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s1. Introdu
tionIn (Du
hier and Gardent, 1999), we presented a 
onstraint-based ap-proa
h for solving tree des
riptions and des
ribed its appli
ation tothe underspe
i�ed semanti
 representation of dis
ourse advo
ated in(Gardent and Webber, 1998). As later work showed, the strength ofthe proposal is that it provides a general logi
al framework and a pro-
essing method whi
h 
an be tailored depending on the appli
ation. Forinstan
e, (Du
hier and Thater, 1999) shows that it 
an be 
ustomisedto des
ription-based synta
ti
 parsing while (Egg et al., 1998) adaptsit to deal with underspe
i�ed semanti
 representation at the sententiallevel.In this paper, we indi
ate how the approa
h may be further extendedto support in
remental dis
ourse pro
essing.We �rst give an informal explanation of how des
riptions 
an beexploited to in
rementally pro
ess dis
ourse. Thus Se
tion 2 motivatesthe use of tree des
riptions; Se
tion 3 sket
hes an ar
hite
ture for in
re-mental pro
essing whi
h rests on the notion of Solved Forms; Se
tion4 gives an intuitive introdu
tion to this notion; And Se
tion 5 showsthe ar
hite
ture at work by going through some example analyses.We then show how the 
onstraint-based approa
h to des
riptionspresented in (Du
hier and Gardent, 1999) 
an be extended to permitin
remental pro
essing: Se
tion 6 introdu
es the logi
al framework usedto talk about trees and se
tion 7 presents a 
onstraint-based method for
omputing the partial stru
tures built during in
remental pro
essing.

 2000 Kluwer A
ademi
 Publishers. Printed in the Netherlands.
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2Our formal presentation follows the re
ent work of Du
hier and Niehren(2000). 2. Des
ription-Based In
remental Pro
essingIt is well known from the work of M.P.Mar
us et al. (1983) and laterpsy
holinguisti
 work (Prit
hett, 1992; Gorrell, 1995; Sturt and Cro
ker,1996) that the use of des
riptions of trees rather than trees ni
elysupports in
remental pro
essing. The 
ru
ial observation is that theuse of dominan
e rather than stri
t dominan
e permits (i) a monotonetreatment of atta
hment ambiguity and (ii) a distin
tion to be made be-tween \simple" lo
al ambiguity and \garden-path" lo
al ambiguity (i.e.ambiguity that leads to 
ons
ious reanalysis of the synta
ti
 stru
turebuilt so far).Gardent andWebber (1998) further extend the use of des
riptions todis
ourse, showing their bene�t for in
remental dis
ourse pro
essing. Inparti
ular they argue that dis
ourse semanti
s exhibits the same typeof lo
al ambiguities as sentential syntax (simple and garden-path) andthat therefore the same bene�ts a

rue from the use of des
riptions inin
remental near-deterministi
 dis
ourse pro
essing as in in
rementalsyntax (additionally, they argue that the use of des
riptions permits adeterministi
 treatment of global ambiguity).The question therefore arises of how an in
remental pro
essor 
an bede�ned whi
h produ
es the appropriate des
riptions. In the psy
holin-guisti
 literature (Gorrell, 1995; Sturt and Cro
ker, 1996), the approa
htaken is to de�ne update operations on des
riptions whi
h ensure thatthe in
remented des
ription (i) is tree shaped and (ii) preserves wordorder (the sequential order of the leaves in the tree mat
h the order ofthe words in the input).We propose an alternative approa
h to des
ription-based pro
essingwhi
h rests on a logi
al perspe
tive. In this approa
h, des
riptions areviewed as formulae of a tree logi
 and trees as models satisfying theseformulae. Moreover, solved forms 
an be derived from des
riptions bymeans of a normalization pro
ess. A solved form is a notion 
loselyrelated to that of D-tree (Rambow et al., 1995) and is guaranteed tobe satis�able.Within this perspe
tive, in
remental pro
essing 
onsists in (i) 
on-joining the des
ription built so far with the des
ription asso
iated withthe in
oming unit and (ii) 
omputing the solved forms satisfying this
onjun
tion.We now informally des
ribe the workings of an in
remental dis
oursepro
essor based on this idea �rst by sket
hing an ar
hite
ture for dis-
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3
ourse level, in
remental pro
essing (se
tion 3 and 4) and se
ond byillustrating its operation by means of examples (se
tion 5).3. An Ar
hite
ture for Dis
ourse Pro
essingFollowing (Webber and Joshi, 1998; Hitzeman et al., 1995), we viewdis
ourse parsing as not essentially di�erent from senten
e parsing. Inboth 
ases, a grammar is used whi
h des
ribes the syntax and the
ompositional semanti
s of natural language. The parser then uses thisgrammar to build the appropriate des
riptions.Naturally, the grammar must extend to dis
ourse. We assume agrammar in the spirit of Webber's Lexi
alised Tree Adjoining Grammar(LTAG) for dis
ourse (Cristea and Webber, 1997; Webber and Joshi,1998; Webber et al., 1999) where dis
ourse 
onne
tives are treatedeither as fun
tors or as modi�ers and 
lauses as arguments of thesefun
tors and modi�ers.To support in
remental pro
essing, we further assume that Web-ber's LTAG for dis
ourse is modi�ed in two ways. First, the stru
turesasso
iated by the grammar with the dis
ourse units are des
riptions oftrees rather than trees. Se
ond, the syntax/semanti
 interfa
e is madepre
ise by using a syn
hronous LTAG (Shieber and S
habes, 1990) i.e.two LTAGs, one for the syntax and one for the semanti
s, whi
h areinterfa
ed via a syn
hronisation relation.In short, the grammar framework we are assuming is a dis
oursevariant of Kallmeyer's Syn
hronous Lo
al Tree Des
ription Grammar(Kallmeyer, 1998; Kallmeyer, 1999). We assume a syn
hronous gram-mar to provide a TAG-like dis
ourse grammar with a well-de�nedsyntax/semanti
 interfa
e, and we require that the obje
ts de�ned bythe grammars be tree des
riptions rather than trees in order to supportin
remental pro
essing both at the synta
ti
 and at the semanti
 level.Given su
h a grammar, an in
remental dis
ourse parser 
ould thenfun
tion as follows. As ea
h new dis
ourse unit (i.e. 
lause or dis
ourse
onne
tive) is pro
essed:1. The synta
ti
 and semanti
 des
riptions of the new unit, togetherwith any additional 
onstraints from the syntax/semanti
s inter-fa
e, are 
onjoined to the des
ription a

