
The XDG Grammar Development Kit

Ralph Debusmann1, Denys Duchier2, and Joachim Niehren3

1 Saarland University, Programming Systems Lab, Saarbücken, Germany
2 LORIA, Équipe Calligramme, Nancy, France

3 INRIA Futurs, Mostrare Project, Lille, France

Abstract. Extensible dependency grammar (XDG) is a graph descrip-
tion language, whose formulas can be solved by constraint programming.
XDG yields a declarative approach to natural language processing for
parsing and generation. In this paper we present the XDG development

kit, the first XDG-based grammar development system, which we imple-
mented in Mozart/Oz. This includes an expressive lexicon specification
language not published previously.

1 Introduction

Declarative grammar formalisms have a long tradition for modeling and pro-
cessing natural language syntax and semantics [1, 2]. The idea is to specify lin-
guistic knowledge in grammars independently from processing aspects, such that
parsers, semantic constructions, or sentence generators can be created generically
for all grammars of a given formalism.

The most prominent grammar formalisms support dialects of lexical func-
tional grammar (LFG) [1], head driven phrase structure grammar (HPSG) [3],
categorial grammar [4, 5], tree adjoining grammar (TAG) [6, 7], and dependency
grammar [8, 9].

Grammar development systems are collections of tools that support the de-
velopment of grammars in some formalism. They offer a concrete syntax for
grammar specification, contain parsers, generators, graphical output tools, de-
bugging facilities, etc. The most powerful grammar development systems are the
LKB system [10] for HPSG, the XTAG system [11] for TAG, and the Grammar
Writer’s Workbench [12] for LFG.

Parsers for grammars in LFG and HPSG rely on first-order unification for
feature structures. Smolka raised the question [13], whether more advanced con-
straint technology could help to improve existing natural language processing
methods. Duchier [14] proposed a first solution to this question. Motivated by
dependency grammar, he proposed to axiomatize valid dependency trees by fi-
nite set constraints, and reduced parsing to finite set constraint programming.
Duchier and Debusmann [15] developed this approach further into a grammar
formalism called Topological Dependency Grammar (TDG), which is particularly
well suited for free word order, as in German, Czech, Latin, etc.

Recently, Debusmann et. al. [16] proposed a further generalization, Extensible
Dependency Grammar (XDG). This is a general graph description language flex-
ible enough to model multiple levels of linguistic structure, while still enjoying



2

parsing methods by constraint programming [17]. In particular, XDG permits
to extend TDG by a constraint-based, bi-directional syntax-semantics interface.

In this paper, we propose the first grammar development system for XDG,
the XDG grammar development kit (XDK). This includes a lexicon descrip-
tion language that has not been published previously. We have implemented
XDK in Mozart/Oz and published it in the MOGUL library [18]. The XDK
provides a comprehensive suite of facilities for grammar development. It offers
multiple concrete syntaxes for grammar specification: one XML-based for auto-
matic grammar creation, and one more human-friendly for handcrafted gram-
mars. Moreover, it contains the XDG solver for parsing and generation, and
various graphical output tools and debugging facilities.

2 Extensible Dependency Grammar

In XDG, we regard grammars as graph descriptions. This allows us to view
parsing of natural language expressions and the generation of sentences as graph
configuration problems which can be solved using constraint programming in
Mozart/Oz.

2.1 Graphs

XDG describes finite labeled graphs, using the linguistic notion of dependency
grammar [8, 9]. We show a typical dependency graph in Figure 1 (left hand side).
Each node corresponds one-to-one to a word in the sentence. The edges are
labeled by grammatical relations such as subject, object and determiner. Here,
“programmer” is the subject of “should”, and “like” the verbal complement
(vcomp). “every” is the determiner of “programmer”, and “Mozart” is the object
of “like”.

An XDG analysis can be split up into an arbitrary number of graphs, all
sharing the same set of nodes, but having different edges. This is useful for
the handling of word order [15], and for the representation of the semantics of
natural language. We call each of the graphs a dimension. In Figure 1 (right),
we display an analysis of the same sentence on a second, semantic dimension.
Here, “programmer” is simultaneously the agent of “should”, and the agent of
“like”. “every” is the determiner of “programmer”. “like” is the proposition of
“should”, and “Mozart” the patient of “like”.

