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1. Introduction

In (Duchier and Gardent, 1999), we presented a constraint-based ap-
proach for solving tree descriptions and described its application to
the underspecified semantic representation of discourse advocated in
(Gardent and Webber, 1998). As later work showed, the strength of
the proposal is that it provides a general logical framework and a pro-
cessing method which can be tailored depending on the application. For
instance, (Duchier and Thater, 1999) shows that it can be customised
to description-based syntactic parsing while (Egg et al., 1998) adapts
it to deal with underspecified semantic representation at the sentential
level.

In this paper, we indicate how the approach may be further extended
to support incremental discourse processing.

We first give an informal explanation of how descriptions can be
exploited to incrementally process discourse. Thus Section 2 motivates
the use of tree descriptions; Section 3 sketches an architecture for incre-
mental processing which rests on the notion of Solved Forms; Section
4 gives an intuitive introduction to this notion; And Section 5 shows
the architecture at work by going through some example analyses.

We then show how the constraint-based approach to descriptions
presented in (Duchier and Gardent, 1999) can be extended to permit
incremental processing: Section 6 introduces the logical framework used
to talk about trees and section 7 presents a constraint-based method for
computing the partial structures built during incremental processing.
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Our formal presentation follows the recent work of Duchier and Niehren
(2000).

2. Description-Based Incremental Processing

It is well known from the work of M.P.Marcus et al. (1983) and later
psycholinguistic work (Pritchett, 1992; Gorrell, 1995; Sturt and Crocker,
1996) that the use of descriptions of trees rather than trees nicely
supports incremental processing. The crucial observation is that the
use of dominance rather than strict dominance permits (i) a monotone
treatment of attachment ambiguity and (ii) a distinction to be made be-
tween “simple” local ambiguity and “garden-path” local ambiguity (i.e.
ambiguity that leads to conscious reanalysis of the syntactic structure
built so far).

Gardent and Webber (1998) further extend the use of descriptions to
discourse, showing their benefit for incremental discourse processing. In
particular they argue that discourse semantics exhibits the same type
of local ambiguities as sentential syntax (simple and garden-path) and
that therefore the same benefits accrue from the use of descriptions in
incremental near-deterministic discourse processing as in incremental
syntax (additionally, they argue that the use of descriptions permits a
deterministic treatment of global ambiguity).

The question therefore arises of how an incremental processor can be
defined which produces the appropriate descriptions. In the psycholin-
guistic literature (Gorrell, 1995; Sturt and Crocker, 1996), the approach
taken is to define update operations on descriptions which ensure that
the incremented description (i) is tree shaped and (ii) preserves word
order (the sequential order of the leaves in the tree match the order of
the words in the input).

We propose an alternative approach to description-based processing
which rests on a logical perspective. In this approach, descriptions are
viewed as formulae of a tree logic and trees as models satisfying these
formulae. Moreover, solved forms can be derived from descriptions by
means of a normalization process. A solved form is a notion closely
related to that of D-tree (Rambow et al., 1995) and is guaranteed to
be satisfiable.

Within this perspective, incremental processing consists in (i) con-
joining the description built so far with the description associated with
the incoming unit and (ii) computing the solved forms satisfying this
conjunction.

We now informally describe the workings of an incremental discourse
processor based on this idea first by sketching an architecture for dis-
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course level, incremental processing (section 3 and 4) and second by
illustrating its operation by means of examples (section 5).

3. An Architecture for Discourse Processing

Following (Webber and Joshi, 1998; Hitzeman et al., 1995), we view
discourse parsing as not essentially different from sentence parsing. In
both cases, a grammar is used which describes the syntax and the
compositional semantics of natural language. The parser then uses this
grammar to build the appropriate descriptions.

Naturally, the grammar must extend to discourse. We assume a
grammar in the spirit of Webber’s Lexicalised Tree Adjoining Grammar
(LTAG) for discourse (Cristea and Webber, 1997; Webber and Joshi,
1998; Webber et al., 1999) where discourse connectives are treated
either as functors or as modifiers and clauses as arguments of these
functors and modifiers.

