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Abstract

In recent years, there has been increasing interest in computational models of bi-
ological systems based on various calculi of communicating processes, such as the
stochastic pi-calculus. These models make it possible to simulate and eventually
visualize the dynamic evolution of complex biosystems in time and under varying
environmental conditions.

While the elegance of the pi-calculus lies in its minimality, this is also a drawback
when it comes to modeling because much effort must be devoted to encoding high-
level ideas into the low-level means that the language affords us.

In this paper, we describe an on-going effort to design a new higher-level pro-
gramming language that provides direct ontological support for the concepts which
are used to formulate, organize and structure models of biomolecular systems.

Our language has an object-oriented flavour where we view molecular components
as agents with finite sets of behaviours (states). Reactions are modeled as exchanges
over connected ports that may cause agents to switch states.

Key words: biological systems, stochastic pi-calculus,
communicating agents, systems biology, simulation, programming

1 Introduction

The interdisciplinary study of coordination [12] investigates processes of man-
aging dependencies among activities. On the surface, researchers from differ-
ent fields use the same terminology for the description of complex systems:
model, control, regulation, amplification, feedback.

Each living cell is a inherently complex systems [6]. It is densely populated
by ten thousands molecules with highly specialized function and interaction
capabilities. For example, a receptor molecule on a bacterium’s surface may be
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responsible for sensing the availability of food in its environment. It would let
the inside of the cell know that, for instance, its favourite sugar is available.
The cell would produce a range of substances, some for opening entrance
points for the sugar on the cell membrane. Other groups of molecules would
be responsible for the exploitation of the sugar, i.e. its decomposition into
smaller parts that deliver the energy needed by the cell to maintain its vital
functions.

All cellular processes involve interaction between a possibly large number
of its constituents: all molecules have specific functions, they can do virtu-
ally nothing in isolation, but need to work with other molecules in a well
controlled and coordinated manner. Vital functions enabled by properly co-
ordinated biomolecular actors include cell growth, replication, reactions to
manyfold events in the outside world, etc. Many diseases are associated with
a failure of intra-cellular interaction or signalling networks, e.g. cancer or
neurodegenerative diseases. As control and regulation in biology [4,22] are
implicit, it is not possible to identify a control unit as a separate process as
in the classical fields of control theory.

System biology investigates the behavior and relationships of all the el-
ements in a particular biological system while it is functioning [7]. It aims
at formulating mathematical models that reflect biological knowledge. These
can be used to address relevant questions to biologists: in a model one can
systematically perturb individual components, monitor the system as a whole
and observe its response to the perturbation. By shifting the emphasis to
the description of the dynamic interactions underlying cellular functions, it
considerably differs from traditional biology: this deals with the identification
of the cell’s components, their molecular characterization and cataloging.

Pi and systems biology: The stochastic π-calculus [15] is a refinement of
Milner’s π-calculus [13], designed for abstracting concurrent nondeterministic
processes. Its operational semantics is subject to stochastic control. Regev
and Shapiro proposed to apply the stochastic π-calculus for simulations in
systems biology in 2002 [20,21]. Since then it has been applied in a number
of case studies [8,10,11]. These models were formulated directly in stochastic
π, and executed in the BioSpi [17] or similar systems [14]. The available
models can be used to simulate biological systems, and allow for the tests of
hypotheses.

Albeit that the stochastic π calculus allows to reflect the inherent con-
currency, communication and stochasticity of cellular systems, each new case
study reveals drawbacks of biological modeling directly in π. The origin of
this is to be found in the calculus’ minimality, which makes it cumbersome
to hand-craft models with complex coordination and dependencies. In or-
der to become accessible to a wider group of modelers, it seems desirable to
increase the ease of modeling by extending the language used. Suggestions
have been made both from the side of enriching the variants of π used, see
beta binders [16], adapting the ambient calculus with the aim to more directly
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Fig. 1. Model of core circadian oscillator (as suggested by [1])

support specific aspects as compartmentalization ([19]), or designing de novo
calculi for interaction on membranes [2], and protein-protein interaction [5].
Another early suggestion was to aim at an higher-level programming language
for biological applications based on π, and down-compilable to it [3].

