
Research Report

ISG-RR-1995-6

CLP Techniques For Channel Routing

Denys Duchier
Serge Le Huitouze

23 November 1995

Copyright c Intelligent Software Group, Simon Fraser University.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research pur-
poses provided that all such whole or partial copies includethe following: a notice that such copying is by
permission of the Intelligent Software Group (ISG) of SimonFraser University (SFU), in Burnaby, British
Columbia (Canada); an acknowledgement of the authors and individual contributors to the work; and all ap-
plicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to the Intelligent Software Group. All rights reserved.

ii

Contents

1 Introduction 1

2 Problem Description 1

3 Problem Formalization 1

4 �-Prolog Solution 2

5 Life Solution 3

6 CLP(FD) Solution 4
6.1 Solution with two variables per net : 5
6.2 Solution with one variable per net : 7
6.3 Another application of finite domain variables : 7

7 Results 8
7.1 Version with two variables per net : 8
7.2 Version with one variable per net : 10

8 Conclusion 10

iii

iv

CLP Techniques For Channel Routing 1

1 Introduction

Channel routing is an important problem for the automated layout of integrated cicuits. In [13], Dr. Neng-Fa
Zhou claims that traditional CLP languages, such asCHIP, are ill-suited to the task, and that multi-layer chan-
nel routing problems are difficult to solve with finite domainvariables ranging over integers. This assertion
peaked our interest since it ran counter to our intuition. Zhou describes a technique for explicit management
of finite domains using�-prolog’s state tables, and argues for its superior efficiency.

In this report, we present two approaches: one inLIFE [1] based on residuations, and one inCLP(FD)
based on finite domains. They are both quite elegant and simpler to write and understand than Zhou’s�-
PROLOGversion. Furthermore, theCLP(FD) program is as performant as Zhou’s version.

2 Problem Description1
The channelconsists of a rectlinear grid of rows (akatracks) and columns. The grid points along the top
and bottom tracks are calledterminals; they are numbered from1 to n according to the column in which
they lie. Anet is a set of terminals which must be interconnected. A terminal can be in at most one net. By
convention, we reject the degenerate cases of empty and singleton nets: a net must have at least 2 terminals.

How the problem can be solved further depends on the wiring model; in particular, it depends on the
number of layers available. In the Manhattan routing model,2 layers are available: all horizontal wires go in
one layer and all vertical wires in the other; thus wires can cross, but they cannot overlap.

We also impose the “no dogleg” restriction. This means that the wiring of a net contains at most one
horizontal segment to which all the net’s vertical segmentsare connected.

Finally, we will allowk pairs of layers to be used as described above, so that a net maybe placed on any
one pair.

As a matter of convenience, we will say “layer” instead of “pair of layers,” and the number of tracks will
not include the top and bottom tracks because we make the further assumption that these two tracks can’t be
used for (horizontal) wiring.

3 Problem Formalization

A net will be implemented by a wiring consisting of one horizontal segment spanning the width from the
net’s letfmost terminal to its rightmost terminal, and one vertical segment per terminal connecting it to the
horizontal segment. Our only constraint is that wires goingin the same direction should not overlap. This
can only happen when 2 nets’ horizontal extents intersect. In that case, the horizontal segments cannot be
laid on the same track: either they must be on different layers, or on the same layer but on different tracks.
Furthermore, vertical segments should not overlap either:this can only happen when one net includes top
terminali and the other net includes bottom terminali. To prevent overlap of these vertical segments, either
the nets must be laid on different layers, or the net with top terminali must be laid on a track above that of
the net with bottom terminali.

Note that, when the horizontal extents of two nets overlap but they do not share a column, then they must
be laid on different tracks, but there is no ordering constraint between these tracks.

Let us write� for a net,�:t (resp.�:b) for the set of indices of top (resp. bottom) terminals in net�. Let�:e be the extent of net�, i.e. the interval[k1; k2] wherek1 is the minimum index of the terminals in� andk2
is the maximum.1This section is endebted to the excellent description of channel routing in [4].