2.2 Graph description language

XDG describes the well-formedness conditions of an analysis by the interaction
of principles and the lexicon. The principles stipulate restrictions on one or more
of the dimensions, and are controlled by the feature structures assigned to the



3

.

every programmer should like Mozart

det obj

vcompsubj

.

every programmer should like Mozart

patag

prop
ag

det

Fig. 1. Dependency graph (left) and semantic analysis (right)

nodes from the lexicon. Here is a lexical entry for “like”:

“like” =









syn :

[

in : {vcomp?}
out : {obj!}

]

sem :

[

in : {prop?}
out : {ag!, pat!}

]









(1)

The entry is separated into a syntactic and a semantic part, and controls the
valency principle, constraining the licensed incoming and outgoing edges of each
node. In the syntax, “like” can have zero or one incoming edges labeled vcomp

(in : {vcomp?}), and requires an object (out : {obj!}). In the semantics, it can
have zero or one incoming edges labeled prop (in : {prop?}) and requires an agent
and a patient (out : {ag!, pat!}).

XDG is “extensible” for two reasons: 1) the set of dimensions of graphs is
arbitrary, and 2) the set of principles to describe the graphs is a subset of an
extensible principle library. The principle library already contains the necessary
principles to model the syntax and semantics for large fragments of German and
English, and smaller fragments of Arabic, Czech and Dutch. We present a subset
of the principle library below.

Tree principle. Dimension i must be a tree. In the example above, we use this
principle on the syntactic dimension.

DAG principle. Dimension i must be a directed acyclic graph. We use this
principle on the semantic dimension.

Valency principle. For each node on dimension i, the incoming edges must be
licensed by the in specification, and the outgoing edges by the out specification.

Order principle. For each node v on dimension i, the order of the daughters
depends on their edge labels. We use this principle to constrain the order of the
words in a sentence. We can use it e.g. to require that subjects (“programmer”)
precede objects (“Mozart”).

Linking principle. The linking principle allows us to specify how semantic argu-
ments must be realized in the syntax. In our example, the lexical entry for “like”



4

would contain the following feature specification:

“like” =

[

sem :

[

link :

[

ag : {subj}
pat : {obj}

]]]

(2)

This stipulates that the agent of “like” must be realized by the subject, and
the patient by the object.

3 Lexicon Specification

The XDG development kit offers a flexible method to define types of lexical
entries, to build lexical abstractions, and to describe sets of lexical entries com-
pactly using a descriptive device known as a metagrammar. The metagrammar
is processed to automatically generate all the entries of an XDG lexicon.

3.1 Lexicalization

Lexicalization is a widely accepted principle in computational linguistics that is
indispensable in formal grammar approaches. Lexicalization means that linguis-
tic information is mostly specified in the lexicon, given that most information is
specific to words.

The lexicon quickly becomes huge even for grammars with moderately am-
bitious coverage. They may contain thousands of words, each of which having
multiple lexical entries, which are often large too. From the engineering perspec-
tive, it is important to provide facilities that allow to adequately modularize and
factorize the lexical information; otherwise, the information often needs to be
duplicated and maintained in multiple places.

3.2 Ambiguity

XDG is clearly lexicalized. Most information is specified in the lexical entries for
the words. The exceptions are some of the principles, which specify how words
can interact, or how graphs in different dimensions are related.

We have already seen XDG lexical entries in the examples. Lexical entries
are records of dimensions; each dimension is a record of linguistic information
items. These items may have different types. So far, we have only seen valency
stipulations, specifying the possible complements of a word and the topological
fields it introduces. Valency specifies which labeled edges are permitted to enter
or exit a node in a graph.

Other forms of ambiguity require multiple lexical entries for the same word,
for instance, if a verb can have different frames in different constructions. So the
problem is to describe such sets of lexical entries compactly, without representing
the same information in different lexical entries twice. XDG provides lexical
abstractions for this purpose.



5

3.3 Lexical Types

XDG supports a flexible system to define various types of lexical information.
Each type consists of a set L and a partial function ⊓ : L×L → L, the combina-
tion function of L. Most typically, the operation ⊓ defines greatest lower bounds
with respect to the information amount represented by members of L, but this
is not necessary.