umulated sofar.2. The resulting des
ription is then subje
ted to a normalization pro-
ess that produ
es the 
orresponding solved forms.3. If there are no solved forms, the des
ription is not satis�able andthe parser must ba
ktra
k. Otherwise, by appeal to a preferen
e
riterion, it non-deterministi
ally pi
ks one and pro
eeds with it.
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4 4. Tree Des
riptions, Dtrees and D-Solved FormsWhile our formalism (Se
tion 6) is generally more expressive than D-trees, the latter have the advantage of familiarity and 
an be moreintuitively presented by means of graphi
al illustrations. For this rea-son, we now des
ribe a variant of D-trees 
alled D-solved forms that isappropriate for introdu
ing our formalism and pro
essing ar
hite
ture.This variant is used throughout Se
tion 5 to illustrate in
rementaldis
ourse pro
essing.Rambow et al. (1995) de�ne a D-tree as a tree with dominationedges (d-edges) and immediate domination edges (i-edges). We departslightly from their de�nition and distinguish open and 
losed nodes:� a 
losed node has only i-edges. Its arity is �xed. We do not allowa non-monotoni
 operation su
h as sister-adjun
tion.� an open node has only d-edges. Its arity is unknown. We do allowmore than 1 d-edge.We draw a d-edge as a solid line, an i-edge as a dotted line with thedominated node lower than the dominating one, a 
losed node as bla
k
ir
le, and an open node as a hollow 
ir
le. A node may be labelled witha 
onstant from a given signature: in this 
ase the label is displayednext to the node. ffa b 
At ea
h step of in
remental pro
essing, the 
urrent des
ription is aug-mented with new material and this new material is related to earlierone e.g. by d-edges. For example, we might thus obtain a des
riptionof the form: f f bThis is not a D-solved form sin
e there is a 
losed node with an out-going d-edge. We 
an obtain a D-solved form either by identifying thetwo end-points of the d-edge, or by propagating the d-edge downward
revision.tex; 17/10/2000; 16:27; p.4



5to one of the daughters. Thus, in this 
ase, there are three possibleD-solved forms: f b ff b f f bOften, 
onstraints of labeling or pre
eden
e 
an make the pro
ess ofobtaining a D-solved form deterministi
. Consider:f 
g bIdenti�
ation of the nodes labeled f and g is not possible sin
e f 6= g.Also the node labeled 
 is 
losed, has no daughters, and 
annot beidenti�ed with the node labeled g. Therefore only one D-solved formremains: fg b 
This result 
an be derived purely through deterministi
 inferen
e. InSe
tion 6.4, we will make pre
ise both the system of inferen
e rules andthe formal de�nition of a D-solved form.5. In
remental Pro
essing IllustratedWe now des
ribe an idealised analysis of examples involving simpleand garden-path ambiguity. The analysis is idealised in that it assumes{ rather than uses { the in
remental dis
ourse pro
essor sket
hed inse
tion 3. In other words, the input des
riptions are given by reasoningabout the syntax/semanti
 interfa
e of the input dis
ourse rather thanby the parsing pro
ess.Given this simplifying assumption, we show that the solved forms
omputed from the input des
riptions either support determinism (in
revision.tex; 17/10/2000; 16:27; p.5