Research Report ISG-RR-1995-6

2 Denys Duchier and Serge Le Huitouze

Different Tracks. When two nets�1 and�2 have overlapping extents, they must be placed on different
tracks, which we write�1 6�T �2: �1:e \ �2:e 6= ;) �1 6�T �2
Ordered Tracks. When two nets have terminals in the same column, either they must be placed on different
layers or the net�1 with the bottom terminal must be placed below the net�2 with the top terminal. We write�1 � �2: �1:b \ �2:t 6= ;) �1 � �2
Different Layers. When two nets must simultaneously satisfy incompatible ordering constraints, they must
be placed on different layers, which we write�1 6�L �2:�1 � �2 ^ �2 � �1) �1 6�L �2

A solution� in n layers andm tracks is a set of elements� : hi; ji assigning a layer number1 � i � n
and a track number1 � j � m to each net, and such that it respects all constraints on non-overlap:

Different Tracks. � satisfies�1 6�T �2 iff �1 : hi1; j1i 2 � and�2 : hi2; j2i 2 � andi1 6= i2 or j1 6= j2.
Ordered Tracks. � satisfies�2 � �1 iff i1 6= i2 or j2 < j1.

Different Layers. � satisfies�1 6�L �2 iff i1 6= i2.

4 �-Prolog Solution

Zhou presents a solution that takes advantage of�-prolog’s support forstate tables, i.e. “relations in which
each tuple is given a truth valuetrueor false.” He treats the problem as a CSP where the domains of variables
are represented by a state table whose triples are all combinations of nets, layers and tracks. A state table can
also be regarded as a multidimensional array of boolean values indexed by atomic terms.

Creation. The goalbt(p(X1,...,Xn),S) creates a state tablep with n dimensions, where each di-
mension is specified by the rangeXi, i.e. a list of atoms denoting the legal indices on the ith dimension, and
S is a boolean indicating the initial state of the entries. A range of integers can also be writteni::j.

For examplebt(p1([a,b,c],1..4),true) creates a3� 4 array, with each entry initiallytrue.
The first dimension is accessed by eithera, b or c, and the second one by either1, 2, 3 or 4.

Modification. A state table can be modified using primitivesset_true andset_false. For example,
set_false(p1(a,2)) will set entryp1(a,2) to false. These primitives also accepttuple patterns
as arguments, i.e. tuples where the first few arguments are atomic values (or intervals) and the remaining
arguments are distinct variables; all entries matching thepattern will be modified. If a state table is regarded
as a discriminating tree, invokingset_false prunes an entire subtree. Modifications are undone on back-
tracking.

Simon Fraser University Intelligent Software Group

CLP Techniques For Channel Routing 3

Access. The goalselect(p1(a,X)) will non-deterministically enumerate upon backtracking all pos-
sible values ofX for which table entryp1(a,X) is true. The goalcount(p1(a,_),C)will instantiateC
to the number of tuplesp1(a,X) which are true in tablep1 (3 in our example).

Zhou’s solution uses a state tabledomain(Net,Layer,Track) to represent the possible assignments
that are still valid for the remaining nets. He proceeds witha traditional, heuristically guided, enumeration
of the nets together with the propagation of constraints (here the update of the state tabledomain) after
each instantiation. Thus propagation performs forward checking by updating the domains of the remaining
variables.

Once a netN has been chosen, enumeration of its domain is simply achieved by the goalselect(domain(N,L,T)).
Corresponding updates must maintain the non-overlap constraints. Suppose we have just selecteddomain(Ni,Li,Ti):

Different Tracks. If Ni andNjmust be on different tracks, we simply executeset_false(domain(Nj,Li,Ti)),
thus eliminating the pairhLi,Tii from the domain ofNj.

