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Abstract. In this paper we introduce a general framework for describing
the lexicon of a lexicalised grammar by means of elementary descriptive
fragments. The system described hereafter consists of two main com-
ponents: a control device aimed at controlling how fragments are to be
combined in order to describe meaningful lexical descriptions and a com-
position system aimed at resolving how elementary descriptions are to
be combined.

1 Introduction

This paper is concerned with the design of large-scale grammars for natural lan-
guage. It presents an alternative to the classical languages used for grammatical
representation such as patrii.

The need for a new language is motivated by the development of strongly
lexicalised grammars based on tree structures rather than feature structures,
and by the observation that, for tree based formalisms, lexical management with
lexical rules raises non trivial practical issues [1].

In this paper we revisit a framework – the metagrammar – designed in partic-
ular for the lexical representation of tree based syntactic systems. It is organised
around two central ideas: (1) a core grammar is described by elementary tree
fragments and (2) these fragments are combined by means of a control language
to produce an expanded grammar. Throughout the paper, we illustrate the fea-
tures of the framework using Tree Adjoining Grammar (TAG) [2] as a target
formalism.

The paper is structured as follows. First (Section 2) we introduce the key
ideas underlying grammatical representation taking patrii as an illustration.
We then provide the motivations underlying the design of our grammatical rep-
resentation framework. The core metagrammatical intuition: lexical representa-

tion by manipulating fragments made of tree descriptions is provided in (Section
3). The motivations concerning the set up of an appropriate tree representa-
tion language are provided in Section 4. The fragment manipulation language
is then developed in section 5. And finally, the computational treatment of our
description language is detailed in Section 6.

2 Lexical organisation

In this section we introduce the issue and the main ideas concerning lexical or-
ganisation of tree based syntactic systems. We begin by investigating the core



ideas developed in patrii then we highlight inadequacies of patrii for represent-
ing the lexicon of tree based syntactic systems such as Tree Adjoining Grammar.

An historical overview In patrii, one of the first proposal for grammatical rep-
resentation [3], lexical description roughly consists of specifying lexical entries
together with a subcategorisation frame such as in patrii:

love :

<cat> = v

<arg0 cat> = np

<arg1 cat> = np

where we specify that the verb love takes two arguments: a subject noun phrase

and an object noun phrase. This lexical entry, together with an appropriate
grammar, is used to constrain the set of sentences in which love may be inserted.
For instance this lexical entry is meant to express that love is used transitively
as in John loves Mary but not intransitively such as in John loves or John loves

to Mary.
patrii offers two devices to facilitate lexical description: templates and lexical

rules. Templates are described by [3] as macros, and permit us to easily state
that that love and write are transitive verbs by writing:

love :

transitiveVerb

write :

transitiveVerb

transitiveVerb :

<cat> = v

<arg0 cat> = np

<arg1 cat> = np

where transitiveVerb is a macro called in the descriptions of love and write.
On the other hand, lexical rules are used to describe multiple variants of verbs.
For instance, to express that a transitive verb such as love may be used in its
active or passive variant we may add the following lexical rule to our lexicon:

passive :

<out cat> = <in cat>

<out arg1 cat> = <in arg0 cat>

<out arg0 cat> = pp

This rule says that a new lexical entry out is to be built from an initial lexical
entry in where the category of out is identical to the category of in, the category
of the object becomes the category of the subject and that the subject category
now becomes prepositional phrase.

Lexical rules are meant to allow a dynamic expansion of related lexical vari-
ants. So for the verb love the application of the passive lexical rule to its base
entry generates a new, derived, passive lexical entry meaning that both active
and passive variants are licensed by the lexical entries.



Variants and improvements of this classical system have been (and are still)
used for describing the lexicon in other syntactic frameworks, e.g. hpsg[4]. What-
ever the differences, two leading ideas remain nowadays: lexical description aims
both at factoring out information (templates) and at expressing relationships
between variants of a single lexical unit (lexical rules).