6the 
ase of simple ambiguity) or for
e ba
ktra
king (in the garden-path
ases).5.1. Atta
hment ambiguityWhen pro
essing in
rementally, it is sometimes un
lear how far belowan already existing node, the in
oming stru
ture should be atta
hed.Su
h ambiguity is known in the literature as atta
hment ambiguity. Itis illustrated by the following examples.(1) On the one hand (a) Jon is 
ontent.On the other hand (b) Mary isn't.(2) On the one hand (a) Jon is 
ontent if (b) he 
an read a novel.On the other hand (
) He is too poor to buy books.(3) On the one hand (a) Jon is 
ontent if (b) he 
an read a novel or if(
) he 
an go to the moviesOn the other hand (d) He is too poor to do either.Figure 1 gives the synta
ti
 and semanti
 stru
tures asso
iated withexamples (1) and (2). The gray arrows indi
ate the relations of syn
hro-nization between syntax and semanti
s. As these stru
tures show, (a)might atta
h arbitrarily low in the synta
ti
 as well as in the semanti
stru
ture. sotoh sa otoh sb 
ontrasta bsotoh ssa if sbotoh s
 
ontrast
ondb a 
Figure 1. Atta
hment AmbiguityAtta
hment ambiguities raise two issues. First, a representation mustbe found whi
h is 
ompatible with the theoreti
ally in�nite set of possi-ble 
ontinuations. Se
ond, sin
e su
h ambiguities do not lead the hearerdown the garden path, the 
hosen representation must only 
ommit to
revision.tex; 17/10/2000; 16:27; p.6



7those aspe
ts of syntax/meaning whi
h 
annot be defeated by laterinformation.Now we know from Mar
us' work and from related work in psy-
holinguisti
s (Prit
hett, 1992; Gorrell, 1995; Sturt and Cro
ker, 1996)that tree des
riptions provide the right amount of underspe
i�
ationto solve both these issues: by using dominan
e rather than stri
t dom-inan
e, a �nite representation of the synta
ti
 tree 
an be obtainedwhi
h is 
ompatible with every possible 
ompletion of the senten
e.The question we are addressing is this: How 
an the appropriate treedes
riptions be built in
rementally from the input dis
ourse?We illustrate this pro
ess by going through the semanti
 derivationof example (2) and showing how, given some standard assumptionsabout the syntax/semanti
 interfa
e, the appropriate solved forms 
anbe 
omputed from the 
onjun
tion of the des
ription built so far withthe des
ription of the in
oming basi
 dis
ourse unit.For the purpose of this paper, we take basi
 dis
ourse units to beeither dis
ourse 
onne
tives or 
lauses. The �rst basi
 dis
ourse unitin example (2) is on the one hand, a dis
ourse 
onne
tive whi
h atthe semanti
 level, denotes a relation of 
ontrast between two eventu-alities. This is 
aptured by asso
iating with it the following semanti
representation: 
ontrastNext the (a) 
lause Jon is 
ontent is pro
essed. Synta
ti
ally, sa mustbe part of the �rst argument of the 
onne
tive on the one hand/onthe other hand sin
e (i) sa is right-adja
ent with on the one hand and(ii) on the other hand has not yet been pro
essed. By 
ompositionality,the semanti
 representation a of sa must therefore be part of the �rstsemanti
 argument of the 
ontrast relation. Hen
e, the solved form foron the one hand, Jon is 
ontent is:
ontrastaIntuitively, this solved form indi
ates that at this stage in pro
essing,the interpretation available to the hearer/reader is that there is a re-lation of 
ontrast holding between the eventuality denoted by sa andsome other eventuality.Now 
onsider how pro
essing 
ontinues in a 
ase where the (a) 
lauseturns out to atta
h lower in the tree e.g. in the 
ase of example (2).Next if is en
ountered whi
h is asso
iated with a semanti
 represen-tation similar to that of on the one hand/on the other hand but where
revision.tex; 17/10/2000; 16:27; p.7



8the relation labelling the root node is 
ond (for \
ondition") rather than
ontrast. By the same reasoning as for sa, the semanti
s of if must bepart of the �rst semanti
 argument of on the one hand/on the otherhand. Furthermore, sin
e in�x if requires a left-hand argument and sa isleft-adja
ent to if, sa must be part of this left-hand synta
ti
 argumentand 
onsequently, its semanti
s a must be part of the 
onsequent ofthe 
onditional. Given this, the solved form for on the one hand, Jonis 
ontent if will be: 
ontrast
ond aMoreover, sin
e all the material to the left of if has been pro
essed,the 
onsequent argument of the 
onditional 
an be 
losed:
ontrast
ond aThus the parser pro
esses atta
hment ambiguity deterministi
ally bymonotoni
ally adding information to the 
urrent des
ription and ea
htime 
omputing the 
orresponding solved form.5.2. Preferen
e 
riterion and garden path senten
esFrom a psy
holinguisti
 perspe
tive, two types of ambiguities are gen-erally distinguished: those that lead to pro
essing diÆ
ulties (
ons
iousre-analysis) and those that do not (un
ons
ious re-analysis).In the pre
eding se
tion, we saw how solved forms support a de-terministi
 treatment of dis
ourse-level ambiguities whi
h intuitivelydo not seem to involve 
ons
ious re-analysis namely, atta
hment am-biguities. We now show that not all dis
ourse level ambiguities 
an bepro
essed deterministi
ally within our framework and thereby predi
t,as for sentential syntax, that dis
ourse level ambiguities 
an be oftwo types: those that 
an be pro
essed deterministi
ally within thedes
ription framework and those that 
annot.The examples we 
onsider are the following:(4) Be
ause (a) Jon is easily upset, whenever (b) he 
ies, (
) he getsvery nervous.
revision.tex; 17/10/2000; 16:27; p.8