Outline: Section 2 introduces an essential model of circadian clocks,
as an example of coordinated orchestration of different components of a cell.
Section 3 illustrates infelicities in the use of the π-calculus as a modeling
language. We then outline the principles of our language in Sec. 4. As a
use case, in Sec. 5 we apply our language for modeling circadian machinery.
Section 6 summarizes and gives an outlook on the current work-in-progress of
further developing and implementing our language.

2 Coordination in Circadian Clocks

As an illustration of dynamic and well-orchestrated processes that take place
inside a cell, we give a description of a class of mechanisms that has been
actively investigated in recent years, and is being worked on by modelers with
various backgrounds.

Circadian clocks can be found in virtually all organisms. First examples are
already present in some bacteria [9], and an abundance more is found among
eukaryotes - these are higher organisms, starting with yeast, and including
insects, plants, and animals. Circadian clocks control night-and-day rhythms
that are of overwhelming importance to nearly all life on earth that has evolved
in environments with cyclic environmental changes.

As a cartoonish example for a daily rhythm, one could identify two genes
of an organism, sleep and activity. These unfold their activities at night and
day respectively. At the cellular level, one could measure oscillations between
the genes’ products in rhythms of 24 hours, with time-shifted phases. The
basic biomolecular mechanisms controlling circadian clocks in a wide range of
organisms share common features. They consist in two interleaved feedback
loops: an activator reinforces first its own expression, in a positive loop. At the
same time, the activator enhances the production of a repressor element. A
sufficiently high accumulation of this repressor causes the activator’s produc-
tion to turn off. After some time, all activator molecules have been degraded -
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Fig. 2. Evolution of A and R protein levels over time for the core circadian oscillator.
Simulation plot based on the execution of the stochastic π model from [17].

and when no more activators are available, the production of repressors ceases
as well. When the repressor level has decreased by natural degradation, the
activator first returns to its basal activity level, and by doing so it somewhat
later starts reinforcing its own production and that of the repressor.

Figure 1 illustrates an essential model of a core circadian machinery, as
proposed by Barkai and Leibler [1]. The activator A can bind to two pro-
moters on DNA (promoters can be seen as button that activate genes), its
own and that of the repressor. This leads to enhanced transcription of static
information encoded in the genes into portable mRNA. Without activator,
transcription occurs only at a lower basal level. The mRNA molecules are
subject to two competing processes, translation into the proteins A and R,
and degradation. The R protein can inactivate A by binding to it, as stated
previously A can reversibly bind to the promoters, and both proteins are sub-
ject to degradation. All reactions are quantified by rates or speeds given on
the edge labels.

Regev and co-authors have applied the stochastic π calculus to this ex-
ample. Figure 2 plots the evolution of protein levels over time, as it arises
when executing their model. The red and green line show absolute numbers
of proteins A and R, respectively, over time given in simulated seconds on the
x axis. The systems oscillates with periods of roughly 400 time units. Starting
with no proteins at all in time 0, a high level of A protein rapidly accumulates.
Note that the steepness of the red curve is due to A’s ability to promote its
own production at rate 40, whereas R’s accumulation proceeds slower – both
because it depends on accumulation of A, and is only promoted to a lesser
degree by it (promoted rate of 2). Now we observe the inhibitive effect that
R exerts on A. R’s negative effect on A is well observable after a high level of
R has accumulated. The complexation between A and R is by far the fastest
reaction in the system, and makes A unavailable for further promotion of ei-
ther gene. A undergoes effective degradation in the A ·B complex, explaining
the rapid decline of the red curve. In turn, the R pool empties more slowly,
until we get to a level where both A and R are rare. At this point, the story
repeats - A re-initiates both its own promotion and somewhat later that of R.
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Fig. 2 also gives us a first impression the inherent variability of biomolec-
ular systems. Qualitatively, the oscillatory behaviour is the same for each
cycle. But still quantitative fluctuations are visible in the curves, as can best
be seen in the high plateaus. The detailed evolution of protein numbers clearly
fluctuates from one cycle to the next.