Tree Adjoining Grammar: a case study Tree adjoining grammar (tag)1 is a tree
composition system aimed at describing natural language syntax [2] which is
strongly lexicalised. In other words, a tree adjoining grammar consists of a lexi-
con, the elementary trees, each associated to a lexical unit, and two operations
used for combining the lexical units: adjunction and substitution.

Following the conventions used in tag implementations such as xtag [5], we
work with tree schemata (or templates) such as these2:

S

N↓ V⋄ N↓

Jean voit Marie
John sees Mary

S

N↓ S

N↓ V⋄

Quelle fille Jean voit
Which girl John sees

N

N∗ S

N↓ V⋄ N↓

(Jean) qui voit Marie
(John) who sees Mary (1)

where the appropriate lexical word is inserted dynamically by the parser as a
child of the anchor (marked ⋄). The nodes depicted with an arrow (↓) are the
substitution nodes and those depicted with a star (⋆) are the foot nodes.

Strikingly, lexical organisation of strongly lexicalised syntactic systems often
try to provide alternative solutions to that of Shieber. The main reason is that
the amount and the variety of lexical units is much greater, therefore the number
of templates and lexical rules to be used is strongly increased. In the context of
the development of large grammars, this situation requires the grammar writer
to design complicated ordering schemes as illustrated by [1].

To overcome this, we take up an idea first introduced in [7] for Construction
Grammar. Roughly speaking they describe the lexicon using a dynamic process:
given a core lexicon, described manually, they build up an expanded lexicon by
combining elementary fragments of information.

Besides strong lexicalisation, setting up a system representing a tag lexicon
raises another problem, that of the structures used. In Construction Grammar,
[7] combine elementary fragments of information via feature structure unifica-
tion. When working with tag, however, one works with trees.

1 Strictly speaking, we mean here Lexicalised Tree Adjoining Grammar (ltag). Indeed,
the system is usually used in its lexicalised version[5].

2 The trees depicted in this paper are motivated by the French grammar of [6] who
provides linguistic justifications in particular for not using the VP category and for
using the category N at multiple bar levels instead of introducing the category NP
in French.



3 Introduction to the framework

In this section we sketch the idea of describing the lexicon by controlling com-
binations of elementary fragment descriptions.

This idea stems from the following observation: the design of a tag grammar
consists of describing trees made of elementary pieces of information (hereafter:
fragments). For instance the following tree is defined by combining a subtree rep-
resenting a subject another subtree representing an object and finally a subtree
representing the spine of the verbal tree:

CanonicalSubject ActiveVerb CanonicalObject

S

N↓ V
Jean . . .
John . . .

+

S

V⋄

voit
sees

+

S

V N↓

. . . Marie

. . . Mary

=

S

N↓ V⋄ N↓

Jean voit Marie
John sees Mary

Of course, we will also want a convenient means of expressing variants of the
above tree; for example, where the subject instead of being realised in canonical
position is realized as a questioned subject (wh) or a relative subject.

More generally while designing a grammar one wants to express general state-
ments for describing sets of trees: for instance, a transitive verb is made of a
subject, an object and a verbal active spine. In short we would like to write
something like:

TransitiveVerb = Subject ∧ ActiveVerb ∧ Object

where Subject and Object are shortcuts for describing sets of variants:

Subject = CanonicalSubject ∨ RelativeSubject

Object = CanonicalObject ∨ WhObject

and where CanonicalSubject, WhSubject . . . are defined as the actual fragments
of the grammar:

CanonicalSubject =
S

N↓ V
CanonicalObject =

S

V N↓

ActiveVerb =
S

V⋄

RelativeSubject =

N

N∗ S

N↓ V

WhObject =
S

N↓ S

Given the above definitions, a description such as TransitiveVerb is intended
to describe the following tree schemata depicted in (1)3. That is, each variant

3 The combination of relativised subject and a questioned object is rejected by the
principle of extraction uniqueness (See section 4).



description of the subject embedded in the Subject clause is combined with each
variant description of the object in the Object clause and the description in the
ActiveVerb clause.

As it stands, the representation system we have introduced so far requires
us to set up two components: first we investigate which language to use for
describing tree fragments and combining them (Section 4). Second we detail the
language which controls how fragments are to be combined (Section 5).