To support incremental processing, we further assume that Web-
ber’s LTAG for discourse is modified in two ways. First, the structures
associated by the grammar with the discourse units are descriptions of
trees rather than trees. Second, the syntax/semantic interface is made
precise by using a synchronous LTAG (Shieber and Schabes, 1990) i.e.
two LTAGs, one for the syntax and one for the semantics, which are
interfaced via a synchronisation relation.

In short, the grammar framework we are assuming is a discourse
variant of Kallmeyer’s Synchronous Local Tree Description Grammar
(Kallmeyer, 1998; Kallmeyer, 1999). We assume a synchronous gram-
mar to provide a TAG-like discourse grammar with a well-defined
syntax/semantic interface, and we require that the objects defined by
the grammars be tree descriptions rather than trees in order to support
incremental processing both at the syntactic and at the semantic level.

Given such a grammar, an incremental discourse parser could then
function as follows. As each new discourse unit (i.e. clause or discourse
connective) is processed:

1. The syntactic and semantic descriptions of the new unit, together
with any additional constraints from the syntax/semantics inter-
face, are conjoined to the description accumulated sofar.

2. The resulting description is then subjected to a normalization pro-
cess that produces the corresponding solved forms.

3. If there are no solved forms, the description is not satisfiable and
the parser must backtrack. Otherwise, by appeal to a preference
criterion, it non-deterministically picks one and proceeds with it.
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4. Tree Descriptions, Dtrees and D-Solved Forms

While our formalism (Section 6) is generally more expressive than D-
trees, the latter have the advantage of familiarity and can be more
intuitively presented by means of graphical illustrations. For this rea-
son, we now describe a variant of D-trees called D-solved forms that is
appropriate for introducing our formalism and processing architecture.
This variant is used throughout Section 5 to illustrate incremental
discourse processing.

Rambow et al. (1995) define a D-tree as a tree with domination
edges (d-edges) and immediate domination edges (i-edges). We depart
slightly from their definition and distinguish open and closed nodes:

— a closed node has only i-edges. Its arity is fixed. We do not allow
a non-monotonic operation such as sister-adjunction.

— an open node has only d-edges. Its arity is unknown. We do allow
more than 1 d-edge.

We draw a d-edge as a solid line, an i-edge as a dotted line with the
dominated node lower than the dominating one, a closed node as black
circle, and an open node as a hollow circle. A node may be labelled with
a constant from a given signature: in this case the label is displayed
next to the node.

a b

At each step of incremental processing, the current description is aug-
mented with new material and this new material is related to earlier
one e.g. by d-edges. For example, we might thus obtain a description

of the form:
/N
P\
b
This is not a D-solved form since there is a closed node with an out-

going d-edge. We can obtain a D-solved form either by identifying the
two end-points of the d-edge, or by propagating the d-edge downward
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to one of the daughters. Thus, in this case, there are three possible
D-solved forms:

Ao AR
Ne AN,

Often, constraints of labeling or precedence can make the process of
obtaining a D-solved form deterministic. Consider:

A
A

Identification of the nodes labeled f and g is not possible since f # g.
Also the node labeled c is closed, has no daughters, and cannot be
identified with the node labeled g. Therefore only one D-solved form

remains:
A\
: C
/N
b

This result can be derived purely through deterministic inference. In

Section 6.4, we will make precise both the system of inference rules and
the formal definition of a D-solved form.

5. Incremental Processing Illustrated

We now describe an idealised analysis of examples involving simple
and garden-path ambiguity. The analysis is idealised in that it assumes
— rather than uses — the incremental discourse processor sketched in
section 3. In other words, the input descriptions are given by reasoning
about the syntax/semantic interface of the input discourse rather than
by the parsing process.

Given this simplifying assumption, we show that the solved forms
computed from the input descriptions either support determinism (in
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the case of simple ambiguity) or force backtracking (in the garden-path
cases).

5.1. ATTACHMENT AMBIGUITY

When processing incrementally, it is sometimes unclear how far below
an already existing node, the incoming structure should be attached.
Such ambiguity is known in the literature as attachment ambiguity. It
is illustrated by the following examples.

(1) On the one hand (a) Jon is content.
On the other hand (b) Mary isn’t.

(2) On the one hand (a) Jon is content if (b) he can read a novel.
On the other hand (c¢) He is too poor to buy books.

(3) On the one hand (a) Jon is content if (b) he can read a novel or if
(c) he can go to the movies
On the other hand (d) He is too poor to do either.