Ordered Tracks. If Ni must be aboveNj, we correspondingly forbid tracksTi and above on layerLi for
Nj by executingset_false(domain(Nj,Li,Ti..M))whereM is the number of tracks. IfNi must
be belowNj, we eliminate tracks1 to Ti instead withset_false(domain(Nj,Li,1..Ti)).

Different Layers. If Ni andNj must be on different layers, we simply remove all entries on layerLi from
the domain ofNj: set_false(domain(Nj,Li,_)).

Zhou represents the set of non-overlap constraints by two graphs, also implemented by state tables: a
directedvertical constraint graphGv capturing the “ordered tracks” constraint, and an undirectedhorizontal
constraint graphGh capturing the “different tracks” constraint. There is an edge from�1 to �2 in Gv iff�2 � �1. There is an edge between�1 and�2 in Gh iff �1 6�T �2. To avoid unnecessary propagations, these
graphs are also updated: each time a net is selected, corresponding constraints are looked up in these graphs
and then deleted.

Some heuristics are based on the in/out degrees of nodes inGv andGh, thus measuring the number of
constraints in which a particular node is involved. In Zhou’s solution, degrees are easily computed by the
count primitive. The depth of nodes inGv is also used: Zhou’s implementation requires that there be no
cycles in the graph; ours lifts this limitation by collapsing cycles. In both implementations, a node’s depth
is computed statically in the original constraint graphGv and is not updated to reflect the evolving topology
when nodes are deleted fromGv during labeling.

5 Life Solution

In LIFE [1], nets are represented as -terms; each has alayer and atrack feature. Our solution consists
in, first posting constraints that residuate on these features, and then using a heuristic method for selecting
a net and assigning a layer and a track to it: as soon as these net’s features are instantiated, all suspended
constraints on them are automatically reactivated. This isvery much like “test and generate.”

In LIFE, predicates are called by unification and functions by matching: i.e. a function call suspends until
it can be proven that the actual arguments entail or disentail the formal argument patterns [2]. Furthermore,
arithmetic comparison primitives all suspend until their arguments are refined to actual numbers. We take
advantage of these facilities to express and post constraints that will wait until sufficient information is known
in order to make a decision.

Research Report ISG-RR-1995-6

4 Denys Duchier and Serge Le Huitouze

Different Tracks. We ensure that two nets are laid on different tracks by posting adiff constraint which
waits until either the 2 nets are known to be on the same layer,in which case it posts the additional constraint
that their tracks must be distinct, or they are known to be on different layers, in which case it just succeeds:

different_tracks(Net1,Net2) :- diff(Net1.layer,Net2.layer,
Net1.track,Net2.track).

diff(Layer,Layer,Track1,Track2) -> Track1 =\= Track2.
diff -> succeed.

Ordered Tracks. We ensure that two nets are laid on tracks that satisfy a particular order relation by posting
anorder constraint which waits until either the 2 nets are known to beon the same layer, in which case it
posts the additional constraint that the tracks must be in a specific order, or they are known to be on different
layers, in which case it just succeeds:

ordered_tracks(Net1,Net2) :- order(Net1.layer,Net2.layer,
Net1.track,Net2.track).

order(Layer,Layer,Track1,Track2) -> Track1 < Track2.
order -> succeed.

Different Layers. When two nets must satisfy incompatible ordering constraints, instead of postingorder
constraints, we just make sure that they are laid on different layers:

different_layers(Net1,Net2) :- Net1.layer =\= Net2.layer.

The LIFE version was a preliminary investigation to afford us a better understanding of the problem. It
demonstrates how a language with residuations makes it easyto express and enforce constraints succinctly
and elegantly. Unfortunately, theLIFE interpreter is not very performant and timings are not competitive.

6 CLP(FD) Solution

CLP(FD) [5, 6] is a Constraint Logic Programming language where constraints apply to finite domain vari-
ables ranging over integers. The basic constraint isX in R, stating that the (finite domain) variableX must
always be compatible with the rangeR, which means that the possible values thatX can take must belong to
the set represented byR.