9(5) Be
ause (a) Jon is easily upset, whenever (b) he 
ies, (
) he goesto Paris for example, (d) he should pra
ti
e yoga.(6) Be
ause (a) Jon is easily upset, whenever (b) he 
ies, (
) he getsvery nervous for example, (d) he should pra
ti
e yoga.Intuitively, there is a stark 
ontrast in pro
essing ease between (4)and (6): whereas (4) is easy to pro
ess, (6) is mu
h more diÆ
ult andseems to involve a garden path e�e
t. The situation is less 
lear in(5) though there seems to be a slight in
rease in pro
essing diÆ
ultyrelative to (4). In what follows, we show that the des
ription basedframework sket
hed here predi
ts these di�eren
es and thereby o�ers abasis for experimental testing. Whereas (4) 
an be pro
essed determin-isti
ally and (5) implies a very limited ba
ktra
k, (6) involves extensiveba
ktra
king.We �rst go through the derivation for (4). By a reasoning similar tothat for example (2) above, after pro
essing the (a) 
lause the solvedform is: 
auseaNext whenever is pro
essed extending the des
ription with a binary treerepresenting the when relation. Sin
e the 
onne
tive be
ause requirestwo right-hand arguments and whenever is the se
ond basi
 dis
ourseitem o

urring to its right, the proposition expressed by wheneverand its arguments must be within the s
ope of be
ause. Hen
e thedes
ription asso
iated with Be
ause (a) Jon is easily upset, wheneveris: 
ausea whenThis des
ription has two solved forms:
ausea when (7) 
ausea when (8)
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10Argument Filling Prin
iple. In order to preserve determinism, somepreferen
e 
riterion must be determined whi
h permits 
hoosing be-tween the two forms. We use a 
riterion (hen
eforth 
alled the ArgumentFilling Prin
iple) similar to Gorrell's (1995) In
remental Li
ensingprin
iple or to Sturt and Cro
ker's (1996) preferen
e for substitutionover adjun
tion: we prefer normal forms whi
h provide material for anearlier argument that was so far empty. Thus here, we prefer (8) be
auseit provides material for the se
ond argument of the 
ause relation whilst(7) leaves it empty. If we (standardly) assume that the arguments of adis
ourse relation are given by adja
ent material, the fa
t that wheneveris 
ommitted to being part of the se
ond argument of be
ause meansthat the latter's �rst argument is now 
losed: it 
annot be extended bymaterial o

uring later in the dis
ourse. Thus the solved form now is:
ausea whenNext the (b) 
lause is pro
essed whi
h given the syntax and semanti
s ofwhenever 
an only be part of its �rst synta
ti
 and semanti
 argument:
ausea whenbAgain sin
e whenever takes two arguments and the (
) 
lause is these
ond basi
 dis
ourse item to its right, (
) must be within the synta
ti
and semanti
 s
ope of whenever. Given the resulting 
onstraints, weagain have two solved forms:
ausea whenb 

(9) 
ausea whenb 


(10)
By the Argument Filling Prin
iple mentioned above, (10) is preferredbe
ause it �lls the se
ond valen
y of whenever instead of leaving it
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11empty. As a result, the reading obtained for (4) is:
ausea whenb 
 (11)This shows that example (4) 
an be pro
essed deterministi
ally. Now
onsider how the derivation would pro
eed given example (5). In this
ase, the next dis
ourse item is the 
onne
tive for example whi
h takestwo arguments to its left. This 
annot be satis�ed in (10), therefore wemust ba
ktra
k: (9) is the 
hronologi
ally 
losest alternative and allowsb and 
 as arguments for the semanti
 relation of eviden
e. Sin
e forexample o

urs to the right of the 
orresponding 
lauses, no furthermaterial 
an be added to these arguments and so they 
an be 
losed.The resulting solved form is: 
ausea wheneviden
eb 
Finally, the (d) 
lause is pro
essed whi
h permits �lling the open va-len
y of whenever. The following semanti
 representation is thereforeassigned to (5). 
ausea wheneviden
eb 
 dThus for examples su
h as (5), the approa
h predi
ts a limited ba
k-tra
king. Intuitively at least, this mat
hes the fa
t that example (5)is relatively easy to pro
ess: the garden path e�e
t indu
ed by \forinstan
e" is very mild.Now 
onsider again example (6), in whi
h the garden path e�e
tis mu
h stronger. In this 
ase, ba
ktra
king to the solved form in (9)is not suÆ
ient be
ause it would involve an eviden
e relation to beposited between (6b) and (6
) and this is ruled out by pragmati
s:he gets very nervous 
annot be taken as giving eviden
e for he 
ies.Therefore we must ba
ktra
k further and start from the next alternativenamely (7). By the same argument as before, b must be in the �rst
revision.tex; 17/10/2000; 16:27; p.11



