Research Report

1ISG-RR-1995-6

CLP Techniques For Channel Routing

Denys Duchier
Serge Le Huitouze

23 November 1995

|

‘i

Copyright © Intelligent Software Group, Simon Fraser University.

This work may not be copied or reproduced in whole or in partaisy commercial purpose. Permission
to copy in whole or in part without payment of fee is grantedrion-profit educational and research pur-
poses provided that all such whole or partial copies incthédollowing: a notice that such copying is by
permission of the Intelligent Software Group (ISG) of Simenaser University (SFU), in Burnaby, British

Columbia (Canada); an acknowledgement of the authors aliddual contributors to the work; and all ap-

plicable portions of the copyright notice. Copying, reprotion, or republishing for any other purpose shall
require a license with payment of fee to the Intelligent ®afe Group. All rights reserved.

Contents

1
2
3
4
5
6

Introduction

Problem Description

Problem Formalization

3-Prolog Solution

Life Solution

CLP(FD) Solution

6.1 Solution with two variables pernet

6.2 Solution with one variable pernet o
6.3 Another application of finite domain variables

~N~N~abh W N PR

Results
7.1 Version with two variablespernet.
7.2 \ersion with one variable pernet 1

(o]

Conclusion 10

CLP Techniques For Channel Routing 1

1 Introduction

Channel routing is an important problem for the automatgduaof integrated cicuits. In [13], Dr. Neng-Fa
Zhou claims that traditional CLP languages, suctias?, are ill-suited to the task, and that multi-layer chan-
nel routing problems are difficult to solve with finite domaiariables ranging over integers. This assertion
peaked our interest since it ran counter to our intuitiorotescribes a technique for explicit management
of finite domains using-prolog’s state tables, and argues for its superior effayien

In this report, we present two approaches: onelRE [1] based on residuations, and onednrP(FD)
based on finite domains. They are both quite elegant and sirtpiwrite and understand than Zhows
PROLOGVersion. Furthermore, theLP(FD) program is as performant as Zhou'’s version.

2 Problem Description!

The channelconsists of a rectlinear grid of rows (alk@ck9 and columns. The grid points along the top
and bottom tracks are callgdrminals they are numbered frorh to » according to the column in which
they lie. Anetis a set of terminals which must be interconnected. A terhdaa be in at most one net. By
convention, we reject the degenerate cases of empty an@tingets: a net must have at least 2 terminals.

How the problem can be solved further depends on the wirindatan particular, it depends on the
number of layers available. In the Manhattan routing ma2itdyers are available: all horizontal wires go in
one layer and all vertical wires in the other; thus wires carss, but they cannot overlap.

We also impose the “no dogleg” restriction. This means thatwiring of a net contains at most one
horizontal segment to which all the net’s vertical segmanésconnected.

Finally, we will allow k pairs of layers to be used as described above, so that a ndienagced on any
one pair.

As a matter of convenience, we will say “layer” instead ofitps layers,” and the number of tracks will
not include the top and bottom tracks because we make thesfuassumption that these two tracks can’t be
used for (horizontal) wiring.

3 Problem Formalization

A net will be implemented by a wiring consisting of one horital segment spanning the width from the
net's letfmost terminal to its rightmost terminal, and oregtical segment per terminal connecting it to the
horizontal segment. Our only constraint is that wires gomthe same direction should not overlap. This
can only happen when 2 nets’ horizontal extents intersecthdt case, the horizontal segments cannot be
laid on the same track: either they must be on different Byaron the same layer but on different tracks.
Furthermore, vertical segments should not overlap eitties: can only happen when one net includes top
terminali and the other net includes bottom termihalo prevent overlap of these vertical segments, either
the nets must be laid on different layers, or the net with &wminal: must be laid on a track above that of
the net with bottom terminal

Note that, when the horizontal extents of two nets overlat®y do not share a column, then they must
be laid on different tracks, but there is no ordering comstizetween these tracks.