Figure 1 gives the syntactic and semantic structures associated with
examples (1) and (2). The gray arrows indicate the relations of synchro-
nization between syntax and semantics. As these structures show, (a)
might attach arbitrarily low in the syntactic as well as in the semantic
structure.

a b

otoh Sa otoh Sh

contrast
: S \.h\. /@\ c
oto oto S
‘ b VAN a
Sa if Sp

Figure 1. Attachment Ambiguity

Attachment ambiguities raise two issues. First, a representation must
be found which is compatible with the theoretically infinite set of possi-
ble continuations. Second, since such ambiguities do not lead the hearer
down the garden path, the chosen representation must only commit to
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those aspects of syntax/meaning which cannot be defeated by later
information.

Now we know from Marcus’ work and from related work in psy-
cholinguistics (Pritchett, 1992; Gorrell, 1995; Sturt and Crocker, 1996)
that tree descriptions provide the right amount of underspecification
to solve both these issues: by using dominance rather than strict dom-
inance, a finite representation of the syntactic tree can be obtained
which is compatible with every possible completion of the sentence.

The question we are addressing is this: How can the appropriate tree
descriptions be built incrementally from the input discourse?

We illustrate this process by going through the semantic derivation
of example (2) and showing how, given some standard assumptions
about the syntax/semantic interface, the appropriate solved forms can
be computed from the conjunction of the description built so far with
the description of the incoming basic discourse unit.

For the purpose of this paper, we take basic discourse units to be
either discourse connectives or clauses. The first basic discourse unit
in example (2) is on the one hand, a discourse connective which at
the semantic level, denotes a relation of contrast between two eventu-
alities. This is captured by associating with it the following semantic

representation:
O/Q]tra st

Next the (a) clause Jon is content is processed. Syntactically, s, must
be part of the first argument of the connective on the one hand/on
the other hand since (i) S, is right-adjacent with on the one hand and
(ii) on the other hand has not yet been processed. By compositionality,
the semantic representation a of S, must therefore be part of the first
semantic argument of the contrast relation. Hence, the solved form for
on the one hand, Jon is content is:

Nr%t
*3
Intuitively, this solved form indicates that at this stage in processing,
the interpretation available to the hearer/reader is that there is a re-
lation of contrast holding between the eventuality denoted by s, and
some other eventuality.
Now consider how processing continues in a case where the (a) clause
turns out to attach lower in the tree e.g. in the case of example (2).
Next if is encountered which is associated with a semantic represen-
tation similar to that of on the one hand/on the other hand but where
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the relation labelling the root node is cond (for “condition”) rather than
contrast. By the same reasoning as for S,, the semantics of if must be
part of the first semantic argument of on the one hand/on the other
hand. Furthermore, since infix if requires a left-hand argument and s, is
left-adjacent to if, S, must be part of this left-hand syntactic argument
and consequently, its semantics a must be part of the consequent of
the conditional. Given this, the solved form for on the one hand, Jon
is content if will be:

contrast

N
°a
Moreover, since all the material to the left of if has been processed,
the consequent argument of the conditional can be closed:

Nrast
a

Thus the parser processes attachment ambiguity deterministically by
monotonically adding information to the current description and each
time computing the corresponding solved form.

5.2. PREFERENCE CRITERION AND GARDEN PATH SENTENCES

From a psycholinguistic perspective, two types of ambiguities are gen-
erally distinguished: those that lead to processing difficulties (conscious
re-analysis) and those that do not (unconscious re-analysis).

In the preceding section, we saw how solved forms support a de-
terministic treatment of discourse-level ambiguities which intuitively
do not seem to involve conscious re-analysis namely, attachment am-
biguities. We now show that not all discourse level ambiguities can be
processed deterministically within our framework and thereby predict,
as for sentential syntax, that discourse level ambiguities can be of
two types: those that can be processed deterministically within the
description framework and those that cannot.

The examples we consider are the following:

(4) Because (a) Jon is easily upset, whenever (b) he flies, (c¢) he gets
very nervous.
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(5) Because (a) Jon is easily upset, whenever (b) he flies, (c¢) he goes
to Paris for example, (d) he should practice yoga.