A range can be a constant range (e.g.1..10). It can also be what is called anindexical range, involving
the values and/or limits of other finite domain variables. For example, the rangemin(Y)..max(Z) repre-
sents the set of all integers between the minimum value in thedomain ofY and the maximum value in the
domain ofZ.

A important requirement on ranges is that they must be negatively monotonic, that is, additional con-
straints can only make the domains smaller. It follows that ranges likemax(Y)..min(Z) are forbidden:
constraining variableY would eventually decrease its possible maximum value, thusincreasing the above
range (the same reasoning applies toZ too in this example).

Other indexical ranges aredom(V) denoting the domain of a finite domain variable, andval(V), de-
noting the value of a finite domain variable; the latter is only meaningful whenV becomes instantiated, thus
a constraint involvingval(V) only takes effect when the domain ofV has been reduced to a single integer.

Simon Fraser University Intelligent Software Group

CLP Techniques For Channel Routing 5

Indexical ranges are very important inCLP(FD): they determine how constraints propagate whenever
ranges change.

A little example might provide some insight on how this works:

rel1(X,Y) :-
X in min(Y)+3..max(Y)+3,
Y in min(X)-3..max(X)-3.

rel2(X,Y) :-
X in dom(Y)+3,
Y in dom(X)-3.

rel3(X,Y) :-
X in {val(Y)+3},
Y in {val(X)-3}.

These three predicates almost state the same constraint, namelyX = Y+3. They only differ in the amount
of propagation which is performed when the domains ofX andY are updated.

SupposeX andY have current domain1..10. Then execution ofrel1(X,Y) constrains the domain of
X to 4..10 and the domain ofY to 1..7.

Further statingX in -{5}2 results inX’s domain being reduced to{4}:6..10, but no modification
of Y’s domain (minimum and maximum values forX, namely4 and10 have not been changed).

On the other hand, usingrel2 instead would result inY’s domain being reduced to{1}:3..7.
Finally, usingrel3 instead,X’s andY’s initial domain would remain unchanged (1..10) after execution

of rel3(X,Y) and the subsequent constraintX in -{5}would not affectY’s domain. Propagation would
only take place whenX (resp.Y) is instantiated to a particular integer, leading to instantiatingY (resp.X) to
integer valueX-3 (resp.Y+3).

To summarize, indexical constraints implement the following propagations:� forward checking, withval(V),� full lookahead, withdom(V),� partial lookahead, withmin(V) andmax(V).

Moreover, it is possible to mix different propagation schemes in a single range:X in min(Y)..{val(Z)}
performs partial lookahead onY and forward checking onZ (this example is for illustration purposes only
and should not be confused with good programming style!).

6.1 Solution with two variables per net

CLP(FD) is very well suited for solving finite domain CSP problems, provided you can express your con-
straints in terms of indexical ranges. If so, you can simply post all your constraints and then invoke an
appropriatelabelingprocedure. As we shall see, the channel routing problem can be easily coded using finite
domain constraints.

Our first solution is an almost direct encoding of the mathematical formulation: let’s assume each netNi
is represented by two finite domain variablesLi andTi, denoting its layer and track number.2Range�r denotes the complement of ranger.

Research Report ISG-RR-1995-6

6 Denys Duchier and Serge Le Huitouze

Different Layers. This constraint can be simply enforced by the library call’x<>y’/2, which is imple-
mented by forward checkable constraints:

different_layers(L1,T1,L2,T2,NbT) :- ’x<>y’(L1,L2).

’x<>y’(X,Y) :- X in -{val(Y)}, Y in -{val(X)}.

The effect will be to suppressX’s (resp.Y’s) value fromY’s (resp.X’s) domain as soon as it is instantiated to
a particular integer.

The two other constraints are a littlebit trickier because they involve a disjunction(recall the mathematical
definition): either the two layers are different or some relation holds between the two tracks. It is well known
that some disjunctions can be represented by addition. We tried to apply this idea to our problem.

