
Research Note

Draft (do not distribute)

Reconciling Finite Domains And
Constrained Sorts

Denys Duchier

Draft of 23 November 1995

Copyright c Intelligent Software Group, Simon Fraser University.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research pur-
poses provided that all such whole or partial copies includethe following: a notice that such copying is by
permission of the Intelligent Software Group (ISG) of SimonFraser University (SFU), in Burnaby, British
Columbia (Canada); an acknowledgement of the authors and individual contributors to the work; and all ap-
plicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to the Intelligent Software Group. All rights reserved.

ii

Contents

1 Introduction 1

2 Finite Domains And Sort Hierarchies 1

3 Constrained Sorts 2

4 A Calculus With Entailment 2

5 Constraint Propagation 3

6 Efficient Implementation 4

iii

Reconciling Finite Domains And Constrained Sorts 1

1 Introduction

Logic programming derives much of its appeal from the fact that it allows computation over incompletely
specified objects where the missing parts are filled in as necessary as the computation proceeds. This is what
terms containing logic variables are about. Constraint logic programming extends this approach and allows
constraints to be imposed on the missing parts. The desired answer is thus incrementally approximated by
constraining the shape and domain of the missing parts.

In Life, this view of logic programming as operating on approximations is at the very foundation of the
language and is reflected in the notion of a -term. A -term is asorted extensible record (see e.g. [2]).
The sort hierarchy generalizes the distinction between bound and unbound variables: in Life, there are no
variables, only more or less specialized -terms; what used to be an unbound variable is now an instanceof
the top sort (with no features).

Constraint logic programming over finite domains also encourages the user to think of certain variables
(namely finite domain variables) as incremental approximations of integer values. My purpose in the rest of
the paper is to take a look at the correspondance between finite domains and sort hierarchies, to identify a
technical difficulty with this view when constraints (intentional filters) are attached to sorts, and to propose a
resolution of that problem which in turn suggests a generalization of the finite domain perspective.

2 Finite Domains And Sort Hierarchies

A finite domain variable X is an approximation of a value by theset of values which are consistent with all
current constraints on X. For example, CLP(FD) [3] implements finite domains over small natural numbers
and all constraints have the formX in r wherer is a range expression.

A hierarchy of sorts is a richer structure than a set of groundvalues. Each sort may be regarded as an
approximation of its subsorts. However, unlike a finite domain variable whose range can, in principle, be
any subset of values, a sorted variable can only range over those distinguished subsets corresponding to the
elements of the sort lattice.

Unless we have a complete lattice, in order to recover a flexibility of range similar to that of finite domain
variables, it is necessary to introduce the notion of adisjunctive sort, i.e. a finite disjunction of elements of
the sort lattice. Thusfs1; : : : ; sng1 approximates all the sorts in the union of their downsets.

Unifying sorted variables requires computing the GLB of their sorts. Efficient lattice operations can be
supported using e.g. a bit vector encoding of sorts. As notedby Aı̈t-Kaci etal. [1], disjunctive sorts can be
naturally captured by such an encoding and require no modification of the GLB operation (typically bitwise-
and).

Therefore, in principle, we can lift the idea of computing with finite domains to that of computing with
disjunctive sorts.

Example: Consider the sort hierarchy:
r r rr r r?@@@R?���	 ?���	d e fa b c

and consider the sorted variableX : fb; cg
whose disjunctive sort approximates the union of the downsets of b andc i.e. fb; c; d; e; fg. If we add the
further constraintX : a, then the consistent domain ofX shrinks down tofd; eg.

For the purpose of illustration, we will choose to representsorts using the straightforward bit-vector
encoding of their downset. The necessary computations can be carried out efficiently on this representation:1This is Life syntax for the disjunction of sortss1 throughsn.

Research Note Draft (do not distribute) Draft of 23 November 1995

Reconciling Finite Domains And Constrained Sorts 2

disjunction is bitwise-or and conjunction is bitwise-and.2a b c d e fa 1 0 0 1 1 0b 0 1 0 1 1 0c 0 0 1 0 1 1fb; cg 0 1 1 1 1 1a&fb; cg 0 0 0 1 1 0 � fd; eg
3 Constrained Sorts

In a language such as Life, however, every sorts can be equipped with a set of constraintsc(X) which must
be satisfied by every instanceX of s. Without loss of generality, we can assume that there is exactly one
constraintc(X) per sorts.

Sort constraints are mainly used in two complementary capacities: first, to filter out certain refinements
which do not satisfy a coherence requirement; second, as a means of adding sort specific information to a -term (e.g.all men have male gender).

Let us writeX : fs1; : : : ; sng for a variableX ranging over a disjunctive sortfs1; : : : ; sng, andci(X)
for the constraint associated with sortsi. It may well be thatci(X) is inconsistent with the current context,
in which case we would likesi to be removed fromX ’s range, e.g. by adding the constraintX : :si.

In fact, all si may similarly be incompatible with the context, in which case we should like (indeed
require) that the computation fail immediately.

Consider the earlier example: now suppose thate imposes the constraintX:` = 1 thatX ’s featurè must
be1, and thatf imposesX:` = 2. Now, if X:` is sofar undetermined, both refinements remain possible. IfX:` is known to be1, thenX is inconsistent with the constraint onf ; thereforef must be removed from
its range and we conclude thatX : e. Finally, if X:` is known to be, say,3, then it is incompatible with
bothe andf ; as a consequence, its range is reduced to the empty disjunction and the computation fails and
backtracks.