4 A language for describing tree fragments

In this section, we consider two questions: (1) how to conveniently describe
tree fragments, (2) how to flexibly constrain how such tree fragments may be
combined to form larger syntactic units. We first introduce a language of tree
descriptions, and then show how it can be generalized to a family of formal
languages parametrized by an arbitrary constraining decoration system that
further limits how elements can be combined.

The base language L. Let x, y, z . . . be node variables. We write ⊳ for immediate
dominance, ⊳∗ for its reflexive transitive closure (dominance), ≺ for immediate
precedence (or adjacency) and ≺+ for its transitive closure (strict precedence).
We let ℓ range over a set of node labels generally intended to capture the notion
of categories. A tree description φ has the following abstract syntax:

φ ::= x ⊳ y | x ⊳∗ y | x ≺ y | x ≺+ y | x : ℓ | φ ∧ φ (2)

L-descriptions are, as expected, interpreted over first-order structures of finite,
ordered, constructor trees. As usual, we limit our attention to minimal models.

Throughout the paper we use an intuitive graphical notation for represent-
ing tree descriptions. Though this notation is not sufficient to represent every
expression of the language, it nonetheless generally suffices for the kind of trees
typically used in natural language syntax. Thus, the description (D0) on the left
is graphically represented by the tree notation on the right:

D0 =
x ⊳∗ w ∧ x ⊳ y ∧ x ⊳ z

∧ y ≺+ z ∧ z ≺ w

∧ x : X ∧ y : Y ∧ z : Z ∧ w : W

(D0)
X

Y ≺+ Z W
(3)

where immediate dominance is represented by a solid line, dominance by a
dashed line, precedence by the symbol ≺+ and adjacency is left unmarked.

A parametric family of languages. It is possible to more flexibly control how tree
fragments may be combined by adding annotations to nodes together with stip-
ulations, called principles, for how these annotations restrict admissible models
and interpretations. In this manner, we arrive at the idea of a family of languages
L(C) parametrized by a set C of combination schemata.

In the remainder of this section we introduce three such principles: the col-
oration principle, a clitic ordering principle, and an extraction principle. These



principles provide an instantiation of L(C) that has been used for describing the
lexicon of a large Tree Adjoining Grammar for French.

We begin by discussing the coloration principle. It provides a convenient way
to constrain fragment combinations. Two alternatives have already been used in
the literature: the first one, L(∅) is used by Xia [8], the second one L(names) is
used by Candito [9]. We show that neither L(∅) nor L(names) is appropriate for
describing the lexicon of a French tag Grammar. We then introduce L(colors)
which we have used successfully for that purpose.

Language L(∅). This first instantiation of L(C) is used by [8]. This language
does not use any combination constraint. The combination schema C is thus
empty. Equipped with such a language we can independently describe fragments
such as these4:

S

NP↓ S

NP

ǫ

(D0)

S

NP↓ VP

V⋄ NP

(D1) (4)

where D0 describes a relative NP and D1 a transitive construction. Their com-
bination leads to the following two models:

S

NP↓ S

NP↓ VP

ǫ V⋄ NP

(M0)

S

NP↓ S

NP↓ VP

V⋄ NP

ǫ

(M1) (5)

However this language faces an expressivity limit since, for the purpose of lex-
ical organisation, linguists want to constrain combinations more precisely. For
instance, in the French Grammar the following fragment composition is badly
handled since:

S

V N↓ S

Cl↓ V⋄ C V⋄

qui
C est Jean qui mange

That is John who eats

(D0)

S

V ≺+ N↓

. . . la pomme

. . . the apple

(D1) (6)

4 These fragments and the related models are those used by F. Xia in the context of
the xtag English Grammar.



yields, among others, the following results:

S

V N↓ S

Cl↓ V⋄ C V⋄ N↓

qui

(M0)

S

V N↓ N↓ S

Cl↓ V⋄ C V⋄

qui

(M1)

S

V N↓ S

Cl↓ V⋄ C V⋄

qui

(M2)

(7)

where (D0) represents a cleft construction and (D1) a canonical object con-
struction. In such a case, only (M0) is normally deemed linguistically valid.(M1)
and (M2) represent cases where the cleft construction and the canonical object
construction have been mixed.