The grammar writer starts by defining some domain types, for instance the
type of edge labels in the syntactic dimension:

syn.label = {det, subj, obj, vcomp}

Domain types are always flat in that a ⊓ a = a for all elements and a ⊓ b is
undefined for all a 6= b. Given a set of features (fi)i=1...n and a correspond-
ing set of types Ti=(Li,⊓i)i=1...n, XDG allows you to define the record type
[f1:T1, . . . , fn:Tn] with values of the form:

[f1:v1, . . . , fn:vn]

where vi ∈ Li, and where the composition operation is defined feature-wise by:

[f1:v1, . . . , fn:vn] ⊓ [f1:v
′

1, . . . , fn:v′
n
] = [f1:v1 ⊓1 v′1, . . . , fn:vn ⊓n v′

n
]

when vi ⊓i v′
i
are all defined, and is undefined otherwise.

The grammar writer needs to define a type for valencies on the syntactic
level. The XDG system provides a built-in constructor to define valencies over a
given domain type of edge labels:

syn.valency = valency(syn.label)

This merely defines syn.valency to be the record type:

[det:mode, subj:mode, obj:mode, vcomp:mode]

where type mode consists of the values {0, ?, !, ∗} — where 0 stands for no occur-
rence, ! for one unique and obligatory occurrence, ? for an optional occurrence,
and ∗ for zero or more occurrences — and the following (commutative) combi-
nation operation:

0 ⊓ x = x ∗ ⊓ ! = ! ∗ ⊓ ? = ? ? ⊓ ! = !

Since syn.valency was declared with the valency constructor, the XDK supports
the following more convenient notation:

{subj!, obj?} ≡ [det:0, subj:!, obj:?, vcomp:0]

In practice, record types serve for defining dimensions and lexical entries. A
lexical entry is a record of named dimensions, and a dimension a record of lexical
information about valency, agreement etc. . . The XDK also supports defining
new types using cartesian products, set type constructors, and other possibilities.



6

3.4 Lexical Meta Grammars

Once we have specified the type (L,⊓) of lexical entries, we need to supply the
set of values of this type that constitute the lexicon. For this purpose, we adapt
a well-known descriptive device, namely the generative grammar. They consist
of a finite set of clauses with the following abstract syntax:

Clause ::= Name → Goal

Goal ::= Goal ∧ Goal | Goal ∨ Goal | Name | c

where each Clause defines a non-terminal Name, and where the terminals c

range over elements of L. Traditional context free grammars are similar. Name
correspond to non-terminals and elements of c ∈ L to terminals. Conjunction is
usually written as juxtaposition, and disjunction as choice |. Here, we use gram-
mars to describe sets of lexical entries. Compared to the traditional semantics,
we replace words by lexical entries and word concatenation by the ⊓ operator
on lexical entries. We call such a device a metagrammar over (L,⊓).

3.5 Example

In this section, we present a simple, idealized example for the use of meta gram-
mars. First, we state that finite verbs can either be the head of the main clause
or of a relative clause, i.e. either they have no incoming edges, or they can have
incoming edge rel:

finite → root ∨ rel (3)

root →
[

syn :
[

in : {}
] ]

(4)

rel →
[

syn :
[

in : {relcl?}
] ]

(5)

Then we state that verbs may be either intransitive, transitive or ditransitive:

verb → intr ∨ tr ∨ ditr (6)

intr →
[

syn :
[

out : {subj!}
] ]

(7)

tr → intr ∧
[

syn :
[

out : {obj!}
] ]

(8)

ditr → tr ∧
[

syn :
[

out : {iobj!}
] ]

(9)

The notion of a finite verb can be stated as the composition of the previous two
abstractions:

finite.verb → finite ∧ verb (10)

The generative process using finite.verb as start symbol produces the following
six values which are alternative lexical entries for finite verbs:

(root ∧ intr) (root ∧ tr) (root ∧ ditr) (rel ∧ intr) (rel ∧ tr) (rel ∧ ditr)

For instance, the lexical entry for a ditransitive finite verb which is the head of
a relative clause is:

rel ∧ ditr →

[

syn :

[

in : {relcl?}
out : {subj!, obj!, iobj!}

]]

(11)



7

4 XDG Grammar Development Kit

The XDK is a complete grammar development kit for XDG. It defines concrete
syntaxes for grammar specification, and manifold mechanisms for testing and
debugging grammars, including a comprehensive graphical user interface. Addi-
tional non-interactive command-line tools can be used for automated grammar
processing. Moreover, the XDK contains the XDG solver, the extensible princi-
ple library, and an interface to external knowledge sources to (e.g. statistically)
guide the search for solutions.

