
Research Report

ISG-RR-95-1

Compiling The Typed-Polymorphic
Label-Selective �-Calculus

Denys Duchier

May 1995



Copyright c Intelligent Software Group, Simon Fraser University.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research pur-
poses provided that all such whole or partial copies includethe following: a notice that such copying is by
permission of the Intelligent Software Group (ISG) of SimonFraser University (SFU), in Burnaby, British
Columbia (Canada); an acknowledgement of the authors and individual contributors to the work; and all ap-
plicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to the Intelligent Software Group. All rights reserved.

ii



Abstract

In the label selective�-calculus, arguments are passed by name rather than by position: abstractions�f` )xg M and applicationsM f` ) Ng are parametrized by an explicit label` and arbitrary commutations in-
volving distinct labels are allowed. Is such an expressive language amenable to efficient execution? We show
that, when�S is equipped with an ML like type system the answer isyes: every well-typed�S program can
be transformed into an observationally equivalent ML program where all labels have been erased. Traditional
compilation methods can then be applied.

iii



Contents

1 Introduction 1

2 Embedding the �-Calculus in �S 1

3 A Record Calculus on N 2

4 �S With Generalized Labels 2

5 The Compilation Challenge 3

6 The Typed Polymorphic �S 3

7 Compiling �S 3

8 Example 4

9 Interpretation Trick 5

10Conclusion 5

iv



Compiling The Typed-Polymorphic Label-Selective �-Calculus 1

1 Introduction

The prime innovation introduced by the label-selective�-calculus�S is to pass arguments by name rather
than by position, as is normally the case is most programminglanguages. Common Lisp keywords afford
an intermediate capability that permit arguments to be named and supplied in arbitrary order; however, this
syntactic extension does not commute with currying.�S , on the other hand, is predicated on the commutation
of named abstraction and application.

Positional Arguments: makebox(300,200)

Common Lisp Keywords: (makebox :width 300 :height 200)
(makebox :height 200 :width 300)

Label-Selective �-Calculus: makeboxfwidth) 300g fheight) 200g
makeboxfheight) 200g fwidth) 300g

The syntax of�S is that of the�-calculus extended so that both abstraction and application are augmented
with an explicitlabel: M ::= x j �f` ) xgM jM f` )Mg
Congruences. Named applications are allowed to commute, and so are named abstractions, provided the
labels involved are distinct:f f`1 ) e1g f`2 ) e2g � f f`2 ) e2g f`1 ) e1g�f`1 ) x1g�f`2 ) x2g M � �f`2 ) x2g�f`1 ) x1gM
where`1 6= `2 andx1 6= x2.

Garrigue and Aı̈t-Kaci [1, 2] introduce the additional congruence:(�f`1 ) x1gM ) f`2 ) e2g � �f`1 ) x1g (M f`2 ) e2g)
if `1 6= `2 andx1 is not free ine2. They define a rewrite system based on these equations together with�-reduction and show its confluence.

Quotient Notation. In this paper, we will put forward a view based on congruence rather than one based on
rewriting and normal forms. The syntax introduced earlier can be naturally extended to denote expressions
in the quotient space:f f`1 ) e1; : : : ; `n ) eng def= f f`1 ) e1g : : :f`n ) eng�f`1 ) x1; : : : ; `n ) xng M def= �f`1 ) x1g : : :�f`n ) xng M
where thè i are all distinct.

2 Embedding the �-Calculus in �S
The most natural way to embed the�-calculus in�S is to use natural numbers as labels. Thus we define the
syntactic equivalence: f e1 e2 def= f f1) e1; 2) e2g
Research Report ISG-RR-95-1



2 Denys Duchier

However, a look at currying shows that we must contend with aninteresting new complication. Consider a
functionf of 2 curried arguments. A partial application off to its first argument returns a new function that
expectsf ’s second argument as its first argument: in other words, it now expects that argument on label 1.
Therefore, we must have the congruence:f f1) e1; 2) e2g� f f2) e2g f1) e1g� f f1) e1g f1) e1g
In other words, it is necessary to renumber the labels.

3 A Record Calculus on N
We now take a closer look at currying in�S with integer labels. Since, in the quotient space, a function is
applied to a record of arguments, the result of applying a function to several curried records must be the same
as applying it to the combination of these records. Therefore, we shall now elucidate the rules governing
record combination, also calledconcatenation.