Let us writen for a net,n.t (resp.n.b) for the set of indices of top (resp. bottom) terminals inmek et
7n.ebe the extent of ney, i.e. the intervalk,, k2] wherek; is the minimum index of the terminals inand-
is the maximum.

1 This section is endebted to the excellent description ohnkarouting in [4].

Research Report ISG-RR-1995-6

2 Denys Duchier and Serge Le Huitouze

Different Tracks. When two nets); andz. have overlapping extents, they must be placed on different
tracks, which we writey; 547 7!

n-eNna.e# 0= n 7 0o

Ordered Tracks. When two nets have terminals in the same column, either thusy be placed on different
layers or the nef; with the bottom terminal must be placed below themetvith the top terminal. We write
m < 7z

mbNnt£d=m<n

Different Layers. When two nets must simultaneously satisfy incompatibleonnd constraints, they must
be placed on different layers, which we writes1 72:

m < N2 ANy <M =0 &L N2

A solutionT in n layers andn tracks is a set of elements: (7, j} assigning a layer numbér< i < n
and a track number < j < m to each net, and such that it respects all constraints orowerap:

Different Tracks. T satisfiesy, sy 12 iff 91 : (i1, 1) € T andns : {(i2, j2) € T andiy # iz Or ji # ja.
Ordered Tracks. I satisfies)s; < ny iff i1 # 2 Or ja < j1.

Different Layers. I satisfies;; 1 5o iff i1 # is.

4 [3-Prolog Solution

Zhou presents a solution that takes advantage-pifolog’s support foistate tables.e. “relations in which
each tuple is given a truth valurieor false” He treats the problem as a CSP where the domains of variables
are represented by a state table whose triples are all catidiis of nets, layers and tracks. A state table can
also be regarded as a multidimensional array of boolearesahdexed by atomic terms.

Creation. The goalbt (p(X1, ..., Xn), S) creates a state tabtewith » dimensions, where each di-
mension is specified by the ran¥e, i.e. a list of atoms denoting the legal indices on the ithetision, and
Sis a boolean indicating the initial state of the entries. Agaof integers can also be writtéry.

For exampleébt (p1([a, b, c], 1..4),true) creates & x 4 array, with each entry initially r ue.
The first dimension is accessed by eitheb or ¢, and the second one by eittier2, 3 or 4.

Modification. A state table can be modified using primitisst _t r ue andset _f al se. For example,

set _fal se(pl(a,2)) will setentrypl(a, 2) tofal se. These primitives also accefiiple patterns

as arguments, i.e. tuples where the first few arguments angi@walues (or intervals) and the remaining
arguments are distinct variables; all entries matchingtitgern will be modified. If a state table is regarded
as a discriminating tree, invokirget _f al se prunes an entire subtree. Modifications are undone on back-
tracking.

Simon Fraser University Intelligent Software Group

CLP Techniques For Channel Routing 3

Access. The goalsel ect (pl(a, X)) will non-deterministically enumerate upon backtrackitigpas-
sible values oK for which table entryp1(a, X) istrue. The goatount (pl(a, _), O will instantiateC
to the number of tuplegl(a, X) which are true in tablp1 (3 in our example).

Zhou's solution uses a state tabllenai n(Net , Layer, Tr ack) to represent the possible assignments
that are still valid for the remaining nets. He proceeds \witnaditional, heuristically guided, enumeration
of the nets together with the propagation of constraintse(tiiee update of the state tallerai n) after
each instantiation. Thus propagation performs forwardaking by updating the domains of the remaining
variables.

Once anelNhas been chosen, enumeration of its domain is simply adhlewthe goasel ect (domai n(N, L, T)) .
Corresponding updates must maintain the non-overlap@ints. Suppose we have just selecedmai n(Ni , Li, Ti) :

Different Tracks. If Ni andNj must be on different tracks, we simply execstst _f al se(domai n(N , Li, Ti)),
thus eliminating the paifLi ,Ti } from the domain of\j .