Different Tracks. If Ti andTj are the finite domain variables representing the tracks in question, the idea
is to enforceTj + �ij 6= Ti where�ij is 0 when the layers are equal and is a large number (bigger than
the number of possible tracks) when the tracks are different(thus causing the constraint to be necessarily
satisfied).

The challenge is to express�ij in terms of indexical ranges: we used the absolute difference between the
layers, scaled by the maximum number of tracks. Also, instead of just computing�ij , we computeTj + �ij .
We used a definition similar to the’|x-y|=z’/3 library call. The idea is to consider two cases: either
x is smaller thany or the other way around. Depending on the case, we are interested in eithery-x or
x-y. Merging these two intervals (by using:, the union constructor) will do the job, because eventually
the ‘wrong’ one (i.e. the one yielding an interval of negative numbers) will be discarded due to the fact that
CLP(FD) only manipulates non-negative integers.

This leads to the following definition, whereL1 andL2 are the two layers,T is one of the tracks,NbT is
the maximum number of tracks for the problem, andPseudoT is the resulting pseudo-track to be confronted
with the other track:

pseudo_track_number(L1,L2,T,NbT, PseudoT) :-
Delta in NbT*(min(L1)-max(L2) .. NbT*(max(L1)-min(L2)

: NbT*(min(L2)-max(L1) .. NbT*(max(L2)-min(L1),
T in min(PseudoT)-max(Delta) .. max(PseudoT)-min(Delta),
PseudoT in min(Delta)+min(T) .. max(Delta)+max(T).

Now, we can express the constraint:

different_tracks(L1,T1,L2,T2,NbT) :-
pseudo_track_number(L1,L2,T2,NbT, PseudoT2),
’x<>y’(PseudoT2,T1).

Ordered Tracks. Here again, either the nets are on different layers or the first one must be placed below
the second one. By enforcingTj+ �ij > Ti we are guaranteed to succeed when the layers are different (since�ij is so large), and we are enforcingTj > Ti when the layers are equal.

ordered_tracks(L1,T1,L2,T2,NbT) :-
pseudo_track_number(L1,L2,T2,NbT, PseudoT2),
’x>y’(PseudoT2,T1).

Simon Fraser University Intelligent Software Group

CLP Techniques For Channel Routing 7

6.2 Solution with one variable per net

Our second solution is less intuitive, but shows the power ofthe glass-box approach used inCLP(FD).
Here, each net is represented by a single finite domain variable LTi, which is indeed a composite value

of both the layer and the track number. More precisely, this variable corresponds toLi*NbT+Ti, assuming
Li (resp.Ti) ranges over[0..NbLayers-1] (resp.[0..NbT-1]).

Different Tracks. We can simply enforce this constraint by the forward checkable constraint’x<>y’/2,
because we forbid a particular pair of layer and track, i.e. aparticular value for a composite variable.

different_tracks(LT1,LT2,NbT) :- ’x<>y’(LT1,LT2).

The two other constraints are also implemented in a forward checkable manner, by deleting an interval of
values corresponding to a particular layer. All the difficulty here is to express this interval.

Given a particular value forLTi, the value forLi is simply LTi//NbT (// stands for the integer
division). The value forTi can be computed accordingly.

Different Layers. Suppose netsNi andNj must be laid on different layers. When finite domain variable
LTi is instantiated to a particular value, one has to forbid values corresponding toLi for LTj, that is delete
the interval[Li*NbT..Li*NbT+NbT-1].

different_layers(LT1,LT2, NbT) :-
LT1 in -((val(LT2)//NbT)*NbT .. (val(LT2)//NbT)*NbT+(NbT-1)),
LT2 in -((val(LT1)//NbT)*NbT .. (val(LT1)//NbT)*NbT+(NbT-1)).