Consider a functionf of 4 arguments. The partial application off to its 1st and 3rd arguments returns a
function which expectsf ’s 2nd and 4th arguments as its 1st and 2nd:f f1) e1; 2) e2; 3) e3; 4) e4g = f f1) e1; 3) e3g f1) e2; 2) e4g
In the first partial application: the 2nd argument is the 1st missing and the 4th argument is the 2nd missing.

Record Concatenation. We shall writer ? r0 for the concatenation of recordsr andr0, and it is defined as
follows: r ? r0 = fi1 ) e1; : : : ; in ) eng ? fi01 ) e01; : : : ; i0p ) e0pg= fi1 ) e1; : : : ; in ) en; �r(i01) ) e01; : : : ; �r(i0p) ) e0pg
where�r(i) = ith position not used inr.

4 �S With Generalized Labels

We may now combine the ideas of symbolic labels and integer labels: a generalized label is defined as a pairhs; ii of a symbols and an integeri. A particularly interesting interpretation of such labelsregardss as a
channel name andi as a message number.

The natural embedding of the�-calculus is now achieved by means of a distinguished channel name�.
Thus, integer labelk is now represented by generalized labelh�; ki.
Generalized Congruence. The commutation congruences that take into account the necessary renumber-
ing of labels can be expressed in the quotient space by the following equations:f r r0 � f r ? r0�r�r0 M � �r ? r0 M
where? is the natural extension to pairshs; ii where renumbering is carried out separately for each channel
names as described earlier.

Simon Fraser University Intelligent Software Group



Compiling The Typed-Polymorphic Label-Selective �-Calculus 3

5 The Compilation Challenge

The question we shall consider in the remainder of the paper is at what cost does the expressiveness of�S
come? Consider these difficulties: arguments may be supplied out of order, as inf f`2 ) e2g f`1 ) e1g.
More generally, a function can be partially applied to an argument out of order, e.g.f f`2 ) e2g. It can
even be applied to an argument that is not meant for itself, but for an eventual result:f f`3 ) e3g. Finally, a
function may be passed around as an argument and then invokedin unknown ways:f f`1 ) gg.

Can�S be compiled and executed efficiently? In the following we show that, if we equip�S with a type
system, then the answer is a surprisingly simple yes.

6 The Typed Polymorphic �S
First, we extend�S with a let construct to obtain an ML-like language:M ::= x j �f` ) xgM jM f`)Mg j let x = M in M
We equip this language with an ML-like type system:� ::= c j v j f` ) �g ! �� ::= � j 8�v �
and the usual inference rules:

(1) �; x : 8�v � ` x : [�� 0=�v]� (2)
� ` M : f`) �g ! � 0 � ` N : �� `M f`) Ng : � 0

(3)
�; x : � ` M : � 0� ` �f` ) xgM : f` ) �g ! � 0 (4)

� ` M : � �; x : 8�v � ` N : � 0� ` let x = M in N : � 0
where�v are the free vars of� not free in�
Congruence on Types. The congruence on terms induces a congruence on types: a functional term must
have all types corresponding to every permutation of its arguments.f`1 ) �1g ! : : :! f`n ) �ng ! � � f`1 ) �1g ? : : : ? f`n ) �ng ! �
Rule(2) must be applied modulo this congruence so that� in the first premise can always be identified with� in the second premise.

Type Inference Algorithm. It is sufficient to modify the usual algorithm so that it maintains functional
types in canonical formf`1 ) �1; : : : ; `n ) �ng ! � where� is not functional.

7 Compiling �S
We are going to show that every typable�S program can be converted to the ordinary�-calculus where labels
have been erased. Traditional methods of compilation can then be applied.

The basis of this transformation is that for every�S program typable modulo the congruence on types,
there exists an equivalent program typable without the congruence. The constructive proof is by transfor-
mation of the type inference proof tree. The notion of equivalence between programs that we consider is
observational equivalence.

The only problematic rule is(2) for typing applications:

Research Report ISG-RR-95-1



4 Denys Duchier

Mismatch between actual and formal parameters. Notice that� appears in both premises of(2). Con-
gruence may be required to identify the occurrence of� in the left premise (i.e. the type of the formal argument
on label` of abstractionM ) with its occurrence in the right premise (i.e. the type of the actual argumentN ).

Argument out of order. Notice that left premise and conclusion share the same label`. It may well be that
the type inferred forM does not naturally take its first argument on label` but requires congruence to bring
the argument oǹ to the front.