Ordered Tracks. If N must be abové| , we correspondingly forbid trackd and above on laydri for
Nj by executingset _fal se(domai n(N , Li, Ti.. M) whereMis the number of tracks. Ki must
be below , we eliminate track4 to Ti instead wittset _f al se(domai n(Nj, Li, 1..Ti)).

Different Layers. If Ni andNj must be on different layers, we simply remove all entriesayetLi from
the domain o : set _fal se(domai n(Nj, Li, _)).

Zhou represents the set of non-overlap constraints by taphg; also implemented by state tables: a
directedvertical constraint grapkv capturing the “ordered tracks” constraint, and an undaeborizontal
constraint graphch capturing the “different tracks” constraint. There is agedromr; to 1, in Qv iff
n2 < m. There is an edge between ands- in Gh iff 1 %7 n2. To avoid unnecessary propagations, these
graphs are also updated: each time a net is selected, comdiag constraints are looked up in these graphs
and then deleted.

Some heuristics are based on the infout degrees of nodas amd Gh, thus measuring the number of
constraints in which a particular node is involved. In Ztssolution, degrees are easily computed by the
count primitive. The depth of nodes i@ is also used: Zhou’s implementation requires that theredbe n
cycles in the graph; ours lifts this limitation by collapgioycles. In both implementations, a node’s depth
is computed statically in the original constraint grgphand is not updated to reflect the evolving topology
when nodes are deleted fraBr during labeling.

5 Life Solution

In LIFE [1], nets are represented d@sterms; each has layer and atrack feature. Our solution consists
in, first posting constraints that residuate on these featwand then using a heuristic method for selecting
a net and assigning a layer and a track to it: as soon as theésdaatures are instantiated, all suspended
constraints on them are automatically reactivated. Thisiig much like “test and generate.”

In LIFE, predicates are called by unification and functions by matgh.e. a function call suspends until
it can be proven that the actual arguments entail or didehtaformal argument patterns [2]. Furthermore,
arithmetic comparison primitives all suspend until thegaments are refined to actual numbers. We take
advantage of these facilities to express and post contgitaizt will wait until sufficient information is known
in order to make a decision.

Research Report ISG-RR-1995-6

4 Denys Duchier and Serge Le Huitouze

Different Tracks. We ensure that two nets are laid on different tracks by pgstohi f f constraint which
waits until either the 2 nets are known to be on the same laye#hich case it posts the additional constraint
that their tracks must be distinct, or they are known to beiffarént layers, in which case it just succeeds:

different _tracks(Netl, Net2) :- diff(Netl.layer, Net2.!|ayer,
Net 1. track, Net 2. track).

di ff(Layer, Layer, Trackl, Track2) -> Trackl =\= Track2.
diff -> succeed.

Ordered Tracks. We ensure that two nets are laid on tracks that satisfy ecpgatiorder relation by posting
anor der constraint which waits until either the 2 nets are known t@bé¢he same layer, in which case it
posts the additional constraint that the tracks must be peaiic order, or they are known to be on different
layers, in which case it just succeeds:

ordered_tracks(Net1, Net2) :- order(Netl.layer, Net2.I|ayer,
Net 1. track, Net 2. track).

order (Layer, Layer, Trackl, Track2) -> Trackl < Track2.
or der -> succeed.

Different Layers. When two nets must satisfy incompatible ordering constsainstead of postingr der
constraints, we just make sure that they are laid on diffdegers:

different | ayers(Netl, Net2) :- Netl.layer =\= Net2.|ayer.

The LIFE version was a preliminary investigation to afford us a batteerstanding of the problem. It
demonstrates how a language with residuations makes itteasypress and enforce constraints succinctly
and elegantly. Unfortunately, theFE interpreter is not very performant and timings are not cditipe.