Ordered Tracks. If netNimust be placed below netNj: wheneverLTi is instantiated to a particular value
corresponding toLi andTi, we must remove all values fromLi*NbT+0 to Li*Nbt+Ti from the domain
of Nj; wheneverLTj is instantiated with a value corresponding toLj andTj, we must remove all values
fromLj*NbT+Tj toLj*NbT+NbT-1 from the domain ofNi.

ordered_tracks(LT1,LT2,NbT) :-
LT1 in -(val(LT2) .. (val(LT2)//NbT)*NbT+(NbT-1)),
LT2 in -((val(LT1)//NbT)*NbT .. val(LT1)).

6.3 Another application of finite domain variables

Certain heuristics employed during the labeling process make use of the in/out degrees of the horizontal and
vertical constraint graphs. We chose not to represent thesegraphs explicitly. Instead, we use a finite domain
variable for each node and each graph. The domain of these variables represent the nodes that are connected
to this particular node (i.e. net) in this particular graph.Hence, the degree can be computed simply by the
builtin predicatefd_size/2.

Some caution must be taken, however, in the case where a node becomes completely disconnected from
the rest of the graph. In such a case, according to our previous definition, the associated finite domain
variable would have an empty domain, thus causing a failure!To circumvent this problem, we had to extend
the domains of these variables with an extrafake value: since we numbered nets from1 to n, we chose0 for
this extra value.

As an example, consider a vertical constraints graph consisting of four nodes and three arcs :f(1; 2); (2; 3); (2;4)g.
The initial domains for the variables representing degreesfor the node 2 are{0}:{1} for the in-degree,
{0}:{3}:{4} for the out-degree.

Research Report ISG-RR-1995-6

8 Denys Duchier and Serge Le Huitouze

The update amounts to deleting the chosen net (in the labeling process) from all degree variables. This
can be achieved simply by constraining all the degree variables to be included in the domain of an extra finite
domain variable representing the set of the nodes still to beinstantiated. So, for every degree variableDVi,
we must install the following constraint:DVi in dom(NonInstNodes). The propagation implemented
bydom being a full lookahead, each modification ofNonInstNodes in the labeling process is immediately
reflected in the domains of the degree variables, thus insuring that correct values are available to the heuristics.

This is not a canonical use of finite domain variables: degreevariables are not part of any labeling process.
Their possible values do not correspond to values that can beenumerated for them. They are just, we think,
a convenient way of representing the degrees of particular graphs, and perhaps the only reasonable one in a
language lacking backtrackable assignment.

Our trick works fine on this example because we start with initial graphs (representing the set of all
constraints) and we suppress nodes (i.e. nets) from the graphs as execution proceeds. If non-monotonic
modifications were required, we could not get away with it. Note, however, that if you need to add rather
than suppress values, you could operate on the complement ofyour domain instead.

7 Results

We tried our two different versions against Zhou’s version with different heuristics. After some experimenta-
tion, we found that the best heuristic ordering for net selection was as follows:� first we select nets with the fewest number of ordering constraints placing nets below them: i.e. with

minimum out-degree inGv. Since values are enumerated in increasing order, startingfrom the low
end of a domain, this policy minimizes the likelihood of picking a value that will subsequently prove
incompatible with a net to be placed below.� then, the nets which are deepest inGv, i.e. which have constraining effect on the largest number of
other nets above them, directly or indirectly. This maximizes the pruning effect of solving for this net.� then, the nets with the largest in-degree inGv, i.e. nets which have the most direct effect on nets above
them.� then, the nets with the largest degree inGh, i.e. nets with the most number of difference contraints.

In the sequel, we refer to this heuristics as H1.
The measurements were made on Deutsch’s difficult problem [8], for various numbers of layers with the

corresponding minimal number of tracks, namely 1 layer/28 tracks, 2 layers/11 tracks or 3 layers/7 tracks.
The measurements reflect only the time required for finding the first solution, excluding the initialization

phase. The raw results are in milliseconds and were obtainedon a Sparc 10, 40 MHz. Also included in the
tables is a corrected ratio between the two versions, takinginto account the 1.76 average speed-up of�-prolog
over CLP(FD) which we measured on a few benchmark programs — our purpose was to evaluate the use of
state tables vs. finite domain variables, not to compare the raw speed of�-prolog’s implementation against
that ofCLP(FD)’s.