(6) Because (a) Jon is easily upset, whenever (b) he flies, (c¢) he gets
very nervous for example, (d) he should practice yoga.

Intuitively, there is a stark contrast in processing ease between (4)
and (6): whereas (4) is easy to process, (6) is much more difficult and
seems to involve a garden path effect. The situation is less clear in
(5) though there seems to be a slight increase in processing difficulty
relative to (4). In what follows, we show that the description based
framework sketched here predicts these differences and thereby offers a
basis for experimental testing. Whereas (4) can be processed determin-
istically and (5) implies a very limited backtrack, (6) involves extensive
backtracking.

We first go through the derivation for (4). By a reasoning similar to
that for example (2) above, after processing the (a) clause the solved

form is:

Ne

¢a
Next whenever is processed extending the description with a binary tree
representing the when relation. Since the connective because requires
two right-hand arguments and whenever is the second basic discourse
item occurring to its right, the proposition expressed by whenever
and its arguments must be within the scope of because. Hence the
description associated with Because (a) Jon is easily upset, whenever
is:

~gause
‘ a ::

This description has two solved forms:

cause (7) cause (8)
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Argument Filling Principle. In order to preserve determinism, some
preference criterion must be determined which permits choosing be-
tween the two forms. We use a criterion (henceforth called the Argument
Filling Principle) similar to Gorrell’s (1995) Incremental Licensing
principle or to Sturt and Crocker’s (1996) preference for substitution
over adjunction: we prefer normal forms which provide material for an
earlier argument that was so far empty. Thus here, we prefer (8) because
it provides material for the second argument of the cause relation whilst
(7) leaves it empty. If we (standardly) assume that the arguments of a
discourse relation are given by adjacent material, the fact that whenever
is committed to being part of the second argument of because means
that the latter’s first argument is now closed: it cannot be extended by
material occuring later in the discourse. Thus the solved form now is:

cause
a

_Aghen

Next the (b) clause is processed which given the syntax and semantics of
whenever can only be part of its first syntactic and semantic argument:

cause
a

s when
b

Again since whenever takes two arguments and the (c) clause is the
second basic discourse item to its right, (¢) must be within the syntactic
and semantic scope of whenever. Given the resulting constraints, we
again have two solved forms:

P W s

b oﬁ Eo C C ;

By the Argument Filling Principle mentioned above, (10) is preferred
because it fills the second valency of whenever instead of leaving it
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empty. As a result, the reading obtained for (4) is:

cause
a when
b C

This shows that example (4) can be processed deterministically. Now
consider how the derivation would proceed given example (5). In this
case, the next discourse item is the connective for example which takes
two arguments to its left. This cannot be satisfied in (10), therefore we
must backtrack: (9) is the chronologically closest alternative and allows
b and c as arguments for the semantic relation of evidence. Since for
example occurs to the right of the corresponding clauses, no further
material can be added to these arguments and so they can be closed.
The resulting solved form is:

cause
a .

A
evibd% ]

Finally, the (d) clause is processed which permits filling the open va-
lency of whenever. The following semantic representation is therefore
assigned to (5).

(11)

Thus for examples such as (5), the approach predicts a limited back-
tracking. Intuitively at least, this matches the fact that example (5)
is relatively easy to process: the garden path effect induced by “for
instance” is very mild.

Now consider again example (6), in which the garden path effect
is much stronger. In this case, backtracking to the solved form in (9)
is not sufficient because it would involve an evidence relation to be
posited between (6b) and (6¢) and this is ruled out by pragmatics:
he gets very nervous cannot be taken as giving evidence for he flies.
Therefore we must backtrack further and start from the next alternative
namely (7). By the same argument as before, b must be in the first
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argument of when.

cause

o3 /%hin
ob
Further, ¢ must be below when since the latter doesn’t have all its
arguments yet. Again we obtain two normal forms:

N " e ()
*a /w)n .a/w)

b « o c : ;
e b ¢ C
Following the argument filling principle, we prefer (13). Now evidence
needs to find two arguments using material on the left: the only possi-
bilities are a and the subtree rooted in when. Moreover the tree below
evidence can be closed since it is formed only from earlier material.