Language L(names). In her thesis, M.-H. Candito [9] introduces an instance
of L(C) that constrains combinations to avoid cases such as the one outlined
above. The combination schema C is as follows: (1) a finite set of names where
each node of a tree description is associated with one name and (2) Two nodes
sharing the same name are to be interpreted as denoting the same entity, hence
when merging descriptions, only the nodes with the same names are merged. In
other words, a model is valid if (1) every node has exactly one name and (2)
there is at most one node with a given name5.

Sextr

Vvbar N↓arg-subj Sm

Cl↓ceCl V⋄cleftV Ccomp V⋄anchor

quicomplex

(D0)
Sm

Vanchor ≺+ N↓arg-obj

(D1) (8)

The only model resulting from merging D0 with D1 in (8) is only M0 depicted
in (7). In such a case, L(names) corrects the shortcomings of L(∅): here, naming
ensures that the canonical argument (D1) cannot be realised within the cleft
argument. However, during the development of a non-trivial grammar using this
language, it turned out that L(names) was eventually unsatisfactory for two
main reasons:

The first is practical and rather obvious: the grammar writer has to manage
naming by hand, and must handle the issues arising from name conflicts.

The second is more subtle: the grammar writer may need to use the same
tree fragment more than once in the same description. For example, such an

5 To be complete, M.-H. Candito uses additional operations to map multiple names
onto a single node. However this does not change the content of our present discus-
sion.



occasion arises in the case of a double PP complementation:

(D0)
PPpp

P⋄prep N↓pparg

(M0)

S

N V⋄ PP PP

P⋄1 N↓ P⋄2 N↓

Jean parle de Marie à Paul
John tells Paul about Mary

(9)

where one cannot use the fragment (D0) more than once to yield M0 since
identical names must denote identically the same nodes.

A language with coloured nodes L(colours). We used this language in the devel-
opment of a large scale French tag patterned after the analysis of [6].

L(colours) was designed to overcome the shortcomings of languages L(∅) and
L(names). We want (1) to be able to constrain the way fragments combine more
precisely than with language L(∅) and (2) we want to eschew the explicit naming
management of language L(names).

To do this, the combination schema C used in L(colours) decorates all nodes
with colours: black (•b), white (◦w), red (•r) or failure (⊥). The additional
condition on model admissibility is that each node must be either red or black.

When combining tree descriptions, nodes are merged and their colours com-
bined. The table to the right specifies the result of combining two
colours. For instance, combining a white node with a black node
yields a black node; combining a white node with a red node is
illegal and produces a failure. As a matter of illustration, the fol-
lowing colour enriched descriptions yield only the desired model

•b •r ◦w ⊥

•b ⊥ ⊥ •b ⊥

•r ⊥ ⊥ ⊥ ⊥

◦w •b ⊥ ◦w ⊥

⊥ ⊥ ⊥ ⊥ ⊥

(M0) for example number (7)6

S•r

V•r N↓
•r S•b

Cl↓
•r

V⋄•r C•r V⋄•b

qui
•r

(D0)
S◦w

V◦w ≺+ N↓
•r

(D1) (10)

Intuitively the colours have a semantic similar to that of ressources and require-
ments systems such as Interaction Grammars [10]. A tree is well formed if it
is saturated. The colours representing saturation are red or black the colour
representing non saturation is white and we have a colour representing failure.

6 We let the reader figure out how to express double PP complementation (9). It
requires the use of a description similar to (D1) depicted here but patterned for
describing a prepositional phrase.



Though L(colours) turns out to be satisfactory for designing a large scale
French tag, it might not be adequate for other frameworks or languages.7 How-
ever, alternative instances of L(C) might be suitable. For example a combination
schema based on polarities seems a very reasonable foundation for interaction
grammars [10] and even for polarity based unification grammars [11].