For this problem, the initialization time was about 1800 msec for theCLP(FD) version, and 1000 msec for
the�-prolog version. Considering the speed-up factor, these times are almost the same.

7.1 Version with two variables per net

BetaProlog clp(FD) ratio
1 layer 253 642 1.44
2 layers 250 728 1.65
3 layers 250 777 1.77

Simon Fraser University Intelligent Software Group

CLP Techniques For Channel Routing 9

This version is quite efficient, though not as efficient as Zhou’s on this benchmark. However, its perfor-
mance decreases markedly with the number of layers.

Zhou’s version performs only forward checking, ours performs partial lookahead in the 1 layer case for
the “Ordered Tracks” constraint. However, lookahead isn’thelpful in this particular case.

In the multi-layer case, our version doesn’t perform immediate forward checking. Due to the coding
of the two disjunctive constraints (seepseudo track number, p6), ordering constraints on track values
of two nets will normally only take effect after instantiation of the layer values. This might delay failures
detected earlier in Zhou’s version, and that is probably thecause of the slight degradation one can observe in
the measurements.

However, with this particular heuristics, this version still performs quite well.

We experimented with two other heuristics also used in Zhou’s program. Though not useful for solving
this example more efficiently (even in Zhou’s version), theyshowed a marked penalty in our version.

H2 uses, in addition to H1, the minimum values(L,T) for nets: we choose first, all other things being
equal, the net with the smaller minimum. This cannot be simply implemented as the minimum value ofL
together with the minimum value ofT, because of the delayed forward checking our version implements.
Thus, we have to enumerate on the layer value until a proper value is found. Only then can we pick up the
minimum value for the track. Of course, we must then undo the bindings and propagation just performed.
The code looks as follows:

min_val(Layer,Track, _,_) :- first_val(Layer,Track), fail.
min_val(_,_, MinL,MinT) :- retract(minv(MinL,MinT)).

first_val(Layer,Track) :-
in_domain(Layer), fd_min(Track,MinT), !,
asserta(minv(Layer,MinT)).

BetaProlog clp(FD) ratio
1 layer 292 1060 2.06
2 layers 299 6865 13.05
3 layers 303 8530 16.00

H3 uses, in addition to H1, the number of remaining values(L,T) for nets: we choose first, all other things
being equal, the net with the smaller number of remaining values. The implementation for this measure is
even worse than the previous one! We have to perform a complete enumeration on the layer value and sum
the numbers of possible values for the track. The code looks as follows:

size_dom(Layer,Track, _) :-
asserta(sz(0)),
indomain(Layer), fd_size(Track, NbTracks),
update_sz(NbTracks),
fail.

size_dom(_,_, Size) :- retract(sz(Size)).

update_sz(NbTracks) :-
retract(sz(S0)), S1 is S0+NbTracks, asserta(sz(S1)).

Research Report ISG-RR-1995-6

10 Denys Duchier and Serge Le Huitouze

BetaProlog clp(FD) ratio
1 layer 278 1248 2.17
2 layers 285 10171 20.28
3 layers 285 14885 29.68

Again, it is important to note that these heuristics are not necessary. Even in Zhou’s version, H1 is more
efficient. In our “two variables per net” design, they are very expensive to compute; however, in our “one
variable per net” design they become quite cheap (see below).

7.2 Version with one variable per net

Heuristic H1
BetaProlog clp(FD) ratio

1 layer 253 435 0.98
2 layers 250 440 1.00
3 layers 250 435 0.99

As opposed to the previous one, this version performs exactly the same pruning at exactly the same time
as Zhou’s version. The efficiency is the same too. Furthermore, heuristics H2 and H3 can be coded trivially
usingfd_min andfd_size respectively.