In general, to determine that a constraint is inconsistent with the current context requires showing that
none of its instances (specializations) can be derived. Forthis reason, in WILD Life, the decision was made
to always enumerate disjunctive sorts: thus, having committed to an alternativesi we can simply addci(X)
to the goal expression to enforce the satisfaction of its associated constraint. Unfortunately, this approach
nullifies our attempt to use disjunctive sorts à la finite domains.

In this paper, I propose a way of reconciling constrained sorts with the finite domain view of disjunc-
tion. My approach is both semantically sound and lends itself to an efficient implementation that preserves
incrementality.

4 A Calculus With Entailment

In [7] Gert Smolka describes a calculus for concurrent constraints with deep guards. It is parametrized by a
constraint theory� and includes a conditional:

if E then F else G
or, more generally:

if 9�x(E then F) else G2Negation is bitwise-complement.

Research Note Draft (do not distribute) Draft of 23 November 1995

Reconciling Finite Domains And Constrained Sorts 3

We are not concerned with the specifics of the calculus here, we merely wish to make use of the conditional
construct and its semantics.

In particular, constraints can be propagated into the guardof a conditional:� ^ if E then F else G � � ^ if � ^E then F else G
The reduction rules for the conditional capture the notion of entailmentanddisentailment:

if ?^E then F else G �! G
if > then F else G �! F

More precisely, for entailment:

if 9�x(E then F) else G �! 9�x(E ^F) when9�xE � >
Given a variableX ranging over a disjunctive sortfs1; : : : ; sng, we wish to filter out as soon as possible

thosesi whose associated constraintci(X) becomes inconsistent with the current context. We achieve this by
posing constraints of the form:if ci(X) then > else X : :si which simultaneously check for entailment or
disentailment ofci(X). In case the constraintci(X) becomes inconsistent with the store, we further impose
thatX cannot be a specialization ofsi — whether there is an efficient way of representing the complement
of a sort entirely depends on the encoding method used and does not affect the present argument.

Unfortunately, ifX suddenly becomes a specialization ofsi beforeci(X) is entailed by the context, we
must addci(X) to the goal toenforce its satisfaction, thereby redoing much of the work already effected by
incremental simplification of the conditionalif ci(X) then > else X : :si.

Instead, we would rather somehow switch from passively checking for entailment or disentailment ofci(X) to actively searching for a resolution-based proof. To achieve this objective, I propose a small extension
of Smolka’s calculus for CCP where guards now have the formE?x:

if E?x then F else Gx can be interpreted as indicating whetherE must be true.?> can be regarded as a kind of modal operator
must be true, whereas?? is an identity. We replace Smolka’s reduction rules for the conditional by the ones
below:

if (?^E)?x then F else G �! x = ?^G
if >?x then F else G �! F
if E?> then F else G �! E ^ F

Every sort constraintci(X) can now be attached to a -termX using two conditionals:

if ci(X)?t then> else X : :si^ if X : si then t = > else t = ?
This technique is related to the notion ofreified constraintsdiscussed e.g. by Henz and Würtz in [4].3

5 Constraint Propagation

A legitimate question is, when we consider a disjunctive sort, and in fact any sort at all (since individual
sorts can be regarded as singleton disjunctions), should wepost only the conditionals corresponding to the
maximal sorts or should we just go ahead and post them forall subsorts as well.

Our view of disjunctive sorts as a generalization of finite domains suggests that this choice may be re-
garded as the distinction betweenpartial lookaheadandfull lookahead.3Thanks to Serge Le Huitouze for pointing out this connectionto me.

Research Note Draft (do not distribute) Draft of 23 November 1995

Reconciling Finite Domains And Constrained Sorts 4

Partial Lookahead: only propagates when the bounds are modified. In the case of disjunctive sorts, the
bounds are the maximal sorts (maximal elements of the downset).

Full Lookahead: propagates for every modification of the domain. In the case of disjunctive sorts, this
means the complete downset, i.e. all the subsorts. In general, full lookahead is obviously a great deal more
expensive than partial lookahead.

6 Efficient Implementation

We presuppose a system which performs incremental checkingof entailment and disentailment simultane-
ously, e.g. usingrelative or situated simplification[5, 6]. x in E?x can be viewed as a status ofnecessity
associated with the store in whichE is being simplified. When this status is set to>, all local bindings are
promoted to the top level and all suspended guards in the store are promoted as top level goals.

References

[1] Hassan Aı̈t-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient implementation of lattice
operations. Technical report, MCC, Jul 1988.

[2] Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaning of life. Technical Report PRL-RR-11, DEC
PRL, May 1993.

[3] Philippe Codognet and Daniel Diaz. Compiling constraints in clp(fd). Journal of Logic Programming.
To appear.

[4] Martin Henz and Jörg Würtz. Using oz for college time tabling. In International Conference on Practice
and Theory of Automated Timetabling. DFKI, 1995.

[5] Andreas Podelski and Peter Van Roy. The beauty and the beast algorithm: Quasi-linear incremental
tests of entailment and disentailment. In Maurice Bruynooghe, editor,Proceedings of the international
Symposium on Logic Programming (ILPS), pages 359–374. MIT Press, Nov 1994.

[6] Andreas Podelski and Gert Smolka. Situated simplification. InProceedings of CP95, 1995.

[7] Gert Smolka. A calculus for higher-order concurrent constraint programming with deep guards. Research
Report RR-94-03, DFKI, February 1994.

Research Note Draft (do not distribute) Draft of 23 November 1995