4.1 Concrete Syntax

The XDK defines three concrete syntaxes for grammar specification, each of
which fulfills a different purpose. The User Language (UL) is an input language
for manual grammar development. The XML language (XML) is based on XML,
and is particularly well suited for automated grammar development (e.g. auto-
matic grammar induction from corpora). The Intermediate Language (IL) is a
record-based language tailored for Mozart/Oz and for further processing within
the XDK, but is neither readable (as the UL), nor suited for automated process-
ing outside Mozart/Oz (as the XML). The XDK offers functionality to convert
the different languages into each other, e.g. to make XML grammars readable
by converting them into the UL.

We illustrate the UL by a miniature example grammar. XDG grammars can
be split up into two main parts: 1) the header, and 2) the lexicon. The header
includes type definitions (e.g. the set of edge labels or the type of a lexical
entry), and specifies the used principles from the principle library. The lexicon is
a metagrammatical lexicon specification. We display the header of the example
grammar in Figure 2, and the lexicon in Figure 3.

The usedim keyword activates dimensions. In the example, it activates the
syn, sem and lex4. In the defdim sections, we define the types pertaining to the
respective dimensions of the grammar. deftype defines a type and binds it to a
name, e.g. syn.label to {det subj obj vcomp}. These names can be derefer-
enced using the ref keyword. defentrytype defines the type of a lexical entry,
and deflabeltype the type of edge labels. The useprinciple keyword indicates
the use of a principle and dims binds dimension variables to actual dimensions.
E.g. the linking principle principle.linking binds dimension variable D1 to
syn, and D2 to sem. The output and useoutput keywords specify the output
functors to visualize analyses.

The UL syntax of the lexicon specification is close to the abstract syntax pre-
sented before. defclass defines lexical classes (clauses). E.g. defclass "det"

Word defines the lexical class named det, and with one argument Word. useclass
dereferences lexical classes and binds the required arguments. E.g. useclass
"det" {Word: "every"} dereferences class det and binds its argument Word to
every. defentry defines a set of lexical entries. Disjunction (∨) is written |.

4 The lex dimension is not a real XDG dimension—it is used solely to represent the
word to which a lexical entry corresponds.



8

usedim syn

usedim sem

usedim lex

%%

defdim syn {
deftype "syn.label" {det subj obj vcomp}
deftype "syn.entry" {in: valency(ref("syn.label"))

out: valency(ref("syn.label"))}
defentrytype ref("syn.entry")

deflabeltype ref("syn.label")

%%

useprinciple "principle.graph" { dims {D: syn} }
useprinciple "principle.tree" { dims {D: syn} }
useprinciple "principle.valency" { dims {D: syn} }

%%

output "output.dag"

useoutput "output.dag"

}
defdim sem {
deftype "sem.label" {det ag pat prop}
deftype "sem.entry" {in: valency(ref("sem.label"))

out: valency(ref("sem.label"))

link: map(ref("sem.label") iset(ref("syn.label")))}
defentrytype ref("sem.entry")

deflabeltype ref("sem.label")

%%

useprinciple "principle.graph" { dims {D: sem} }
useprinciple "principle.dag" { dims {D: sem} }
useprinciple "principle.valency" { dims {D: sem} }
useprinciple "principle.linking" { dims {D1: sem

D2: syn} }
%%

output "output.dag"

useoutput "output.dag"

}
%%

defdim lex { defentrytype {word: string} }

Fig. 2. The header of the example grammar

4.2 Error Detection

The XDK offers various ways to detect errors, including a very fast static gram-
mar type checker. This type checker is implemented for the IL, and hence also
for the UL and the XML languages (since they are always compiled into the IL).
The type checker also detects cycles in the definition of lexical classes.