6 CLP(FD) Solution

CLP(FD) [5, 6] is a Constraint Logic Programming language wherestraimts apply to finite domain vari-
ables ranging over integers. The basic constraiitisn R, stating that the (finite domain) variab¥emust
always be compatible with the rangewhich means that the possible values tkaan take must belong to
the set represented IR/

A range can be a constant range (é.g. 10). It can also be what is called andexical ranggeinvolving
the values and/or limits of other finite domain variablest &le, the rangei n(Y) . . max(Z) repre-
sents the set of all integers between the minimum value itimeain ofY and the maximum value in the
domain ofZ.

A important requirement on ranges is that they must be neggatmonotonic, that is, additional con-
straints can only make the domains smaller. It follows thages likarax(Y) .. m n(Z) are forbidden:
constraining variablé&/ would eventually decrease its possible maximum value, thergeasing the above
range (the same reasoning applieZ two in this example).

Other indexical ranges adon{ V) denoting the domain of a finite domain variable, arad (V) , de-
noting the value of a finite domain variable; the latter isyankeaningful wher'V becomes instantiated, thus
a constraint involvingal (V) only takes effect when the domain'dhas been reduced to a single integer.

Simon Fraser University Intelligent Software Group

CLP Techniques For Channel Routing 5

Indexical ranges are very important @ P(FD): they determine how constraints propagate whenever
ranges change.
A little example might provide some insight on how this warks

rel 1(X,Y) :-
X in mn(Y)+3..max(Y)+3,
Y in mn(X)-3..mx(X)-3.

rel2(X,Y) :-
X in don(Y) +3,
Y in don(X)-3.
rel 3(X,Y) :-
X in {val (Y)+3},
Y in {val (X)-3}.

These three predicates almost state the same constrairgly?a = Y+3. They only differ in the amount
of propagation which is performed when the domainXahdY are updated.

SupposeX andY have current domaifh. . 10. Then execution of el 1(X, Y) constrains the domain of
Xto4. .10 and the domainoftol. . 7.

Further statingk i n - { 5} 2 results inX’s domain being reduced {4} : 6. . 10, but no modification
of Y’s domain (minimum and maximum values f§rnamely4 and10 have not been changed).

On the other hand, usirrgel 2 instead would result itY’s domain being reduced fol} : 3. . 7.

Finally, usingr el 3 insteadX’s andY’s initial domain would remain unchanget.(. 10) after execution
ofrel 3(X, Y) andthe subsequent constratni n - { 5} would not affecty’s domain. Propagation would
only take place wheiX (resp.Y) is instantiated to a particular integer, leading to ingtimg Y (resp.X) to
integer valueX- 3 (resp.Y+3).

To summarize, indexical constraints implement the follayypropagations:

o forward checking, wittval (V) ,
o full lookahead, withdom(V) ,
¢ partial lookahead, withi n(V) andmax(V) .

Moreover, itis possible to mix different propagation sclkerim a singlerangeX i n m n(Y)..{val (2)}
performs partial lookahead onand forward checking o (this example is for illustration purposes only
and should not be confused with good programming style!).

6.1 Solution with two variables per net

cLP(FD) is very well suited for solving finite domain CSP problemsyyded you can express your con-
straints in terms of indexical ranges. If so, you can simpigtpall your constraints and then invoke an
appropriatdabelingprocedure. As we shall see, the channel routing problemeaaily coded using finite
domain constraints.

Our first solution is an almost direct encoding of the matherabformulation: let's assume each vt
is represented by two finite domain variablésandTi , denoting its layer and track number.

?Range—r denotes the complement of range

Research Report ISG-RR-1995-6

6 Denys Duchier and Serge Le Huitouze

Different Layers. This constraint can be simply enforced by the library talk>y’ / 2, which is imple-
mented by forward checkable constraints:

di fferent | ayers(L1, T1,L2, T2, NbT) :- ’x<>y’(L1,L2).

"x<>y' (X Y) - Xin -{val(Y)}, Yin -{val(X)}.

The effect will be to suppresss (resp.Y’s) value fromY’s (resp.X's) domain as soon as it is instantiated to
a particular integer.

The two other constraints are a little bit trickier becausgytinvolve a disjunction (recall the mathematical
definition): either the two layers are different or sometielaholds between the two tracks. Itis well known
that some disjunctions can be represented by addition. Méktty apply this idea to our problem.