12argument of when. 
ausea whenbFurther, 
 must be below when sin
e the latter doesn't have all itsarguments yet. Again we obtain two normal forms:
ausea whenb 

(12) 
ausea whenb 


(13)
Following the argument �lling prin
iple, we prefer (13). Now eviden
eneeds to �nd two arguments using material on the left: the only possi-bilities are a and the subtree rooted in when. Moreover the tree beloweviden
e 
an be 
losed sin
e it is formed only from earlier material.
auseeviden
ea whenb 
Finally d �lls the se
ond argument of 
ause and so we obtain thefollowing semanti
 representation for (6).
auseeviden
ea whenb 
d
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136. Dominan
e ConstraintsIn this se
tion, we introdu
e a logi
al framework for tree des
riptions.In 6.1 we introdu
e a language of dominan
e 
onstraints for writing treedes
riptions. In 6.2 we give its semanti
s by interpretation over �nitetree stru
tures. In 6.3 we intuitively motivate the notion of solved form,and in 6.4 we formally de�ne it in terms of saturation with respe
t toa system of inferen
e rules.6.1. LanguageIn (Du
hier and Gardent, 1999), we followed a 
lassi
al presentation ofdominan
e 
onstraints in whi
h a tree des
ription is given by a 
onjun
-tion of dominan
e literals x �� y and labeling literals x:f(x1; : : : ; xn)where variables denote nodes in the tree. x �� y expresses that thenode denoted by x is equal to or a proper an
estor of the node denotedby y and x:f(x1; : : : ; xn) expresses that the node denoted by x mustbe formed from the n-ary 
onstru
tor f and the sequen
e of daughternodes denoted by x1 through xn.However, the 
onstraint treatment we proposed turned out to bemore general and the added expressivity was noti
ed by Du
hier andNiehren (2000) and formalized under the name of dominan
e 
on-straints with set operators. It is this revised formulation whi
h we adoptnow. The abstra
t syntax of dominan
e 
onstraints with set operatorsis given by: � ::= x R y j x:f(x1; : : : ; xn) j � ^ �0where x; y; xi range over an in�nite set of node variables, f ranges overa �nite signature �, and R ranges over arbitrary subsets of the relationsymbols f=;�+;�+;?g. The symbol �+ denotes proper dominan
eand ? represents disjointness. In a dominan
e literal xR y, R is 
alleda set operator and is given a disjun
tive interpretation: one of therelations in R must hold between the nodes denoted by x and y. Forexample x f=;?g y is satis�ed either if the nodes denoted by x and yare equal, or if they lie in disjoint subtrees.In all tree stru
tures we have :(xRy) � x:Ry and x(R1 [R2) y �x R1 y _ x R2 y. Thus set operators introdu
e a 
ontrolled form ofnegation and disjun
tion without admitting full propositional 
onne
-tives.The formal a

ount 
an be straightforwardly extended to permitrelations of pre
eden
e, see e.g. (Du
hier and Thater, 1999). In this
ase the set of relation symbols is f=;�+;�+;�;�g.
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146.2. Semanti
sThe semanti
s of dominan
e 
onstraints with set operators are givenby interpretation over �nite tree stru
tures. We identify a node in atree with the path that leads to it starting from the root. A path � isa word (i.e. a sequen
e) of positive integers. We write � for the emptypath and �1�2 for the 
on
atenation of �1 and �2. We say that �0 is aproper pre�x of �, and write �0 �+ �, if there exists �00 6= � su
h that� = �0�00. We say that �1 is disjoint from �2, and write �1 ? �2, whenthere exist paths �; �01; �02 and integers i 6= j su
h that �1 = �i�01 and�2 = �j�02. A tree-domain is a non-empty pre�x-
losed set of paths.A �nite tree � is a triple (D� ; L� ; A� ) of a �nite tree-domain D� , alabeling fun
tion L� : D� ! �, and an arity fun
tion A� : D� ! N,and su
h that for all � 2 D� , �i 2 D� i� 1 � i � A� (�).We write V� for the set of variables o

urring in �. A model of � isa pair (�; �) of a �nite tree � and a variable assignment � : V� ! D�mapping ea
h variable of � to a node in � . We write (�; �) j= � for therelation of satisfa
tion and de�ne it as follows:(�; �) j= � ^ �0 if (�; �) j= � and (�; �) j= �0(�; �) j= x R y if �(x) r �(y) for some r 2 R(�; �) j= x:f(x1; : : : ; xn) if L� (�(x)) = f ^A� (�(x)) = n ^�(x)i = �(xi) for 1 � i � nKoller et al. (1998) have shown that the satis�ability of propositionallogi
 formulae 
an be redu
ed to the satis�ability of dominan
e 
on-straints over a signature 
ontaining a binary 
onstru
tor 
ons and two
onstants, true and false, thus establishing an NP-hardness result.6.3. Models and Solved FormsA pra
ti
al solver 
annot simply attempt to enumerate the models ofa des
ription: if � is a model of �, then any tree � 0 whi
h 
ontains �is also a model of �. Thus, whenever a des
ription is satis�able, it hasin�nitely many solutions.Consider the example below. On the right, is a des
ription � and onthe left is a possible tree model where ea
h variable is listed next tothe node whi
h it denotes.
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15f
 f x1g x2f x4; x11
 x5; x12 
 x6; x13 ff x7f x8
 x10 
 f x9
 