Heuristic H2
BetaProlog clp(FD) ratio

1 layer 292 476 0.93
2 layers 299 467 0.89
3 layers 303 462 0.87

Heuristic H3
BetaProlog clp(FD) ratio

1 layer 278 469 0.96
2 layers 285 469 0.93
3 layers 285 461 0.92

As can be seen, our version is even a little quicker than Zhou’s with H2 and H3.

8 Conclusion

We presented a formalization of the channel routing problemwhich is well suited for programming with a
CLP language: it dictates the constraints which must be posted a priori before proceeding with a labeling
phase.

We then described two concrete implementations: one inLIFE, where constraints are posted as residuated
function calls, and one inCLP(FD) using finite domain variables. In particular, we disprovedZhou’s conjec-
ture [13] that finite domain techniques were inappropriate:our CLP(FD) solution is at least as performant as
Zhou’s�-prolog version.

We are grateful to Dr. Neng-Fa Zhou for bringing the problem to our attention and for stimulating discus-
sions during this research.

Simon Fraser University Intelligent Software Group

CLP Techniques For Channel Routing 11

References

[1] Hassan Aı̈t-Kaci and Andreas Podelski.Towards a Meaning of Life. Digital PRL, Paris, May 1993,
Report PRL-RR-11.http://www.isg.sfu.ca/ftp/pub/hak/prl/PRL-RR-11.ps.Z

[2] Hassan Aı̈t-Kaci and Andreas Podelski.Functions as Passive Constraints in Life. Digital PRL, Paris,
June 1991, Report PRL-RR-13.
http://www.isg.sfu.ca/ftp/pub/hak/prl/PRL-RR-13.ps.Z

[3] Hassan Aı̈t-Kaci, Bruno Dumand, Richard Meyer, AndreasPodelski, Peter Van Roy.The Wild LIFE
Handbook. Digital PRL, Paris, March 1994.
http://www.isg.sfu.ca/ftp/pub/hak/prl/Wild Life.ps.Z

[4] Bonnie Berger, Martin Brady, Donna Brown, Tom Leighton.Nearly Optimal Algorithms and Bounds for
Multilayer Channel Routing. Journal of the ACM, v42 n2, March 1995, pp 500–542.

[5] P. Codognet and D. Diaz.A Minimal Extension of the WAM forCLP(FD). In 10th International Confer-
ence on Logic Programming, Budapest, Hungary, MIT Press, 1993.

[6] P. Codognet and D. Diaz.CompilingConstraint inCLP(FD). To appear inJournal of Logic Programming.

[7] D. Diaz. CLP(FD) 2.21 User’s Manual. INRIA, July 1994.
ftp://ftp.inria.fr/INRIA/Projects/ChLoE/LOGIC PROGRAMMING/clp fd

[8] David N. Deutsch.A “Dogleg” Channel Router. Design Automation Conference, 1976.

[9] Sung-Chuan Fang, Wu-Shiung Feng and Shian-Lang Lee.A New Efficient Approach To Multilayer
Channel Routing Problem. 29th ACM IEEE Design Automation Conference, 1992.

[10] Shaodi Gao and Michael Kaufmann.Channel Routing of Multiterminal Nets. Journal of the ACM, v41
n4, July 1994, pp. 791–818.

[11] Xingzhao Liu, Akio Sakamoto and Takashi Shimamoto.Genetic Channel Router. 6th Karuizawa
Workshop on Circuits and Systems, IEICE Trans. Fundamentals, vE77–A n3, March 1994.

[12] H. Simonis.Channel Routing Seen as a Constraint Problem. ECRC TR-LP-51, 1990.

[13] Neng-Fa Zhou.A logic Programming Approach to Channel Routing. Kyushu Institute of Technology,
Japan. ICLP’95.

Research Report ISG-RR-1995-6