Different Tracks. If 7; and} are the finite domain variables representing the tracks ésiipn, the idea
is to enforcel; + 0;; # 1; wheres;; is 0 when the layers are equal and is a large number (bigger tha
the number of possible tracks) when the tracks are diffgftlinis causing the constraint to be necessarily
satisfied).

The challenge is to expresg in terms of indexical ranges: we used the absolute differémtween the
layers, scaled by the maximum number of tracks. Also, imstégust computing;;, we computel; + 6;;.
We used a definition similar to tHe| x-y| =z’ / 3 library call. The idea is to consider two cases: either
x is smaller thary or the other way around. Depending on the case, we are itedreseithery- x or
X-Yy. Merging these two intervals (by using the union constructor) will do the job, because eventually
the ‘wrong’ one (i.e. the one yielding an interval of negathumbers) will be discarded due to the fact that
cLP(FD) only manipulates non-negative integers.

This leads to the following definition, whetel andL?2 are the two layersT is one of the trackd\bT is
the maximum number of tracks for the problem, &scudoT is the resulting pseudo-track to be confronted
with the other track:

pseudo_track_nunber (L1, L2, T, NbT, PseudoT) :-
Delta in NoT*(m n(L1)-max(L2) .. NoT*(nmax(L1l)-nmi n(L2)
NoT*(m n(L2) -max(L1l) .. NbT*(max(L2)-m n(L1),
T in mn(PseudoT)-max(Delta) .. nmax(PseudoT)-m n(Delta),
PseudoT in nmin(Delta)+mn(T) .. max(Delta)+max(T).

Now, we can express the constraint:

di fferent _tracks(L1, T1, L2, T2, NbT) : -
pseudo_track_nunber (L1, L2, T2, NoT, PseudoT2),
' x<>y’' (PseudoT2, T1).

Ordered Tracks. Here again, either the nets are on different layers or thiedite must be placed below
the second one. By enforcing + ¢;; > 1; we are guaranteed to succeed when the layers are diffenect (s
6;; is so large), and we are enforcifiy > 7; when the layers are equal.

ordered_tracks(L1, T1, L2, T2, NbT) : -

pseudo_track_nunber (L1, L2, T2, NoT, PseudoT2),
" x>y’ (PseudoT2, T1) .

Simon Fraser University Intelligent Software Group

CLP Techniques For Channel Routing 7

6.2 Solution with one variable per net

Our second solution is less intuitive, but shows the poweheflass-box approach useddnP(FD).

Here, each net is represented by a single finite domain vadidh , which is indeed a composite value
of both the layer and the track number. More precisely, thisable corresponds ta * NbT+Ti , assuming
Li (resp.Ti) ranges ovef 0. . NbLayer s- 1] (resp.[0. . NbT- 1]).

Different Tracks. We can simply enforce this constraint by the forward chelekabnstraint x<>y’ / 2,
because we forbid a particular pair of layer and track, igaréicular value for a composite variable.

different _tracks(LT1,LT2, NoT) :- ’'x<>y’' (LT1,LT2).

The two other constraints are also implemented in a forwaedlcable manner, by deleting an interval of
values corresponding to a particular layer. All the difftgiiere is to express this interval.

Given a particular value fokTi , the value forLi is simplyLTi// NoT (// stands for the integer
division). The value foili can be computed accordingly.

Different Layers. Suppose netsli andNj must be laid on different layers. When finite domain variable
LTi is instantiated to a particular value, one has to forbideslcorresponding tbi for LTj , that is delete
the intervall Li *NbT. . Li *NbT+NbT- 1] .

different | ayers(LT1,LT2, NbT) :-
LT1 in -((val (LT2)//NoT)*NbT .. (val (LT2)//NbT)*NoT+(NbT-1)),
LT2 in -((val (LT1)//NoT)*NbT .. (val (LT1)//NbT)*NoT+(NbT-1)).