 

 x3 x1 : f(x2; xf )^ x1 �� x7^ x1 �� x10^ x2 �� x4^ x2 �� x11^ x4 �� x4^ x4 �� x6^ x7 : f(x8; x9)^ x11 : f(x12; x13)^ x13 : 
There is mu
h in this tree whi
h is not required to model �. All thesuper
uous information is shown in gray. If we remove the gray parts,we are left with a mu
h simpler tree shape:f x1x2f x4; x11x5; x12 
 x6; x13 f x7x8x10 x9x3
Su
h a shape is what we introdu
ed in Se
tion 4 under the name of D-solved forms. It may be helpful to draw an analogy between D-solvedforms and most-general uni�ers. Firstly, just like a most general uni�erinstantiates two terms only as far as ne
essary to make them equal, aD-solved form expli
itates only as mu
h of the shape of the tree as isne
essary to model the des
ription. Se
ondly, if there is a uni�er foran equation t1 = t2 between �rst-order terms, then there exist groundsolutions. Similarly, if � has a D-solved form, then there exist �nitetrees whi
h satisfy it.6.4. Solved Forms and Inferential SaturationHopefully, the intuition underlying the notion of D-solved form hasbe
ome 
lear and we now de�ne it formally. In this, we follow Du
hierand Niehren (2000) who des
ribe an abstra
t solver based on inferen-tial saturation a

ording to the propagation and distribution rules ofFigure 2.The pro
ess of inferential saturation is de�ned as follows: a propa-gation rule has the form �1 �! �2 and is said to apply to � whenever�1 � � and �2 n � 6= ;. In this 
ase, we pro
eed with � ^ �2. Adistribution rule has the form �1 �! �02_�002 and is said to apply when
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16Propagation Rules x;y �! false�! x�� xx�� y ^ y �� z �! x�� zx:f(x1; : : : ; xn) ^ y:f(y1; : : : ; yn) ^ x = y �! xi = yix:f(: : :) ^ y:g(: : :) �! x := y if f 6= gx:f(: : : ; xi; : : : ; xj ; : : :) �! xi ? xj if i 6= jx:f(: : : ; y; : : :) �! x�+ yx R1 y ^ x R2 y �! x (R1 \R2) yx R y �! x R0 y if R � R0x R y �! y R�1 xx? y ^ y �� z �! x? zx�� z ^ y �� z �! x :? yx�� y ^ x:f(x1; : : : ; xn) ^ ^ni=1xi :�� y �! x = yDistribution Rulesx�� y ^ x:f(x1; : : : ; xn) �! xi �� y _ xi :�� yx :? y �! x�� y _ x :�� yFigure 2. Rule System of Du
hier & Niehren�1 � �, �02 n� 6= ; and �002 n� 6= ;. In this 
ase, we non-deterministi
allypro
eed with either � ^ �02 or � ^ �002 .A D-solved form of � is a saturation of � that does not 
ontainfalse. In other words, it is a 
onsistent saturation of �. Du
hier andNiehren (2000) proved that a D-solved form is satis�able and that thesaturation-based solver is sound and 
omplete.The �rst alternative of the �rst distribution rule implements thepropagation of a d-edge downward to a daughter as we des
ribed inSe
tion 4. Repeated appli
ation of its se
ond alternative together withthe last propagation rule implements identi�
ation.The se
ond distribution rule takes 
are of des
riptions whi
h arenot yet tree shaped. A 
lassi
al example is quanti�er s
ope ambiguity.Consider the senten
e \every yogi has a guru" whose underspe
i�edsemanti
 representation in the spirit of (Egg et al., 2000) albeit mu
hsimpli�ed is: forallyogi existsguruhas
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17In 
onjun
tion with the next-to-last propagation rule, the 2nd distri-bution rule derives the two D-solved forms below whi
h 
orrespond tothe two possible s
oping arrangements:forallyogi existsguru has
existsguru forallyogi hasA D-solved form is de�ned as a 
onsistent saturation of a des
ription.The graphi
al representation whi
h we have been using is essentially a
onvenient summary of the D-solved form, where redundant 
onstraintshave been omitted, in parti
ular all literals x��y whi
h 
an be dedu
edby transitivity (3rd propagation rule).While the graphi
al representation is intuitive and helpful for il-lustration, it is not as expressive as the formalism and some literalspresent in a D-solved form 
annot always be faithfully represented. Forexample literals of stri
t dominan
e x�+ y and of disjointness x? y.7. Constraint-Based In
remental ParsingThe NP-hardness result of Koller et al. (1998) is not a show-stopper, butit requires that a pra
ti
al solver devise very e�e
tive means to addressthe 
ombinatorial 
omplexity of the task, for example by drasti
allyredu
ing the number of 
hoi
es that need be 
onsidered.An approa
h based on 
onstraint propagation has proven parti
u-larly su