Ne

evidence
a when
C

Finally d fills the second argument of cause and so we obtain the
following semantic representation for (6).
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6. Dominance Constraints

In this section, we introduce a logical framework for tree descriptions.
In 6.1 we introduce a language of dominance constraints for writing tree
descriptions. In 6.2 we give its semantics by interpretation over finite
tree structures. In 6.3 we intuitively motivate the notion of solved form,
and in 6.4 we formally define it in terms of saturation with respect to
a system of inference rules.

6.1. LANGUAGE

In (Duchier and Gardent, 1999), we followed a classical presentation of
dominance constraints in which a tree description is given by a conjunc-
tion of dominance literals z <* y and labeling literals z:f(z1,...,zy)
where variables denote nodes in the tree. x <* y expresses that the
node denoted by z is equal to or a proper ancestor of the node denoted
by y and z:f(z1,...,2z,) expresses that the node denoted by x must
be formed from the n-ary constructor f and the sequence of daughter
nodes denoted by z; through z,.

However, the constraint treatment we proposed turned out to be
more general and the added expressivity was noticed by Duchier and
Niehren (2000) and formalized under the name of dominance con-
straints with set operators. It is this revised formulation which we adopt
now. The abstract syntax of dominance constraints with set operators
is given by:

¢ == zRy ‘ z:f (1., Tp) | ¢/\¢’

where z, y, z; range over an infinite set of node variables, f ranges over
a finite signature 3, and R ranges over arbitrary subsets of the relation
symbols {=, <", >%, 1}. The symbol <" denotes proper dominance
and L represents disjointness. In a dominance literal z Ry, R is called
a set operator and is given a disjunctive interpretation: one of the
relations in R must hold between the nodes denoted by z and y. For
example z {=, L} y is satisfied either if the nodes denoted by = and y
are equal, or if they lie in disjoint subtrees.

In all tree structures we have =(z Ry) = x—Ry and z (R; U Rg) y =
z Ry V z Roy. Thus set operators introduce a controlled form of
negation and disjunction without admitting full propositional connec-
tives.

The formal account can be straightforwardly extended to permit
relations of precedence, see e.g. (Duchier and Thater, 1999). In this
case the set of relation symbols is {=, <%, >, <, ~}.
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6.2. SEMANTICS

The semantics of dominance constraints with set operators are given
by interpretation over finite tree structures. We identify a node in a
tree with the path that leads to it starting from the root. A path = is
a word (i.e. a sequence) of positive integers. We write e for the empty
path and 779 for the concatenation of m; and my. We say that 7’ is a
proper prefix of 7, and write 7' < 7, if there exists 7" # € such that
m = 7'n". We say that m is disjoint from 7y, and write m; L 7, when
there exist paths m, 7}, 7} and integers i # j such that m; = min} and
g = mjmh. A tree-domain is a non-empty prefix-closed set of paths.
A finite tree 7 is a triple (D;, L;, A;) of a finite tree-domain D, a
labeling function L, : D, — ¥, and an arity function A, : D, — N,
and such that for all m € D,, i € D, iff 1 <7 < A (7).

We write V;; for the set of variables occurring in ¢. A model of ¢ is
a pair (7, ) of a finite tree 7 and a variable assignment o : V; — D,
mapping each variable of ¢ to a node in 7. We write (7, @) |= ¢ for the
relation of satisfaction and define it as follows:

(Ta a) |: ¢ A QSI if (Ta O{) — ¢ and (Ta Cl{) |: ¢’
(r,a) Ez Ry if a(z) ra(y) for somer € R
(r,a) Exif(xy,...,20) if LT(oz(as))) =f A

n A

Koller et al. (1998) have shown that the satisfiability of propositional
logic formulae can be reduced to the satisfiability of dominance con-
straints over a signature containing a binary constructor cons and two
constants, true and false, thus establishing an NP-hardness result.

6.3. MODELS AND SOLVED FORMS

A practical solver cannot simply attempt to enumerate the models of
a description: if 7 is a model of ¢, then any tree 7/ which contains 7
is also a model of ¢. Thus, whenever a description is satisfiable, it has
infinitely many solutions.