Type driven syntactic transform. In either of the cases we just described, we have an expression whose
inferred type is congruent but not identical to its desired type. We now define a type driven syntactic transform
that maps an expressionN of type� to an equivalent expressionN j� 0� of type� 0. The transformation uses�
conversion to take arguments in the order in which they are given and supply them in the order in which they
are expected. N j�� = NN jf`01)� 01g!���!f`0n)� 0ng!�f`1)�1g!���!f`n)�ng!� = �f`01 ) x1g : : :�f`0n ) xng Nf`1 ) y1j�1� 001 g : : :f`n ) ynj�n� 00n g
whereyi and� 00i are defined by the congruences:f`01 ) � 01g ? � � � ? f`0n ) � 0ng = f`1 ) � 001 g ? � � � ? f`n ) � 00ngf`01 ) x1g ? � � � ? f`0n ) xng = f`1 ) y1g ? � � � ? f`n ) yng
8 Example

Consider the following program whereh r = M meansh = �r M :� fi) vg
let gfa) xgfb) yg = y in
let ffc) xgfd) yg = xfb) yg in

ffa) vgfd) vgfc ) gg
We will not explicitate the whole typing tree; instead we will just look at the program’s last line. It is

clear thatf andg have the following type schemes:g : 8��:fa) �g ! fb) �g ! �f : 8��:fc) fb ) �g ! �g ! fd) �g ! �
Furthermore the inferred type for the occurrence off on the last line is:fc) fb) �g ! fa) �g ! �g ! fd) �g ! fa ) �g ! �
whereas its desired type is:fa) �g ! fd) �g ! fc) fa) �g ! fb ) �g ! �g ! �
Therefore, we must replace the last line with its transform:f jfa)�g!fd)�g!fc)fa)�g!fb)�g!�g!�fc)fb)�g!fa)�g!�g!fd)�g!fa)�g!�= �fa) xg�fd) yg�fc ) zg ffc ) zjfb)�g!fa)�g!�fa)�g!fb)�g!�gfd) ygfa ) xg= �fa) xg�fd) yg�fc ) zg ffc ) �fb) x0g�fa) y0g zfa ) y0gfb) x0ggfd) ygfa ) xg
Thus we obtain the observationally equivalent program:

Simon Fraser University Intelligent Software Group



Compiling The Typed-Polymorphic Label-Selective �-Calculus 5�fi ) vg =
let ffa) xgfb) yg = y in
let gfc) xgfd) yg = xfb) yg in

(�fa) xg�fd) yg�fc ) zg
ffc) �fb) x0g�fa ) y0g zfa ) y0gfb) x0gg fd) ygfa ) xg)fa) vgfd ) vgfc) gg

9 Interpretation Trick

We are now going to show that labels can be erased. First we aregoing to plunge�S into Standard ML. The
trick is to interpret a label̀ both as a type and a data constructor as if defined by:

datatype 0a of ` = l of 0a
Now f` ) eg in an applicationM f` ) eg is interpreted as an application of the data constructor` to
expressione, andf`) xg in an abstraction�f` ) xgM is interpreted as pattern matching.

This interpretation yields an ordinary ML program which is typable with the ordinary ML type system.
This program is observationally equivalent to the original�S program and can be compiled using traditional
techniques.

Erasing labels. Sum types with only one alternative can be erased. Values arepacked by an application
of a constructor̀ before being handed to the receiving function which then immediately unpacks them by
pattern matching. Therefore we can simply erase all labels.

10 Conclusion

We have shown that when�S is equipped with a ML-like type system every program typableusing the
congruence on types can be transformed into an equivalent program typable without the congruence. The
transformation relies on�-conversion: f � �f`) xg ff` ) xg
which preserves observational equivalence: only values ofbase types can be compared; functions are obser-
vationally equivalent iff they produce the same values on all inputs.

Finally, we described a mapping of�S into Standard ML that allowed us to erase all labels and permitted
the application of standard method of compilation.

Our transformation method introduces many abstractions. It may be remarked, however, that many of
them arenon-escaping because they occur only in functional position and do not require closures to be
created on the heap. In fact, since they often just rearrangethe order of arguments, they may sometimes be
completely eliminated by the compiler.

References

[1] Hassan Aı̈t-Kaci, Jacques Garrigue. Label-selective�-calculus. Digital PRL Research Report 31, Paris,
May 1993.

[2] Hassan Aı̈t-Kaci, Jacques Garrigue. Label-selective�-calculus: Syntax and Confluence.

[3] Hassan Aı̈t-Kaci, Jacques Garrigue. The Typed Polymorphic Label-selective�-calculus. Digital PRL
Research Report 35, Paris, Oct 1993.

Research Report ISG-RR-95-1