Ordered Tracks. IfnetNi must be placed below nBf : whenevelLTi is instantiated to a particular value
corresponding thi andTi , we must remove all values froli * NoT+0 to Li * Not +Ti from the domain
of N ; whenevelLTj is instantiated with a value correspondingdio andTj , we must remove all values
fromLj *NoT+Tj toLj *NbT+NbT- 1 from the domain ofNi .

ordered_tracks(LT1, LT2, NoT) : -
LT1 in -(val (LT2) .. (val (LT2)//NbT)*NoT+(NbT-1)),
LT2 in -((val (LT1)//NoT)*NbT .. val (LT1)).

6.3 Another application of finite domain variables

Certain heuristics employed during the labeling procedesennige of the in/out degrees of the horizontal and
vertical constraint graphs. We chose not to represent tpegehs explicitly. Instead, we use a finite domain
variable for each node and each graph. The domain of thesdbles represent the nodes that are connected
to this particular node (i.e. net) in this particular graptence, the degree can be computed simply by the
builtin predicatd d_si ze/ 2.

Some caution must be taken, however, in the case where a rodmbs completely disconnected from
the rest of the graph. In such a case, according to our prewefinition, the associated finite domain
variable would have an empty domain, thus causing a faillwetircumvent this problem, we had to extend
the domains of these variables with an exXake value: since we numbered nets frdno », we chosée) for
this extra value.

As an example, consider a vertical constraints graph cimgisf four nodes and three arc$(1, 2), (2,3),(2,4)}.
The initial domains for the variables representing degfeeshe node 2 ar¢ 0} : { 1} for the in-degree,
{0}:{3}:{4} forthe out-degree.

Research Report ISG-RR-1995-6

8 Denys Duchier and Serge Le Huitouze

The update amounts to deleting the chosen net (in the |lapptivcess) from all degree variables. This
can be achieved simply by constraining all the degree vimsab be included in the domain of an extra finite
domain variable representing the set of the nodes still tm&tantiated. So, for every degree variab\é ,
we must install the following constrain@Vi i n dom(Nonl nst Nodes) . The propagation implemented
by dombeing a full lookahead, each modificationNddnl nst Nodes in the labeling process is immediately
reflected in the domains of the degree variables, thus imgtinat correct values are available to the heuristics.

This is not a canonical use of finite domain variables: degag@bles are not part of any labeling process.
Their possible values do not correspond to values that cambmerated for them. They are just, we think,
a convenient way of representing the degrees of particuégolg, and perhaps the only reasonable one in a
language lacking backtrackable assignment.

Our trick works fine on this example because we start withahgraphs (representing the set of all
constraints) and we suppress nodes (i.e. nets) from théngrap execution proceeds. If non-monotonic
modifications were required, we could not get away with it.té&\dnowever, that if you need to add rather
than suppress values, you could operate on the complemgatiptiomain instead.

7 Results

We tried our two different versions against Zhou’s versiagthwlifferent heuristics. After some experimenta-
tion, we found that the best heuristic ordering for net d&daavas as follows:

o first we select nets with the fewest number of ordering cairis placing nets below them: i.e. with
minimum out-degree i®v. Since values are enumerated in increasing order, stdriingthe low
end of a domain, this policy minimizes the likelihood of pie a value that will subsequently prove
incompatible with a net to be placed below.

¢ then, the nets which are deepest@n, i.e. which have constraining effect on the largest numifer o
other nets above them, directly or indirectly. This maxiesithe pruning effect of solving for this net.

¢ then, the nets with the largest in-degre&in i.e. nets which have the most direct effect on nets above
them.

¢ then, the nets with the largest degre&an i.e. nets with the most number of difference contraints.

In the sequel, we refer to this heuristics as H1.

The measurements were made on Deutsch’s difficult problgnoi8various numbers of layers with the
corresponding minimal number of tracks, namely 1 layerfagis, 2 layers/11 tracks or 3 layers/7 tracks.