3 Modeling biosystems in the π-calculus

We are interested in elaborating stochastic models of complex biosystems that
can be executed to run simulations. One type of approach is based on stochas-
tic variants of the π-calculus where biomolecular agents are modeled as con-
current processes that may communicate over channels and where reactions
are identified with communication events. While the π-calculus has proven to
be a flexible and adequate semantic foundation for capturing models of biosys-
tems, its very minimality forces the modeler to encode high-level interaction
patterns into the low-level means offered by the calculus. This encoding makes
models harder to write and understand, and obscures the original high-level
biological model with a plethora of irrelevant computational details.

In this section, we take a critical look at the π-calculus as a modeling lan-
guage for biosystems. We show how severe infelicities arise already for very
simple examples. We identify the asymmetry of the send/receive communi-
cation model as one culprit for these infelicities and propose an alternative
model based on simultaneous exchanges.

3.1 Complex formation in the π-calculus

Consider the reaction of complex formation involving molecules of types A
and B, that occurs at rate k:

A + B −→k A ·B

To model this reaction in the stochastic π-calculus, we introduce a global
channel bindAB with an appropriate stochastic rate. Molecules of types A
and B may be in either of two states: free and bound. Only a molecule in its
free state can participate in the reaction of complex formation. Each state is
modeled by a corresponding process definition:

A_free ::= bindAB ! [] , A_bound.
B_free ::= bindAB ? [] , B_bound.

Notice how the π-calculus induces an irrelevant asymmetry as it requires one
process to send on reaction channel bindAB and the other to receive. A conse-
quence of this fact is that the models of molecules A and B cannot be derived
from the same common base model, event hough they clearly share the same
behaviour. This problem becomes even more obvious in the case of a het-
erodimerization reaction A+A −→ A ·A, in which two molecules of the same
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A_free ::= degradeA ? [] , 0
+ new freeMe , new return ,

bindAB ! {freeMe,return} , return ? {freeB} ,
A_bound(freeMe,freeB) .

B_free ::= degradeB ? [] , 0
+ new freeMe,

bindAB ? {freeA,return} , return ! {freeMe},
B_bound(freeMe,freeA).

A_bound(freeMe,freeHim)
::= degradeA ? [] , freeHim ! [] , 0

+ freeMe ? [] , A_free .

B_bound(freeMe,freeHim)
::= degradeB ? [] , freeHim ! [] , 0

+ freeMe ? [] , B_free .

Fig. 3. Complex formation with spontaneous degradation

type assemble.

3.2 Complex formation and degradation

Consider again the reaction of complex formation, but now suppose that
molecules of types A and B can also undergo spontaneous degradation in
both their free and bound states:

A −→ B −→ A ·B −→ B A ·B −→ B

The added complexity here is that when an A molecule degrades while in
the bound state, it must somehow inform its companion B molecule that the
latter must return to its free state. Since molecules are modeled by π-calculus
processes which do not have manipulable identities, the only option for two
processes to know each other is for them to exchange private channels.

In the model of Figure 3, whenever two molecules A and B bind to form a
complex A ·B, they each create a private freeMe channel and hand it over to
their partner: when one of them degrades, it signals that fact to the other by
sending on the other’s freeMe channel. The protocol for exchanging these new
private channels is itself complicated by the directionality of communication:
the A process much create a private return channel and send it to B along
with A’s freeMe channel to allow the B process to send back its own freeMe

channel.