4.3 Graphical Interfaces

The XDK comprises a comprehensive graphical user interface (GUI) for con-
venient access to all the functionality of the system. The GUI is most useful
for debugging grammars, e.g. by switching off any of the principles to find out
which constraints rule out desired analyses. The GUI visualizes the solver search
tree using the Oz Explorer, and can visualize partial and total analyses using
functors from an extensible output library of output functors, including a graph-
ical DAG display, a detailed display of the underlying analysis using the Oz



9

defclass "n" {
dim syn {in: {subj?} | in: {obj?}}
dim sem {in: {ag*} | in: {pat*}}}

defclass "cn" Word {
useclass "n"

dim syn {out: {det!}}
dim sem {out: {det!}}
dim lex {word: Word}}

defclass "pn" Word {
useclass "n"

dim lex {word: Word}}

defclass "modal" Word {
dim syn {in: {}

out: {subj! vcomp!}}
dim sem {in: {}

out: {ag! prop!}
link: {ag: {subj}

prop: {vcomp}}}
dim lex {word: Word}}

defclass "det" Word {
dim syn {in: {det?}}
dim sem {in: {det?}}
dim lex {word: Word}}

defclass "trans" Word {
dim syn {in: {vcomp?}

out: {obj!}}
dim sem {in: {prop?}

out: {ag! pat!}
link: {ag: {subj}

pat: {obj}}}
dim lex {word: Word}}

%%

defentry { useclass "det" {Word: "every"} }
defentry { useclass "cn" {Word: "programmer"} }
defentry { useclass "modal" {Word: "should"} }
defentry { useclass "trans" {Word: "like"} }
defentry { useclass "pn" {Word: "Mozart"} }

Fig. 3. The lexicon of the example grammar

Inspector, LATEX output (as used to create Figure 1), or an XML-based output
for further processing. We depict the main GUI window and the Oz Explorer in
Figure 4, and an example XDG analysis as displayed by the DAG output functor
in Figure 5.

Fig. 4. The main window of the GUI and the Oz Explorer

4.4 Solver

The XDG solver in the XDK makes use of Denys Duchier’s axiomatization of
dependency parsing [14, 17], and turns it into a completely modular, extensible
principle library. Principles are composed from sets of constraint functors: For
instance the valency principle is composed from the in constraint and the out



10

Fig. 5. The XDG analysis displayed by the DAG output functor

constraint, constraining resp. the incoming and outgoing edges of each node.
The starting sequence of the constraints can be regulated by global constraint
priorities. This can help gaining efficiency. New principles and new constraints
can easily be added and integrated into the XDK, which makes it an ideal
launchpad for new linguistic theories.

4.5 Preferences and Search

Following ideas by Thorsten Brants and Denys Duchier, Dienes et al. [19] in-
troduce the idea to guide the search for solutions of the XDG solver by exter-
nal knowledge sources called Oracles. Oracles interact with the XDG solver by
sockets, and are based either on statistical information or heuristics. The XDK
supports the use of Oracles using a standard architecture for Oracles developed
by Marco Kuhlmann and others.

5 Mozart Implementation

In this section, we discuss selected aspects of our implementation of the XDK
in Mozart/Oz.

5.1 Constraint Programming

Constraint programming is used to enumerate graph models of graph descrip-
tions. The techniques used for XDG rely on ideas from TDG[17]. We illustrate
them here in order to illustrate XDG’s requirements on constraint programming.

Finite Set Constraints are used to model graph configuration problems. For
example, the daughters of node w that can be reached by traversing an edge
labeled obj are represented by the set variable obj(w). A valency specification
obj? can be enforced by posting the cardinality constraint |obj(w)| ∈ {0, 1}

Selection Constraints are used to efficiently handle ambiguity. Typically, a word
w has multiple lexical entries L1, . . . , Ln. If we introduce a variable Ew to denote
the lexical entry that is ultimately selected among them, and an integer variable



11

Iw to denote it’s position in that sequence, then we can relate these quantities
by a selection constraint:

Ew = 〈L1, . . . , Ln〉[Iw]

with the declarative semantics that Ew = LIw
. The basic selection constraints

implemented for finite domains and finite sets can trivially be lifted to record
types.

Deep Guards in Disjunctive Propagators. The construct or G1 [] G2 end is used
to enforce complex mutually exclusive well-formedness conditions. For example
that either (G1) a certain tree edge exists and it satisfies some additional con-
dition, or it does not exist (G2). For every possible edge, there is a disjunctive
propagator to monitor these alternatives concurrently.