essul. EÆ
ient 
onstraint programming solvers 
an be derivedby transformation of a dominan
e 
onstraint into a 
onstraint satisfa
-tion problem on �nite sets (Du
hier and Gardent, 1999; Du
hier andNiehren, 2000).7.1. En
oding into finite sets 
onstraints DownxEqxSidexUpx xThe idea of the en
oding is based on thefollowing observation: when viewed from aspe
i�
 node x, the nodes of a solution treeare partitioned into 4 regions: the node interpreting x, all nodes above,all nodes below, and all nodes to the side. Therefore the variables whi
hthese nodes interpret are similarly partitioned into 4 sets and the idea
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18is to introdu
e set variables to represent them, then express and solvethe problem in terms of these variables.We are going to present an en
oding whi
h transforms a des
ription� into a 
onstraint satisfa
tion problem (CSP) [[�℄℄ expressed solely interms of variables ranging over �nite domains of integers and variablesranging over �nite sets of integers. We write V� for the set of nodevariables in �. In [[�℄℄, every x 2 V� must be en
oded by a distin
tinteger; similarly, every f 2 �. However, in the interest of legibility, wewill leave all su
h trival en
odings impli
it. Our en
oding 
onsists ofthree parts:Representation. for ea
h node variable x, A1(x) expresses the lo
alinvariants for the CSP variables introdu
ed for x.Well-formedness 
onstraints. for ea
h pair of node variables x; y,A2(x; y) expresses the well-formedness 
onstraints that must besatis�ed for a solution to be tree-shaped.Problem-spe
i�
 
onstraints. A3[[�℄℄ forms the problem-spe
i�
 
on-straints that restri
t admissibility to only those tree shapes thata
tually satisfy �.7.2. RepresentationWe restri
t ourselves to trees with a maximum arity (i.e. bran
hingfa
tor) max. For the purpose of this paper, max 
an be the maximumarity used in the input des
ription �. For ea
h variable x 2 V�, weintrodu
e 7+max set variables written Eqx, Upx, Downx, Sidex, Equpx,Eqdownx, Parentx, Downix for 1 � i � max, and one integer variableLabelx. First, we state that x is indeed one of the variables interpretedby the node whi
h it denotes: x 2 Eqx (14)Eqx, Upx, Downx, Sidex en
ode the set of variables that are respe
tivelyequal, above, below and to the side (i.e. disjoint) of x. Thus we have:V� = Eqx ℄Upx ℄Downx ℄ SidexAs des
ribed in (Du
hier and Niehren, 2000), we must improve prop-agation by introdu
ing Eqdownx and Equpx as intermediate results:Eqdownx = Eqx ℄Downx (15)Equpx = Eqx ℄Upx (16)V� = Eqdownx ℄Upx ℄ Sidex (17)V� = Equpx ℄Downx ℄ Sidex (18)
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19Downix en
odes the sets of variables in the subtree rooted at x's ithdaughter (empty if there is no su
h daughter):Downx = ℄fDownix j 1 � i � maxg (19)The 
ontribution A1(x) to the en
oding is de�ned by:A1(x) = (14) ^ (15) ^ (16) ^ (17) ^ (18)7.3. WellformednessPosing R = f=;�+;�+;?g, the relationship Rxy that obtains in asolution tree between the nodes denoted by x and y must be one in R.For ea
h r 2 R, we 
an formulate 
orresponding 
onstraints D[[xry℄℄ onthe variables of the CSP that must be satis�ed in this 
ase. Similarlyfor the negation D[[x :r y℄℄.D[[x= y℄℄ = Eqx=Eqy ^Upx=Upy ^Downx=Downy ^ Sidex=Sidey^ Eqdownx=Eqdowny ^ Equpx=Equpy^ Parentx=Parenty ^ Labelx=Labely ^i Downix=DowniyD[[x := y℄℄ = Eqx k EqyD[[x�+ y℄℄ = Eqdowny � Downx ^ Equpx � Upy ^ Sidex � SideyD[[x :�+ y℄℄ = Eqx k Upy ^Downx k EqyD[[x? y℄℄ = Eqdownx � Sidey ^ Eqdowny � SidexD[[x :? y℄℄ = Eqx k Sidey ^ Sidex k EqyWith these, we 
an formulate a quadrati
 number of wellformedness
onstraints. For ea
h r 2 R and x; y 2 V�:D[[x r y℄℄ ^Rxy = r or Rxy 6= r ^ D[[x :r y℄℄ (20)Rxy 2 R (21)The 
ontribution A2(x; y) to the en
oding is de�ned by:A2(x; y) = ^f(20) j r 2 Rg ^ (21)Disjun
tive Propagators. The 
onstru
t (C1 or C2) used in (20) is
alled a disjun
tive propagator. It has the de
larative semanti
s ofdisjun
tion but its operational semanti
s are those of a 
onstraintrather than a 
hoi
e point: when Ci be
omes in
onsistent with the
onstraints derived so far, then (C1 or C2) 
ommits to (i.e. infers)
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20the other alternative Cj , for fi; jg = f1; 2g. A formal statement of itssemanti
s 
an be found in (Du
hier and Niehren, 2000).7.4. Problem spe
ifi
 