3.3 Replacing send/receive by simultaneous exchange

We have shown that directionality of communication in the π-calculus has a
number of undesirable consequences:

• it introduces an irrelevant asymmetry in otherwise similar molecular be-
haviours
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• which means that the respective models for two reactants with similar be-
haviours cannot be derived from a common base model

• furthermore, exchanging information between reactants requires extra com-
munication over a new private channel

We can eliminate considerations of directionality by abandoning the send/receive
model in favour of one based on simultaneous exchange. We will base the for-
mulation of communication rules on the following syntax:

port bind [v1, . . . , vn] -> [x1, . . . , xk] ...

which represents an exchange on port bind whereby values v1, . . . , vn are sent
and simultaneously bindings for x1, . . . , xk are received. We now explain the
notion of port.

In models based on the π-calculus, reactants were distinguished by the fact
that one had to send and the other to receive. If we remove this distinction
based on directionality of communication, how can we tell them apart, and,
more to the point, how can we prevent A + A −→ A · A from happening by
accident. In order to distinguish reactants, we will no longer model a reaction
by a single channel, but by a pair of ports : one port for each reactant.

4 Introduction to the new language

In order to overcome the limitations of the π-calculus as a modeling language,
we are designing a new higher-level programming language whose primary
purpose is to provide direct ontological support for the concepts which are used
to organize and structure our models. It is also important to state explicit non-
goals: it is not our intention to devise a new calculus, nor to design a general
purpose programming language. We are solely focussed on making it easier to
write and understand models by providing suitable linguistic support in the
modeling language itself. To a large extent, our endeavor can be regarded as
providing an improved syntactic layer over the stochastic π-calculus.

As a deliberate design choice, and in contrast with the π-calculus, we
choose to view agents as concurrent objects with persistent identities, and to
organize their specifications into a hierarchy of classes in the object-oriented
tradition. Past experience has shown that it is natural and convenient to
describe biomolecular agents as finite state machines. For this reason, our
notion of class directly supports the view of agents as finite state machines: a
class is a collection of state definitions.

In the traditional object-oriented perspective, the behaviour of an object
is unique and fixed by the class. In our proposal, each state defines a separate
behavior bundle and an agent can adopt different behaviors at different times.
A state contains definitions of communication rules: each rule corresponds to
one of the reactions in which the biomolecular agent can participate in this
state.
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class Base {
constructor init [] {} become <free>;
state <free> {

port bind [self] -> [other] {}
become <bound>[other];

port degrade [] -> [] {}
become dead;

}
state <bound>[other] {

port degrade [] -> [] {}
become other.<free>;
become dead;

}
}

Fig. 4. Common base model for A and B

Figure 4 illustrates how we can write a common base model for biomolecu-
lar agents of types A and B. This model has two states <free> and <bound>.
Let’s take a look at the communication rule for port bind in state <free>:

port bind [self] -> [other] {}
become <bound>[other];

Upon binding, the agent in <free> state sends its own identity to its partner
while simultaneously receiving the latter’s identity in variable other. It then
enters the <bound> state, with other as a state parameter. Now let’s take a
look at the degradation rule in the <bound> state:

port degrade [] -> [] {}
become other.<free>;
become dead;

Statement become other.<free> causes the partner to return to its own
<free> state, while become dead causes this agent to die and disappear. We
now show how the common Base model can be specialized to derive models
for both A and B. First, we define the required reactions:

reaction ComplexAB <a,b> [AB_COMPLEXATION_RATE];
reaction DegradeA <a> [A_DEGRADATION_RATE];
reaction DegradeB <b> [B_DEGRADATION_RATE];

Features given between angle brackets are arbitrary and simply allow us to
conveniently access the corresponding ports for each reactant. For example,
we will use ComplexAB.a as the port for A and ComplexAB.b as the port for B.
A Reaction with two features is bi-molecular, while one with a single feature
is mono-molecular. 3 Models for A and B are obtained by deriving from Base

and connecting port names to port values:

class A : Base {
port bind = ComplexAB.a;