Consider the example below. On the right, is a description ¢ and on
the left is a possible tree model where each variable is listed next to
the node which it denotes.
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fe x1 2 f(z2,2y)
T <" x7

1 <* 210

To <* x4

T <" 211

T4 <I* 24

T4 <* x4

x7 : f(2s, 29)
z11 : f(z12, 213)
Ir13:C

N fa_ T
C Ts5,T12 C 167IW ®
f rs T9

C ® 19 ce ce ce

>>>>>>>> >

There is much in this tree which is not required to model ¢. All the
superfluous information is shown in gray. If we remove the gray parts,
we are left with a much simpler tree shape:

P
<$2_. T3
5, T12 C Te,T13 ? xrs X9

O zi9

Such a shape is what we introduced in Section 4 under the name of D-
solved forms. It may be helpful to draw an analogy between D-solved
forms and most-general unifiers. Firstly, just like a most general unifier
instantiates two terms only as far as necessary to make them equal, a
D-solved form explicitates only as much of the shape of the tree as is
necessary to model the description. Secondly, if there is a unifier for
an equation t; = to between first-order terms, then there exist ground
solutions. Similarly, if ¢ has a D-solved form, then there exist finite
trees which satisfy it.

6.4. SOLVED FORMS AND INFERENTIAL SATURATION

Hopefully, the intuition underlying the notion of D-solved form has
become clear and we now define it formally. In this, we follow Duchier
and Niehren (2000) who describe an abstract solver based on inferen-
tial saturation according to the propagation and distribution rules of
Figure 2.

The process of inferential saturation is defined as follows: a propa-
gation rule has the form ¢; — ¢ and is said to apply to ¢ whenever
$1 C ¢ and ¢ \ ¢ # (. In this case, we proceed with ¢ A ¢o. A
distribution rule has the form ¢; — ¢, V ¢} and is said to apply when
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Propagation Rules

zfly — false
— 'z
ry N y<tz — gtz
x:f(xla"'axn) A yf(ylaayn) Nrx=y — z,=Yi
zf(..) ANyg(l.) — x-o=y iff#g
ef(. 2. mj,...) — x;Llx; ifi#j
zf(...,y,...) — zaty
zRiy N xRy — z(RiNRy)y
Ry — xRy if RCR
tRy — yR 'z
zly Ny<tz — zxlz
rd*z Ny<*z — z-ly
r<*y A xif(zy,...,20) AN ANz <"y — x=y

Distribution Rules
x<*y AN xif(xr,...,2,)
z-ly

<y V ox; <ty
r<*y V z-adty

Ll

Figure 2. Rule System of Duchier & Niehren

$1 C ¢, ph\ ¢ # 0 and ¢4\ ¢ # 0. In this case, we non-deterministically
proceed with either ¢ A ¢ or ¢ A ¢l.

A D-solved form of ¢ is a saturation of ¢ that does not contain
false. In other words, it is a consistent saturation of ¢. Duchier and
Niehren (2000) proved that a D-solved form is satisfiable and that the
saturation-based solver is sound and complete.

The first alternative of the first distribution rule implements the
propagation of a d-edge downward to a daughter as we described in
Section 4. Repeated application of its second alternative together with
the last propagation rule implements identification.

The second distribution rule takes care of descriptions which are
not yet tree shaped. A classical example is quantifier scope ambiguity.
Consider the sentence “every yogi has a guru” whose underspecified
semantic representation in the spirit of (Egg et al., 2000) albeit much
simplified is:

/o\wq /‘\w‘]
yogi . guru

has
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In conjunction with the next-to-last propagation rule, the 2nd distri-
bution rule derives the two D-solved forms below which correspond to
the two possible scoping arrangements:

/-\wo /\FXI{Q
yogi : guru

-/‘\wo ./\%
guru : yogi

o o
has has
A D-solved form is defined as a consistent saturation of a description.
The graphical representation which we have been using is essentially a
convenient summary of the D-solved form, where redundant constraints
have been omitted, in particular all literals x <1* y which can be deduced
by transitivity (3rd propagation rule).

While the graphical representation is intuitive and helpful for il-
lustration, it is not as expressive as the formalism and some literals
present in a D-solved form cannot always be faithfully represented. For
example literals of strict dominance z <\ 3y and of disjointness = L y.

7. Constraint-Based Incremental Parsing

The NP-hardness result of Koller et al. (1998) is not a show-stopper, but
it requires that a practical solver devise very effective means to address
the combinatorial complexity of the task, for example by drastically
reducing the number of choices that need be considered.