5.2 Programming Environment

The XDK makes use of modules from the MOzart Global User Library (MOGUL),
and applies ozmake for convenient compilation and deployment (again into
MOGUL). The principle and output libraries are realized using dynamically
linked functors.

The grammar compiler utilizes two parsers: 1) a flexible LR/LALR parser
generator (fully written in Mozart by Denys Duchier) for parsing the UL, and
2) the fast XML parser by Denys Duchier from MOGUL for parsing grammars
written in XML. Per default, grammars are stored as pickles, but the XDK can
also make use of Denys Duchier’s interface to the GNU GDBM database library,
with which very large grammars can be handled more efficiently.

The graphical user interface of the XDK is written using the Tcl/Tk inter-
face of Mozart/Oz. Moreover, the XDK utilizes the Oz Explorer and optionally
IOzSeF (by Guido Tack) to visualize the solver search tree, and the Oz Inspector
to display XDG structures in more detail.

6 Conclusion

We have presented the XDG grammar development kit called XDK, and de-
scribed its lexicon specification language. The XDK includes a large number of
grammar development tools implemented in Mozart/Oz. No other programming
system provides the required expressiveness to combine set constraints, selection
constraints, and deep guards as used in the XDK. XDG is freely available in the
MOGUL library, and if you want to know more about the XDK, please have a
look at its documentation, which is more than 170 pages long.

References

1. Bresnan, J., Kaplan, R.: Lexical-functional grammar: A formal system for gram-
matical representation. In Bresnan, J., ed.: The Mental Representation of Gram-
matical Relations. The MIT Press, Cambridge/USA (1982) 173–281



12

2. Kay, M.: Functional grammar. In C. Chiarello et al., ed.: Proceedings of the 5th

Annual Meeting of the Berkeley Linguistics Society. (1979) 142–158
3. Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. University of

Chicago Press, Chicago/USA (1994)
4. Lambek, J.: The mathematics of sentence structure. American Mathematical

Monthly (1958) 154–170
5. Steedman, M.: The Syntactic Process. MIT Press (2000)
6. Joshi, A.K., Levy, L., Takahashi, M.: Tree adjunct grammars. Journal of Computer

and System Sciences 10 (1975)
7. Joshi, A.K.: How much context-sensitivity is necessary for characterizing structural

descriptions—tree adjoining grammars. In Dowty, D., Karttunen, L., Zwicky, A.,
eds.: Natural Language Processing—Theoretical, Computational and Psychological
Perspectives. Cambridge University Press, New York/USA (1985)

8. Tesnière, L.: Eléments de Syntaxe Structurale. Klincksiek, Paris/FRA (1959)
9. Mel’čuk, I.: Dependency Syntax: Theory and Practice. State Univ. Press of New

York, Albany/USA (1988)
10. Copestake, A.: Implementing Typed Feature Structure Grammars. CSLI Publica-

tions (2002)
11. XTAG Research Group: A lexicalized tree adjoining grammar for english. Technical

Report IRCS-01-03, IRCS, University of Pennsylvania (2001)
12. Kaplan, R.M., Maxwell, J.T.: Lfg grammar writer’s workbench. Technical report,

Xerox PARC (1996)
13. Smolka, G., Uszkoreit, H.: NEGRA project of the collaborative research centre

(SFB) 378 (1996–2001) Saarland University/GER.
14. Duchier, D.: Axiomatizing dependency parsing using set constraints. In: Proceed-

ings of MOL6, Orlando/USA (1999)
15. Duchier, D., Debusmann, R.: Topological dependency trees: A constraint-based

account of linear precedence. In: Proceedings of ACL 2001, Toulouse/FRA (2001)
16. Debusmann, R., Duchier, D., Koller, A., Kuhlmann, M., Smolka, G., Thater, S.:

A relational syntax-semantics interface based on dependency grammar. In: Pro-
ceedings of COLING 2004, Geneva/SUI (2004)

17. Duchier, D.: Configuration of labeled trees under lexicalized constraints and prin-
ciples. Research on Language and Computation 1 (2003) 307–336

18. Duchier, D.: MOGUL: the MOzart Global User Library (2004)
http://www.mozart-oz.org/mogul/.

19. Dienes, P., Koller, A., Kuhlmann, M.: Statistical A* Dependency Parsing. In:
Prospects and Advances in the Syntax/Semantics Interface, Nancy/FRA (2003)