Besides node-colouring we introduce a clitic ordering principle. So far, the
current system assumes that one can describe grammatical information by com-
bining fragments of local information. There are however cases where the local
fragments interact when realised together. Following the intuition given in sec-
tion 3 we express the fact that a transitive verb is made of a subject, an object
and a verb in the active form:

TransitiveVerb = Subject ∧ ActiveVerb ∧ Object (11)

Subject = CanonicalSubject ∨CliticSubject (12)

Object = CanonicalObject ∨ CliticObject (13)

Clitic ordering According to the subject and object clauses, it is the case that
among others, a description of a transitive verb is made of the composition of a
clitic subject and a clitic object8 whose definitions are as follows:

CliticSubject →

V

Cl↓[case = nom] ≺+ V
CliticObject →

V

Cl↓[case = acc] ≺+ V
(14)

When realized together, none of the clitic descriptions say how these clitics
are ordered relative to each other; therefore a merge of these two descriptions
yields the following two models:

(M0)
V

Cl↓[cse=nom] Cl↓[cse=acc] V⋄

(M1)
V

Cl↓[cse=acc] Cl↓[cse=nom] V⋄

where M1 is an undesirable solution in French.
French clitic ordering is thus handled by a principle of tree wellformedness:

sibling nodes of category Clitic have to be ordered according to the respective

order of their ranking property. So, if we take the case feature of descriptions
(14) to be the ranking property, and that the order defined over the property
constrains (inter alia) nominative to precede accusative then in every tree where
both a nominative and an accusative clitic are realised, the principle ensures
that only M0 is a valid model.

7 The current framework is not restricted to the specific case of Tree Adjoining Gram-
mars. It should be straightforward to adapt it to other cases of tree based syntactic
systems such as Interaction Grammars.

8 In French, clitics are small unstressed pronominal particles realised next to the verb
which are ordered according to a fixed order. The problem of clitic ordering is a well
known case of such an interaction. It was already described as problematic in the
generative literature in the early 70’s [12].



Extraction uniqueness Another principle presented hereafter (Section 6) is that
of extraction uniqueness. We assume that, in French, only one argument of a
given predicate may be extracted9. Following this, the extraction principle is
responsible for ruling out tree models where more than one node would be as-
sociated with the property of extraction.

Two other principles have actually been used in the implementation of the
French Grammar: a principle for ensuring clitic uniqueness and a principle for
expressing island constraints10. The expression of an additional principle of func-
tional uniqueness is currently under investigation.

Like the node-colouring principle, these principles are related to a specific
language, French, or to a specific target formalism,Tag. Therefore, principles are
additional parametric constraints that can be used or not for constraining the
generated models. For dealing with other languages or other target formalisms,
one could extend the library of principles presented here to fit the particular
needs.

5 Controlling fragment combinations

In Section 3 we identified a number of desirable requirements for a metagrammar
language: (1) it should support disjunctions to make it easy to express diathesis
(such as active, passive), (2) it should support conjunction so that complex
descriptions can be assembled by combining several simpler ones, (3) it should
support abstraction so that expressions can be named to facilitate reuse and
avoid redundancy.

In this section, we introduce the language LC to control how fragments can
be combined in our proposed lexical representation framework, and show how
LC satisfies all the requirements above.

Clause ::= Name → Goal (15)

Goal ::= Goal ∧ Goal | Goal ∨ Goal | φ | Name (16)

This language allows us to manipulate fragment descriptions (φ), to express the
composition of statements (Goal ∧ Goal), to express nondeterministic choices
(Goal∨Goal), and finally to name complex statements for reuse (Name → Goal).

The main motivation for the control language is to support the combination
and reuse of tree fragments. Instead of directly manipulating tree descriptions,
the language allows us to define abstractions over (possibly complex) statements.
Thus, the clause:

CanonicalSubject →
S

N↓ V
(17)

9 Actually, cases of double extraction have been discovered in French but they are so
rare and so unnatural that they are generally ruled out of grammatical implemen-
tations.

