally admitting disjunction and negation.

Then we showed that every tree description in our formalism can be transformed into a CSP
expressible as a constraint program, and thus solvable by contraint programming. We gave precise
propagation and distribution rules that we assume of a practical implementation. In particular,
we gave precise operational semantics to disjunctive propagators and selection propagators, thus
providing secure foundation for an important technical contribution: our treatment of disjunction
by reduction to the selection constraint.

Future work. We are currently working on formal proofs of completeness and soundness. We
also plan to develop a concrete implementation in Oz and perform an experimental evaluation of
the technique presented here.

Acknowledgments. We are greatful to Joachim Niehren. The present paper borrows and greatly
benefits from previous joint work with him.

REFERENCES

Backofen, R., Rogers, J., and Vijay-Shanker, K. (1995). A first-order axiomatization of the theory
of finite trees. Journal of Logic, Language, and Information, 4:5 39.

Blackburn, P.; Gardent, C., and Meyer-Viol, W. (1993). Talking about trees. In Proceedings of
the European Chapter of the Association of Computational Linguistics, Utrecht.

Dincbas, M., Van Hentenryck, P.; Simonis, H., Aggoun, A., Graf, T., and Berthier, F. (1988). The
constraint logic programming language CHIP. In Proceedings of the International Conference
on Fifth Generation Computer Systems FGCS-88, pages 693-702, Tokyo, Japan.

Duchier, D. (1999a). Axiomatizing dependency parsing using set constraints. In Sizth Meeting on
Mathematics of Language, pages 115-126, Orlando, Florida.

Duchier, D. (1999b). Set constraints in computational linguistics — solving tree descriptions. In
Workshop on Declarative Programming with Sets (DPS’99), pages 91-98.

Duchier, D. and Gardent, C. (1999). A constraint-based treatment of descriptions. In Int. Work-
shop on Computational Semantics, Tilburg.

Duchier, D. and Niehren, J. (2000). Dominance constraints with set operators. In Proceedings of
the First International Conference on Computational Logic (CL2000), LNCS. Springer.

Duchier, D. and Thater, S. (1999). Parsing with tree descriptions: a constraint-based approach. In
Int. Workshop on Natural Language Understanding and Logic Programming, Las Cruces, New
Mexico.

Egg, M., Niehren, J., Ruhrberg, P., and Xu, F. (1998). Constraints over lambda-structures in
semantic underspecification. In Joint Conf. COLING/ACL, pages 353 359.

Gardent, C. and Webber, B. (1998). Describing discourse semantics. In Proceedings of the 4th
TAG+ Workshop, Philadelphia.

Koller, A., Niehren, J., and Treinen, R. (2000). Dominance constraints: Algorithms and complex-
ity. In Logical Aspects of Comp. Linguistics 98. To appear in LNCS.

Marcus, M. (1987). Deterministic parsing and description theory. In Whitelock, P., Wood, M.,
Somers, H., Johnson, R., and Bennett, P., editors, Linguistic Theory and Computer Applica-
tions. Academic Press.

Marcus, M. P., Hindle, D., and Fleck, M. M. (1983). D-theory: Talking about talking about trees.
In 21st ACL, pages 129-136.

Mozart (1999). The Mozart Programming System http://www.mozart-oz.org/.

Miiller, T. and Miiller, M. (1997). Finite set constraints in Oz. In Bry, F., Freitag, B., and Seipel,
D., editors, 13. Workshop Logische Programmierung, pages 104 115, Technische Universitit
Miinchen.

Muskens, R. (1995). Order-Independence and Underspecification. In Groenendijk, J., editor, Ellip-
sis, Underspecification, Events and More in Dynamic Semantics. DYANA Deliverable R.2.2.C.

Rambow, O., Vijay-Shanker, K., and Weir, D. (1995). D-tree grammars. In Proceedings of ACL’95,
pages 151-158, MIT, Cambridge.

Rogers, J. and Vijay-Shanker, K. (1992). Reasoning with descriptions of trees. In Annual Meeting
of the Association for Comp. Linguistics (ACL).

Smolka, G. (1995). The Oz Programming Model. In van Leeuwen, J., editor, Computer Science
Today, pages 324-343. Springer-Verlag, Berlin.

Smolka, G. and Treinen, R. (1994). Records for logic programming. Journal of Logic Programming,
18(3):229 258.

Vijay-Shanker, K. (1992). Using descriptions of trees in a tree adjoining grammar. Computational
Linguistics, 18:481 518.