An approach based on constraint propagation has proven particu-
larly successul. Efficient constraint programming solvers can be derived
by transformation of a dominance constraint into a constraint satisfac-
tion problem on finite sets (Duchier and Gardent, 1999; Duchier and
Niehren, 2000).

7.1. ENCODING INTO FINITE SETS CONSTRAINTS

The idea of the encoding is based on the Up, Eq,
following observation: when viewed from a Side, Downy
specific node z, the nodes of a solution tree
are partitioned into 4 regions: the node interpreting x. all nodes above,
all nodes below, and all nodes to the side. Therefore the variables which
these nodes interpret are similarly partitioned into 4 sets and the idea
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is to introduce set variables to represent them, then express and solve
the problem in terms of these variables.

We are going to present an encoding which transforms a description
¢ into a constraint satisfaction problem (CSP) [¢] expressed solely in
terms of variables ranging over finite domains of integers and variables
ranging over finite sets of integers. We write V; for the set of node
variables in ¢. In [¢], every € V,; must be encoded by a distinct
integer; similarly, every f € ¥. However, in the interest of legibility, we
will leave all such trival encodings implicit. Our encoding consists of
three parts:

Representation. for each node variable z, A;(z) expresses the local
invariants for the CSP variables introduced for z.

Well-formedness constraints. for each pair of node variables z,,
Ag(z,y) expresses the well-formedness constraints that must be
satisfied for a solution to be tree-shaped.

Problem-specific constraints. Az[¢] forms the problem-specific con-
straints that restrict admissibility to only those tree shapes that
actually satisfy ¢.

7.2. REPRESENTATION

We restrict ourselves to trees with a maximum arity (i.e. branching
factor) MAX. For the purpose of this paper, MAX can be the maximum
arity used in the input description ¢. For each variable z € Vj, we
introduce 7+MAX set variables written Eq,, Up,, Downg, Side,, Equp,,,
Eqdown,,, Parent,, Down; for 1 <4 < MAX, and one integer variable
Label,. First, we state that x is indeed one of the variables interpreted
by the node which it denotes:

z € Eq, (14)

Eq,. Up,, Down,, Side, encode the set of variables that are respectively
equal, above, below and to the side (i.e. disjoint) of x. Thus we have:

Vo = Eq, & Up, & Down, & Side,

As described in (Duchier and Niehren, 2000), we must improve prop-
agation by introducing Eqdown, and Equp, as intermediate results:

Eqdown, = FEq, ¥ Down, (15)
Equp, = Eq, ¥ Up, (16)
Vs = Eqdown, ¥ Up, & Side, (17)

Vs = Equp, W Downg & Side, (18)
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Down’, encodes the sets of variables in the subtree rooted at z’s ith
daughter (empty if there is no such daughter):

Down, = W{Downl, | 1 <1i < MAX} (19)
The contribution Aq(z) to the encoding is defined by:

Ai(z) = (14) A (15) A (16) A (17) A (18)

7.3. WELLFORMEDNESS

Posing R = {=,<",>%, 1}, the relationship R, that obtains in a
solution tree between the nodes denoted by z and y must be one in R.
For each r € R, we can formulate corresponding constraints D[z ry] on
the variables of the CSP that must be satisfied in this case. Similarly
for the negation D[z —r y].

D[z =y] = Eq,=Eq, A Up,=Up, A Downy=Down, A Side,=Side,
N Eqdown,=Eqdown, N\ Equp,=Equp,
A Parent,=Parent, A Label,=Label, \; Downy=Down,,
D[z -=y] = Eq, || Eq,
D[z <t y] = Eqdown,, C Downy, A\ Equp, C Up, A Side, C Side,
D[z =<* y] = Eq, || Up, A Doun, || Eq,
D[z L y] = Eqdown, C Side, A Eqdown,, C Side,
Dlz —Ly] = Eq, || Sidey A Side, || Eg,

With these, we can formulate a quadratic number of wellformedness
constraints. For each r € R and z,y € Vi:

Dlzry| ARy =r or Ry #rAD[z-ry] (20)

R,y € R (21)

The contribution As(z,y) to the encoding is defined by:

Ar(z,y) = A{(20) [r e R} A(21)

Disjunctive Propagators. The construct (C or C3) used in (20) is
called a disjunctive propagator. It has the declarative semantics of
disjunction but its operational semantics are those of a constraint
rather than a choice point: when C; becomes inconsistent with the
constraints derived so far, then (Cy or C3) commits to (i.e. infers)
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the other alternative Cj, for {4,j} = {1,2}. A formal statement of its
semantics can be found in (Duchier and Niehren, 2000).