3 Note that in pi, modeling monomolecular reactions requires the introduction of artificial
communication counterparts
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port degrade = DegradeA.a; }

class B : Base {
port bind = ComplexAB.b;
port degrade = DegradeB.b; }

4.1 Classes and multiple inheritance

In this section, we briefly and informally outline the intended semantics of
multiple inheritance and the restrictions which must be respected. In our
proposal, a class consists of (1) a set of state definitions and (2) a possibly
partial set of connections associating port names with port values. Consider:

class B : A1,A2 { ... }

If both A1 and A2 provide a connection for the same port name, they must
agree on this connection, i.e. connect it to the same port value.

B’s set of states is the union of the states defined in A1, A2, and in the body
of B’s definition. Similarly, for each state, the set of rules is inherited from
corresponding state definitions in A1 and A2, and extended and/or overridden
in B. If, for a given state, distinct rules for the same port name are inherited
from A1 and A2, then an overriding rule must be provided in B for that state.

Only classes where all port names have been connected to port values can
be instantiated.

4.2 Bound states

The Base model of Figure 4 requires agents to exchange their respective iden-
tities. This technique has the unfortunate consequence that it requires each
object to have intimate knowledge of the other’s interface. For example, the
statement become other.<free> requires the agent to know that the other

has a <free> state and that this state is indeed the one to which it must be
returned upon dissociation. What if we wanted to produce a refinement of
B which upon dissociation should instead enter a <widowed> state in which
complex formation is no longer possible?

We can easily address this issue by borrowing a leaf from Python’s book. 4

Python has the notion of a bound method whereby evaluating O.m returns a
closure which, when applied to arguments (x1, ..., xn), executes O.m(x1, ..., xn).
By analogy, we propose the notion of a bound state whereby evaluating O.<s>
returns a closure which, when passed as argument to become, executes be-
come O.<s>.

Figure 5 illustrates the application of this idea to the common Base model
for A and B. Now, the reactants exchange the bound states to which they
must be returned upon dissociation.

4 see www.python.org
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class Base {
constructor init [] {} become <free>;
state <free> {

port bind [<free>] -> [free_other] {}
become <bound>[free_other];

port degrade [] -> [] {}
become dead;

}
state <bound>[free_other] {

port degrade [] -> [] {}
become free_other;
become dead;

}
}

Fig. 5. Revised common base model for A and B

4.3 Transitions between configurations

So far, our illustrative examples had only fairly simple rules that merely ef-
fected straightforward simultaneous state transitions of the objects directly
involved in the reaction, i.e. of just the reactants. A more complex model,
such the biosynthesis of glycogen (polymer of glucose), requires for each glu-
cose element in the polymer to keep track of its distance to closest leaf, root,
and/or branch node (see [21] for a model in stochastic π). Thus each reaction
of cleaving, branching and elongation affects not only the two glucose elements
directly involved in the reaction, but also requires updating the corresponding
chains of glucose elements. For this reason, the general form of a rule is:

port p [e1, . . . , en] -> [x1, . . . , xk]
PreTransitions
{ UpdateAlgorithm }
PostTransitions

where UpdateAlgorithm typically invokes methods 5 of other biomolecular
agents. Since concurrent systems with state are notoriously difficult to rea-
son about, we wish the UpdateAlgorithm to execute atomically with respect
to any state transition in the system as a whole. For this reason, for each
reaction event, we allow PreTransitions which all take place before execution
of the UpdateAlgorithms of the reactants begins, and PostTransitions which
all take place after the algorithms have finished and the system has reached
computational quiescence.

What we allow the UpdateAlgorithm to do, is to queue state transition
requests by executing statements of the form:

eventually become BoundState;

These queued requests are executed together with the PostTransitions .