10 This principle is related to the way one formalises island constraints in tag [13].



defines the abstraction CanonicalSubject to stand for a tree description which
can be subsequently reused via this new name, while the clause:

TransitiveVerbActive → Subject ∧ ActiveVerb ∧Object (18)

states that a lexical tree for a transitive verb is formed from the composition of
the descriptions of a subject, of an object and of an active verb.

Disjunction is interpreted as an nondeterministic choice: each of the alter-
natives describes one of the ways in which the abstraction can be realized. As
illustrated by lexical rules as used e.g. in patrii [3], a system of lexical represen-
tation needs to be equipped with a way to express relationships between lexical
items along the lines of a passive lexical rule relating an active and a passive
lexical entry. In our approach, similar relations are expressed with disjunctions.
Thus the following statement expresses the fact that various realisations of the
subject are equivalent:

Subject → CanonicalSubject

∨ WhSubject

∨ RelativeSubject

∨ CliticSubject

(19)

As surely has become evident, the language presented in this section has
very much the flavor of a logic programming language. More precisely, it can
be understood as an instance of the Definite Clause Grammar (dcg) paradigm.
dcgs were originally conceived to express the production rules of context free
grammars: they characterised the sentences of a language, i.e., all the possible
ways words could be combined into grammatical sequences by concatenation.
Here, instead of words, we have tree fragments, and instead of concatenation we
have a composition operation. In other words, LC allows us to write the grammar
of a tree grammar, which surely justifies the name metagrammar.

6 A constraint satisfaction approach

As mentioned earlier, the control language LC of Section 5 can be regarded as
an instance of the Definite Clause Grammar (dcg) paradigm. While dcgs are
most often used to describe sentences, i.e. sequences of words, here, we apply
them to the description of formulae in language L(colors), i.e. conjunctions of
colored tree fragments.

A consequence of regarding a metagrammar, i.e. a program expressed in
language LC , as a dcg is that it can be reduced to a logic program and executed
as such using well-known techniques. What remains to be explained is how, from
a conjunction of colored tree fragments, we derive all complete trees that can be
formed by combining these fragments.

For this task, we propose a constraint-based approach that builds upon and
extends the treatment of dominance constraints of Duchier and Niehren [14].
We begin by slightly generalizing the language introduced in Section 4 to make



it more directly amenable to the treatment described in [14], then we show
how we can enumerate the minimal models of a description in that language by
translating this description into a system of constraints involving set variables,
and solving that instead.

Tree description language. In order to account for the idea that each node of
a description is colored either red, black or white, we let x, y, z range over 3
disjoint sets of node variables: Vr, Vb, Vw. We write ⊳ for immediate dominance,
⊳+ for its transitive closure, i.e. strict dominance, ≺ for immediate precedence,
and ≺+ for its transitive closure, i.e. strict precedence. We let ℓ range over a set
of node labels. A description φ has the following abstract syntax:

φ ::= x R y | x ⊳ y | x ≺ y | x : ℓ | φ ∧ φ (20)

where R ⊆ {=, ⊳+, ⊲+,≺+,≻+} is a set of relation symbols whose intended
interpretation is disjunctive; thus x {=, ⊳+} y is more conventionally written
x ⊳∗ y.

In [14], the abstract syntax permitted a literal of the form x : ℓ(x1, . . . , xn)
that combined (1) an assignment of the label ℓ to x, (2) immediate dominance
literals x⊳xi, (3) immediate precedence literals xi ≺xi+1, (4) an arity constraint
stipulating that x has exactly n children. Here we prefer a finer granularity and
admit literals for immediate dominance and immediate precedence. For simplic-
ity of presentation we omit an arity constraint literal.

Enumerating minimal models. We now describe how to convert a description
into a constraint system that uses set constraints and such that the solutions
of the latter are in bijection with the minimal models of the former. Such a
constraint system can be realized and solved efficiently using the constraint
programming support of Mozart/Oz. Our conversion follows the presentation
of [14] very closely.