The measurements reflect only the time required for findieditkt solution, excluding the initialization
phase. The raw results are in milliseconds and were obtainedSparc 10, 40 MHz. Also included in the
tables is a corrected ratio between the two versions, takiogccount the 1.76 average speed-up-pfolog
over CLP(FD) which we measured on a few benchmark programs — our purpaséaievaluate the use of
state tables vs. finite domain variables, not to compareawespeed of3-prolog’s implementation against
that of CLP(FD)’s.

For this problem, the initialization time was about 1800 o thecLP(FD) version, and 1000 msec for
the 5-prolog version. Considering the speed-up factor, thesegiare almost the same.

7.1 Version with two variables per net

BetaProlog| clp(FD) | ratio
1 layer 253 642 1.44
2 layers 250 728 1.65
3 layers 250 777 1.77

Simon Fraser University Intelligent Software Group

CLP Techniques For Channel Routing 9

This version is quite efficient, though not as efficient aswon this benchmark. However, its perfor-
mance decreases markedly with the number of layers.

Zhou's version performs only forward checking, ours perfsipartial lookahead in the 1 layer case for
the “Ordered Tracks” constraint. However, lookahead isalpful in this particular case.

In the multi-layer case, our version doesn’t perform imrageliforward checking. Due to the coding
of the two disjunctive constraints (spseudo_t r ack_numnber , p6), ordering constraints on track values
of two nets will normally only take effect after instantiai of the layer values. This might delay failures
detected earlier in Zhou’s version, and that is probablycthese of the slight degradation one can observe in
the measurements.

However, with this particular heuristics, this versionl gterforms quite well.

We experimented with two other heuristics also used in Zhpuwgram. Though not useful for solving
this example more efficiently (even in Zhou's version), teepwed a marked penalty in our version.

H2 uses, in addition to H1, the minimum valugk, T) for nets: we choose first, all other things being
equal, the net with the smaller minimum. This cannot be gjnipplemented as the minimum value lof
together with the minimum value df, because of the delayed forward checking our version imgies
Thus, we have to enumerate on the layer value until a propee vafound. Only then can we pick up the
minimum value for the track. Of course, we must then undo thdibgs and propagation just performed.
The code looks as follows:

m n_val (Layer, Track, _,) :- first_val (Layer, Track), fail.
mnval(_, , MnL,MnT) :- retract(mnv(MnL, MnT)).

first_val (Layer, Track) :-
i n_domai n(Layer), fd_m n(Track, M nT), !,
asserta(m nv(Layer, M nT)).

BetaProlog| clp(FD) | ratio
1 layer 292 1060 2.06
2 layers 299 6865 | 13.05
3 layers 303 8530 | 16.00

H3 uses, in additionto H1, the number of remaining valilesT) for nets: we choose first, all other things
being equal, the net with the smaller number of remainingesl The implementation for this measure is
even worse than the previous one! We have to perform a coenpfetmeration on the layer value and sum
the numbers of possible values for the track. The code logkslws:

si ze_dom(Layer, Track, _) :-
asserta(sz(0)),
i ndomai n(Layer), fd_size(Track, NbTracks),
updat e_sz(NoTr acks),
fail.
size_dom _, , Size) :- retract(sz(Size)).

update_sz(NbTracks) : -
retract(sz(S0)), S1 is SO+NbTracks, asserta(sz(Sl1)).

Research Report ISG-RR-1995-6

10 Denys Duchier and Serge Le Huitouze

BetaProlog| clp(FD) | ratio
1 layer 278 1248 2.17
2 layers 285 10171 | 20.28
3 layers 285 14885 | 29.68

Again, it is important to note that these heuristics are maessary. Even in Zhou's version, H1 is more
efficient. In our “two variables per net” design, they areyexpensive to compute; however, in our “one
variable per net” design they become quite cheap (see below)

7.2 Version with one variable per net

HeuristicH1
BetaProlog| clp(FD) | ratio
1 layer 253 435 0.98
2 layers 250 440 1.00
3 layers 250 435 0.99

As opposed to the previous one, this version performs extutl same pruning at exactly the same time
as Zhou'’s version. The efficiency is the same too. Furtheznfwruristics H2 and H3 can be coded trivially
usingf d_m n andf d_si ze respectively.