7.4. PROBLEM SPECIFIC CONSTRAINTS

The last part of the encoding forms the problem-specific constraints
that further limit the admissibility of well-formed solutions and only
accepts those which actually satisfy ¢.

As[p A '] = As[g] A As[¢]
Aslx Ry] = Ry €R
As[z:f(z1,...,2n)] = Label, = f
NiZwiX Downg, = 0)
Nzt (Parenty; = Eq, A
Down;, = Eqdown,,, A
Up,,, = Equp,)

7.5. STATING AND SOLVING THE CSP

We can now formulate the full encoding by conjoining the contributions
defined above.

[¢] = xe/\v¢ Ai(z) x’y/é% Ao(z,y) N As[d]
To solve [¢] is to find assignments to the CSP variables so that [¢]
is satisfied. This is realized by alternating steps of propagation and
distribution.

Constraint propagation performs deterministic inference that shrinks
the set of possible values that may be assigned to each variable. This
set of values is called the domain of the variable. When only one value
remains in its domain, we say that the variable is determined, i.e. its
assignment has been decided.

When, after propagation, there are still undetermined variables, a
step of distribution must be performed: one non-determined variable is
selected, its domain is split in two non-empty parts and one of them is
non-deterministically chosen as its new domain.

In reality, we do not need to find complete assignments to all vari-
ables, rather we need only restrict their domains enough to reach a
solved form. Duchier and Niehren (2000) prove that it is sufficient
to adapt the distribution rules given in Figure 2 as follows. For each
z:f(z1,...,2,) € pand y € Vy:

Ry € {=,<9%} — Ryy,€{=<"} V Ry, & {=,<"}
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and for all z,y € Vy:
ny 7'5 lzr — Rzy € {:7 <]+} \ ny € {:’ <]+}

In either case, a distribution step splits the domain of a R, into a
subset of {=, <"} and a subset of its complement.

7.6. INCREMENTAL PROCESSING

We now indicate how the encoding and constraint-based method de-
scribed above can be adapted to support the incremental processing
of descriptions. In this view, processing consists of alternating steps of
information acquisition and processing. The description ¢ is not given
entirely up front; instead it is incrementally acquired.

Surprisingly enough, this has no impact on our encoding: we need
simply accommodate the fact that both ¢ and therefore V;; are only
incrementally revealed. This is easily achieved (i) by representing, in
the CSP, V;; as a set variable which is merely constrained to contain the
node variables which have been revealed so far, (ii) by incrementally
producing additional constraints for the CSP as more conjuncts of
¢ and more node variables become available. We omit the details of
this procedure, as they should be fairly obvious when looking at the
encoding.

At each step we derive all corresponding solved forms. An incre-
mental near-deterministic solver can be obtained with the addition
of a preference criterion, such as the Argument Filling Principle of
Section 5, that allows us to chose one solved form before proceeding to
the next step.

8. Conclusion

In this paper, we proposed a new application for the constraint-based
treatment of descriptions presented in (Duchier and Gardent, 1999)
namely, incremental discourse parsing. Specifically, we have argued
that, given the appropriate parsing architecture, this constraint-based
approach could be tailored to produce the partial structures built dur-
ing the incremental interpretation of discourse.

Two important questions remain open. In section 3, we suggest using
a discourse variant of Kallmeyer’s Synchronous Local Tree Description
Grammars to produce the descriptions from which the partial struc-
tures built during incremental processing are computed. This implies
that the descriptions the constraint solver works with are synchronous
descriptions. It is a matter for further research how the contraint-based
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treatment of descriptions presented in section 7 can be extended to deal
with synchronisation.

A second open issue concerns the cognitive plausibility of our model.
As illustrated in section 5, this model predicts different levels of pro-
cessing difficulty thereby providing a basis for experimental validation.
It would be interesting to test whether the predictions made by the
model are empirically correct.
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