The general intuition is that a literal x R y should be represented by a
membership constraint y ∈ R(x) where R(x) is a set variable denoting all the
nodes that stand in R relationship with x. We write V φ for the set of variables
occurring in φ. Our encoding consists of 3 parts:

[[φ]] = ∧
x∈V φ

A1(x) ∧
x,y∈V φ

A2(x, y) ∧ B[[φ]] (21)

A1(·) introduces a node representation per variable, A2(·, ·) axiomatises the tree-
ness of the relations between these nodes, and B(·) encodes the problem-specific
restrictions imposed by φ.

6.1 Representation

When observed from a specific node x, the nodes of a solution
tree (a model), and hence the variables which they interpret, are

Eq

Up

Down

Left

Right

partitioned into 5 regions: the node denoted by x itself, all nodes below, all



nodes above, all nodes to the left, and all nodes to the right. The main idea
is to introduce corresponding set variables Eqx, Upx, Downx, Leftx, Rightx to
encode the sets of variables that are interpreted by nodes in the model which
are respectively equal, above, below, left, and right of the node interpreting x.
First, we state that x is one of the variables interpreted by the corresponding
node in the model:

x ∈ Eqx (22)

Then, as explained above, we have the following fundamental partition equation:

V φ = Eqx ⊎ Upx ⊎ Downx ⊎ Leftx ⊎ Rightx (23)

where ⊎ denotes disjoint union. We can (and in fact must, as proven in [14])
improve propagation by introducing shared intermediate results Side, Eqdown,
Equp, Eqdownleft, Eqdownright.

Sidex = Leftx ⊎ Rightx Eqdownleftx = Eqdownx ⊎ Leftx (24)

Eqdownx = Eqx ⊎Downx Eqdownrightx = Eqdownx ⊎Rightx (25)

Equpx = Eqx ⊎Upx (26)

which must all be related to V φ:

V φ = Eqdownx ⊎ Upx ⊎ Sidex V φ = Eqdownleftx ⊎ Upx ⊎ Rightx (27)

V φ = Equpx ⊎ Downx ⊎ Sidex V φ = Eqdownrightx ⊎ Downx ⊎ Leftx (28)

We define A1(x) as the conjunction of the constraints introduced above.

6.2 Wellformedness

Posing Rel = {=, ⊳+, ⊲+,≺+,≻+}, in a tree, the relationship that obtains be-
tween the nodes denoted by x and y must be one in Rel: the options are mutually
exclusive. We introduce a variable Cxy, called a choice variable, to explicitly rep-
resent it and contribute a well-formedness clause A3[[x r y]] for each r ∈ Rel.

A2(x, y) = Cxy ∈ Rel ∧ ∧{A3[[x r y]] | r ∈ Rel} (29)

A3[[x r y]] ≡ D[[x r y]] ∧ Cxy = r ∨ Cxy 6= r ∧ D[[x ¬r y]] (30)

For each r ∈ Rel, it remains to define D[[x r y]] and D[[x ¬r y]] encoding respec-
tively the relationships xr y and x¬r y by set constraints on the representations
of x and y.

D[[x = y]] = Eqx = Eqy ∧ Upx = Upy ∧ . . . (31)

D[[x ¬= y]] = Eqx ‖ Eqy (32)

D[[x ⊳+ y]] = Eqdowny ⊆ Downx ∧ Equpx ⊆ Upy ∧
Leftx ⊆ Lefty ∧ Rightx ⊆ Righty

(33)

D[[x ¬⊳+ y]] = Eqx ‖ Upy ∧ Downx ‖ Eqy (34)

D[[x ≺+ y]] = Eqdownleftx ⊆ Lefty ∧ Eqdownrighty ⊆ Rightx (35)

D[[x ¬≺+ y]] = Eqx ‖ Lefty ∧ Rightx ‖ Eqy (36)

where ‖ represents disjointness.