5 In addition to rules, state definitions may also contain method definitions. Different states
may provide different methods, or different implementations of the same methods.
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4.4 Translation into the stochastic π-calculus

While space limitations preclude a full presentation of the language’s seman-
tics, we now sketch how the first example of Section 4 can be translated into
the stochastic π-calculus. The result is intended to be similar to the code of
Fig 3, but also allow for late binding and for atomicity of execution of reaction
behaviours with respect to state transitions, as described in 4.3

For simplicity, we omit a treatment of inheritance and assume that the
text of class Base has been merged into derived classes A and B as illustrated
in Figure 6.

class A {
constructor init [] {} become <free>;
state <free> {

port bind [self] -> [other] {}
become <bound>[other];

port degrade [] -> [] {}
become dead;

}
state <bound>[other] {

port degrade [] -> [] {}
become other.<free>;
become dead;

}
port bind = ComplexAB.a;
port degrade = DegradeA.a;

}

Fig. 6. Expanded definition of derived class A

Mono-molecular reactions are transformed into bi-molecular reactions by
introducing timers as described by Regev in her thesis [18]. Reactions are
implemented as global channels with finite stochastic rates:

global(complexAB(AB_COMPLEXATION_RATE),
degradeA(A_DEGRADATION_RATE),
degradeB(B_DEGRADATION_RATE)).

All other channels have infinite rates. By inspection (see Figure 6), we discover
that the bind port name of A is connected to the first port value of reaction
ComplexAB while B uses the second port value. Consequently, A will implement
the send/receive part of the exchange protocol, while B will implement the
corresponding receive/send.

Global channels are introduced to name states and methods and thus per-
mit the implementation of late binding :

global(state_free,state_bound,state_dead).

Also, we need 3 additional global channels for a synchronization mechanism
that delays state transitions until quiescence is reached as explained in 4.3:

global(sync,block,unblock).

Synchronization is mediated by a Sync agent: in its free state, it always
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accepts sync signals. When a reaction takes place, the reactant on the send
side puts Sync into its blocked2 state. Upon completion of the reaction
behaviour, both reactants must unblock Sync to cause it to return to its free
state again. While, in this article, we have tried to shun biospi-specific syntax,
we retain one convenient notation, namely self, which simply reinvokes the
current process definition with the same arguments:

Sync_free ::= sync?[],self + block?[],Sync_blocked2.
Sync_blocked2 ::= unblock?[],Sync_blocked1.
Sync_blocked1 ::= unblock?[],Sync_free.

The translation of an agent’s class results in one process definition per state
and one process definition for the constructor. The latter creates private
channels to represent the states and methods bound to this particular agent
instance and starts the initial state process passing these channels as argu-
ments. Private channel me is used to resolve late binding, i.e. to map global
names of methods or states to corresponding private channels of the agent:

A ::= new me, new become_free, new become_bound, new become_dead,
A_free(me,become_free,become_bound,become_dead).

A_free( me,become_free,become_bound,become_dead) ::= ...
A_bound(other,me,become_free,become_bound,become_dead) ::= ...

Both A_free and A_bound are implemented as sums, and, in particular, share
the handling of late binding. They both (textually) start with an alternative,
listening on the me channel, that performs late binding resolution of a global
name state, returning the result on channel ret. Note the use of a test sum
of the form Test1, P1 + · · ·+ Testn, Pn:

me?{state,ret},
((state==state_free ),ret!{become_free },self
+(state==state_bound),ret!{become_bound},self
+(state==state_dead ),ret!{become_dead },self)

This is immediately followed by alternatives listening on the private channels
that effect state transitions:

+ become_free?[],
A_free(me,become_free,become_bound,become_dead)

+ become_bound?{other},
A_bound(other,me,become_free,become_bound,become_dead)

+ become_dead?[],0

The rest of each state definition is dedicated to the reactions in which it can
participate. For example, here is how A_free handles the ComplexAB reaction.
This is the translation of the port rule for bind in state <free>. By inspection
of class A (see Figure 6), we know that port name bind is connected to the first
port value of reaction ComplexAB; therefore the rule will use a translation that
implements the send/receive part of the exchange protocol on global channel
complexAB:

+ new ret,complexAB!{me,ret},block![],ret?{other},
new done,
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((new ret,me!{state_bound,ret},ret?{how},
done![],sync![],how!{other},0)

|(done?[],unblock![])
|self)

A private channel ret is created to implement the return part of the exchange,
A_free sends its identity (in the form of its late-binding handler me) and the
ret channel; it then blocks state transitions and receives the identity from the
other. At that point the exchange is complete and the reaction behaviour
(update algorithm) is executed: the A agent should enter its bound state.
This is is realized with a 3 part concurrent composition: the 3rd part (self)
is essential to avoid deadlock: the agent must immediately become ready
again to process late-binding resolutions and method invocations; the 1st part
queries the me channel to resolve state_bound and obtains become_bound as
the value of how; 6 at that point, it indicates that it is done (on channel done),
waits for state transitions to be unblocked (on channel sync), and eventually
performs the state transition by invoking how!{other}. The 2nd part waits
until all concurrent operations are done, then signals with unblock to the
Sync process that its part of the update algorithm has reached quiescence.

Correspondingly, again by inspection, we determine that port bind in class
B is connected to the 2nd port value of reaction ComplexAB and therefore must
implement the receive/send part of the exchange protocol. Thus, the prefix
in the translation of the same rule needs to be the mirror image of the one for
A above:

+ complexAB?{other,ret},ret!{me},
new done,
((new ret,me!{state_bound,ret},ret?{how},
done![],sync![],how!{other},0)

|(done?[],unblock![])
|self)

The way degradeA is handled by A_bound(other) illustrates a double late-
binding resolution and a corresponding double synchronization before unblock-
ing:

+ new ret,degradeA!{ret},block![],ret?[],
new done1,new done2,
((new ret,other!{state_free,ret},ret?{how},
done1![],sync![],how![],0)

|(new ret,me!{state_dead,ret},ret?{how},
done2![],sync![],how![],0)

|(done1?[],done2?[],unblock![])
|self)

The rest of the translation proceeds similarly. Clearly, translating our lan-
guage into the stochastic π-calculus is rather technical and becomes increas-
ingly less attractive as further high-level features have to be considered. Fur-
thermore the overhead of this encoding leads to programs that do not perform

6 conceivably, static analysis could optimize this particular lookup away
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well in practice in BioSpi. For these reasons, we are working on formulat-
ing a direct operational semantics, and our implementation effort no longer
targets the stochastic π-calculus but the high-level multiparadigm language
Mozart/Oz. 7

5 Case study: the circadian clock

In this section, we show how the biological phenomenon of the circadian clock
presented in Section 2 can be modeled in our language. Previously this has
been done directly in stochastic π [17].

First, Figure 7 contains the base model of a Gene which can be transcribed
either at a slow rate, or, when promoted, at a fast rate:

class Gene
{

constructor init[] {} become <slow>;
method transcribe[] {}
state <slow>
{

port slow { transcribe[]; }
port promote[<slow>] become <fast> {}

}
state <fast>
{

port fast { transcribe[]; }
}

}

Fig. 7. Common base class for genes

reaction A_promotion <gene,protein> [RATE_A_PROMOTE];
reaction A_transcription_slow <gene> [RATE_A_TRANSCRIBE_SLOW];
reaction A_transcription_fast <gene> [RATE_A_TRANSCRIBE_FAST];

class A_Gene : Gene
{

port slow = A_transcription_slow.gene;
port fast = A_transcription_fast.gene;
port promote = A_promotion.gene;
method transcribe[] { new A_RNA.init[]; }

}

Fig. 8. Gene coding for protein A

Models for the genes coding for proteins A and R are obtained by inheri-
tance and specialization from the common base class Gene. Figure 8 shows how
to derive the model of the gene coding for protein A. First, we define the three
reactions of promotion, slow transcription, and fast transcription when pro-
moted, then we connect them to the corresponding port names inherited from

7 see www.mozart-oz.org
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the base model. Finally, a specialized definition of the transcribe method is
provided which produces the version of mRNA specific to the A gene.