onstraintsThe last part of the en
oding forms the problem-spe
i�
 
onstraintsthat further limit the admissibility of well-formed solutions and onlya

epts those whi
h a
tually satisfy �.A3[[� ^ �0℄℄ = A3[[�℄℄ ^ A3[[�0℄℄A3[[x R y℄℄ = Rxy 2 RA3[[x:f(x1; : : : ; xn)℄℄ = Labelx = f^i=maxi=n+1 Downix = ;^i=ni=1 (Parentxi = Eqx ^Downix = Eqdownxi ^Upxi = Equpx)7.5. Stating and solving the CSPWe 
an now formulate the full en
oding by 
onjoining the 
ontributionsde�ned above.[[�℄℄ = ^x2V� A1(x) ^x;y2V� A2(x; y) ^ A3[[�℄℄To solve [[�℄℄ is to �nd assignments to the CSP variables so that [[�℄℄is satis�ed. This is realized by alternating steps of propagation anddistribution.Constraint propagation performs deterministi
 inferen
e that shrinksthe set of possible values that may be assigned to ea
h variable. Thisset of values is 
alled the domain of the variable. When only one valueremains in its domain, we say that the variable is determined, i.e. itsassignment has been de
ided.When, after propagation, there are still undetermined variables, astep of distribution must be performed: one non-determined variable issele
ted, its domain is split in two non-empty parts and one of them isnon-deterministi
ally 
hosen as its new domain.In reality, we do not need to �nd 
omplete assignments to all vari-ables, rather we need only restri
t their domains enough to rea
h asolved form. Du
hier and Niehren (2000) prove that it is suÆ
ientto adapt the distribution rules given in Figure 2 as follows. For ea
hx:f(x1; : : : ; xn) 2 � and y 2 V�:Rxy 2 f=;�+g �! Rxiy 2 f=;�+g _ Rxiy 62 f=;�+g
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21and for all x; y 2 V�:Rxy 6= ? �! Rxy 2 f=;�+g _ Rxy 62 f=;�+gIn either 
ase, a distribution step splits the domain of a Rxy into asubset of f=;�+g and a subset of its 
omplement.7.6. In
remental pro
essingWe now indi
ate how the en
oding and 
onstraint-based method de-s
ribed above 
an be adapted to support the in
remental pro
essingof des
riptions. In this view, pro
essing 
onsists of alternating steps ofinformation a
quisition and pro
essing. The des
ription � is not givenentirely up front; instead it is in
rementally a
quired.Surprisingly enough, this has no impa
t on our en
oding: we needsimply a

ommodate the fa
t that both � and therefore V� are onlyin
rementally revealed. This is easily a
hieved (i) by representing, inthe CSP, V� as a set variable whi
h is merely 
onstrained to 
ontain thenode variables whi
h have been revealed so far, (ii) by in
rementallyprodu
ing additional 
onstraints for the CSP as more 
onjun
ts of� and more node variables be
ome available. We omit the details ofthis pro
edure, as they should be fairly obvious when looking at theen
oding.At ea
h step we derive all 
orresponding solved forms. An in
re-mental near-deterministi
 solver 
an be obtained with the additionof a preferen
e 
riterion, su
h as the Argument Filling Prin
iple ofSe
tion 5, that allows us to 
hose one solved form before pro
eeding tothe next step. 8. Con
lusionIn this paper, we proposed a new appli
ation for the 
onstraint-basedtreatment of des
riptions presented in (Du
hier and Gardent, 1999)namely, in
remental dis
ourse parsing. Spe
i�
ally, we have arguedthat, given the appropriate parsing ar
hite
ture, this 
onstraint-basedapproa
h 
ould be tailored to produ
e the partial stru
tures built dur-ing the in
remental interpretation of dis
ourse.Two important questions remain open. In se
tion 3, we suggest usinga dis
ourse variant of Kallmeyer's Syn
hronous Lo
al Tree Des
riptionGrammars to produ
e the des
riptions from whi
h the partial stru
-tures built during in
remental pro
essing are 
omputed. This impliesthat the des
riptions the 
onstraint solver works with are syn
hronousdes
riptions. It is a matter for further resear
h how the 
ontraint-based
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22treatment of des
riptions presented in se
tion 7 
an be extended to dealwith syn
hronisation.A se
ond open issue 
on
erns the 
ognitive plausibility of our model.As illustrated in se
tion 5, this model predi
ts di�erent levels of pro-
essing diÆ
ulty thereby providing a basis for experimental validation.It would be interesting to test whether the predi
tions made by themodel are empiri
ally 
orre
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