6.3 Problem-specific constraints

The third part B[[φ]] of the translation forms the problem-specific constraints
that further restrict the admissibility of well-formed solutions and only accepts
those which are models of φ. The translation is given by case analysis following
the abstract syntax of φ:

B[[φ ∧ φ′]] = B[[φ]] ∧ B[[φ′]] (37)

A rather nice consequence of introducing choice variables Cxy is that any domi-
nance constraint x R y can be translated as a restriction on the possible values
of Cxy. For example x ⊳∗ y can be encoded as Cxy ∈ {=, ⊳+}. More generally:

B[[x R y]] = Cxy ∈ R (38)

A labelling literal x : ℓ simply restricts the label associated with variable x:

B[[x : ℓ]] = Labelx = ℓ (39)

An immediate dominance literal x ⊳ y not only states that x ⊳+ y but also that
there are no intervening nodes on the spine that connects the two nodes:

B[[x ⊳ y]] = Cxy = ⊳+ ∧ Upy = Equpx (40)

An immediate precedence literal x≺ y not only states that x≺+ y but also that
there are no intervening nodes horizontally between them:

B[[x ≺ y]] = Cxy = ≺+ ∧ Eqdownleftx = Lefty ∧ Rightx = Eqdownrighty (41)

6.4 Coloring

While distinguishing left and right is a small incremental improvement over
[14], the treatment of colors is a rather more interesting extension. The main
question is: which nodes can or must be identified with which other nodes? Red
nodes cannot be identified with any other nodes. Black nodes may be identified
with white nodes. Each white node must be identified with a black node. As a
consequence, for every node, there is a unique red or black node with which it
is identified. We introduce the (integer) variable RBx to denote the red or black
node with which x is identified.

For a red node, x is identified only with itself:

x ∈ Vr ⇒ RBx = x ∧ Eqx = {x} (42)

For a black node, the constraint is a little relaxed (it may also be indentified
with white nodes):

x ∈ Vb ⇒ RBx = x (43)



Posing V
φ
b = V φ ∩ Vb, each white node must be identified with a black node:

x ∈ Vw ⇒ RBx ∈ V φ
b (44)

Additionally, it is necessary to ensure that RBx = RBy iff x and y have been iden-
tified. We can achieve this simply by modifiying the definition (32) of D[[x ¬= y]]
as follows:

D[[x ¬= y]] = Eqx ‖ Eqy ∧ RBx 6= RBy (45)

6.5 Extraction Principle

As an illustration of how the framework presented so far can be extended with
linguistically motivated principles to further constrain the admissible models,
we describe now what we have dubbed the extraction principle.

The description language is (somehow) extended to make it possible to mark
certain nodes of a description as representing an extraction. The extraction prin-
ciple then makes the additional stipulation that, to be admissible, a model must
contain at most one node marked as extracted.

Let V
φ
xtr be the subset of V φ of those node variables marked as extracted.

We introduce the new boolean variable Extractedx to indicate whether the node
denoted by x is extracted:

Extractedx = Eqx ∩ V φ
xtr 6= ∅ (46)

Posing V
φ
rb = V φ ∩ (Vr ∪ Vb), and freely identifying the boolean values false

and true respectively with the integers 0 and 1, the extraction principle can be
enforced with the following constraint:

∑

x∈V
φ
rb

Extractedx < 2 (47)

7 Conclusion

This paper introduces a core abstract framework for representing grammati-
cal information of tree based syntactic systems. Grammatical representation is
organised around two central ideas: (1) the lexicon is described by means of el-
ementary tree fragments that can be combined. (2) Fragment combinations are
handled by a control language, which turns out to be an instance of a dcg.

The framework described here, generalises the tag specific approaches of [8,
9]. We have provided a parametric family of languages for tree composition as
well as constraints on tree wellformedness.

Besides the non tag specific tree composition language, it mostly differs
from the tag instantiations in that it introduces a control language allowing the
explicit formulation of fragment composition and of variants of related lexical



entries. The two existing systems of [8] and [9] rely mostly on an algorithmic de-
vice for expressing variants, namely a crossing algorithm for [9], and an external
module of lexical rules for [8].

The introduction of the control language (1) avoids the need for different
modules as in [8] and (2) introduces more flexibility in expressing variants thus
eliminating the ”shadow” classes that turn out to be needed in [9].

The framework presented here has been fully implemented [15]. It has led
to the actual development of a large French tag based on [6] which has been
used to test its adequacy with a task of real scale grammatical development.
The resulting grammar covers most of the phenomena related to the syntax of
French verbs.
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