Heuristic H2
BetaProlog| clp(FD) | ratio
1 layer 292 476 0.93
2 layers 299 467 0.89
3 layers 303 462 0.87
HeuristicH3
BetaProlog| clp(FD) | ratio
1 layer 278 469 0.96
2 layers 285 469 0.93
3 layers 285 461 0.92

As can be seen, our version is even a little quicker than Zwith H2 and H3.

8 Conclusion

We presented a formalization of the channel routing probAdrich is well suited for programming with a
CLP language: it dictates the constraints which must beeplostpriori before proceeding with a labeling
phase.

We then described two concrete implementations: oneribp, where constraints are posted as residuated
function calls, and one ioLP(FD) using finite domain variables. In particular, we disprovéwbu’s conjec-
ture [13] that finite domain techniques were inappropriate:CLP(FD) solution is at least as performant as
Zhou's 5-prolog version.

We are grateful to Dr. Neng-Fa Zhou for bringing the probleraur attention and for stimulating discus-
sions during this research.

Simon Fraser University Intelligent Software Group

CLP Technigues For Channel Routing 11

References

[1] Hassan Ait-Kaci and Andreas Podelskiowards a Meaning of Life Digital PRL, Paris, May 1993,
Report PRL-RR-11ht t p: / / ww. i sg. sfu. ca/ ft p/ pub/ hak/ prl/PRL-RR-11. ps. Z

[2] Hassan Ait-Kaci and Andreas Podelskiunctions as Passive Constraints in LifBigital PRL, Paris,
June 1991, Report PRL-RR-13.
http://ww. isg.sfu.cal/ftp/pub/hak/prl/PRL-RR-13.ps.Z

[3] Hassan Ait-Kaci, Bruno Dumand, Richard Meyer, Andr@aslelski, Peter Van RoyThe Wild LIFE
HandbookDigital PRL, Paris, March 1994.
http://ww. isg.sfu.cal/ftp/pub/hak/prl/WIdLife.ps.Z

[4] Bonnie Berger, Martin Brady, Donna Brown, Tom Leightdtearly Optimal Algorithms and Bounds for
Multilayer Channel RoutingJournal of the ACM, v42 n2, March 1995, pp 500-542.

[5] P. Codognet and D. DiazA Minimal Extension of the WAM farLp(FD). In 10th International Confer-
ence on Logic Programmin@udapest, Hungary, MIT Press, 1993.

[6] P. Codognetand D. DiatZompiling ConstraintircLP(FD). To appear idournal of Logic Programming

[7] D. Diaz. cLP(FD) 2.21 User's ManualINRIA, July 1994.
ftp://ftp.inria.fr/INR A Projects/ChLoE/ LOG CPROGRAWM NE cl pfd

[8] David N. Deutsch A “Dogleg” Channel Router Design Automation Conference, 1976.

[9] Sung-Chuan Fang, Wu-Shiung Feng and Shian-Lang L&eNew Efficient Approach To Multilayer
Channel Routing Problen?9th ACM IEEE Design Automation Conference, 1992.

[10] Shaodi Gao and Michael Kaufman@hannel Routing of Multiterminal Netdournal of the ACM, v41
n4, July 1994, pp. 791-818.

[11] Xingzhao Liu, Akio Sakamoto and Takashi ShimamotGenetic Channel Router 6th Karuizawa
Workshop on Circuits and Systems, IEICE Trans. Fundamgntgl/ 7—A n3, March 1994.

[12] H. Simonis.Channel Routing Seen as a Constraint Prohl&E@RC TR-LP-51, 1990.

[13] Neng-Fa ZhouA logic Programming Approach to Channel Routingyushu Institute of Technology,
Japan. ICLP’95.

Research Report ISG-RR-1995-6