The model for the R gene is obtained in a similar fashion, as illustrated in
Figure 9.

reaction R_promotion <gene,protein> [RATE_R_PROMOTE];
reaction R_transcription_slow <gene> [RATE_R_TRANSCRIBE_SLOW];
reaction R_transcription_fast <gene> [RATE_R_TRANSCRIBE_FAST];

class R_Gene : Gene
{

port slow = R_transcription_slow.gene;
port fast = R_transcription_fast.gene;
port promote = R_promotion.gene;
method transcribe[] { new R_RNA.init[]; }

}

Fig. 9. Gene coding for protein R

Transcription of a gene on the DNA produces a corresponding RNA. Fig-
ure 10 contains the base model of RNA which can either be translated or may
spontaneously degrade.

class RNA
{

constructor init[] {} become <init>;
method create[] {}
state <init>
{

port translate { create[]; }
port degrade become dead {}

}
}

Fig. 10. Common base class for RNA

Models for the RNA that results from the transcription of A and R genes
are obtained by inheritance and specialization from the common base class
RNA, as shown in Figure 11.

The A protein may either be free, or it may be bound to the promoter of
the A gene on the DNA, or to the promoter of the R gene on the DNA, or
it can be bound to a R protein to form a complex. When the A protein is
bound to a promoter site, it may fall off: this is modeled by the corresponding
reaction which we dub demotion to emphasize that it reverses an earlier pro-
motion. When A forms a complex with R, it is only subject to spontaneous
degradation.

The R protein is simpler: it may either be free or form a complex with
A. In either case it may spontaneously degrade. Figure 13 is basically just an
instance of the model first presented in Figure 5.
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reaction A_translation <rna> [A_TRANSLATION_RATE];
reaction A_RNA_degradation <rna> [A_RNA_DEGRADATION_RATE];

class A_RNA : RNA
{

port translate = A_translation.rna;
port degrade = A_RNA_degradation.rna;
method create[] { new A.init[]; }

}

reaction R_translation <rna> [R_TRANSLATION_RATE];
reaction R_RNA_degradation <rna> [R_RNA_DEGRADATION_RATE];

class R_RNA : RNA
{

port translate = R_translation.rna;
port degrade = R_RNA_degradation.rna;
method create[] { new R.init[]; }

}

Fig. 11. mRNA transcriptions of A and R genes

6 Conclusion

In this article, we have described both the appeal of the stochastic π-calculus
for modeling and running dynamic simulations of molecular biosystems, as well
as some inadequacies inherent to this calculus as an engineering foundation
for the modular development of complex models.

To remedy the situation, we described our ongoing effort to design a new
higher-level programming language that makes it possible for complex models
to be written and structured more directly rather than through an encoding
tour de force.

Our language has an object-oriented flavour that provides explicit support
to model the distinct behaviours that a molecular agent adopts in different
states. Crucially, to allow the development of models reusable through in-
heritance and refinements, we abandon the directional send/receive style of
communication, and adopt instead a style based on simultaneous exchanges.
For want of space, we have omitted from our exposition some interesting fea-
tures of our language, such as its support for describing complex assemblies
comprised of several subagents.

Preliminary experience with the language has been very positive so far. In
this article we included a model of a circadian clock to illustrate an application
of the language. We have also produced models of the biosynthesis of glycogen,
and of the regulatory switch of the lambda phage which are considerably
simpler and more intelligible than their counter parts in the stochastic π-
calculus [21,8]. We are currently working on a reasonably fine and complete
model of the tryptophan operon.

An implementation of the language in Mozart/Oz is in progress.
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reaction AR_complex_formation <a,r> [AR_COMPLEX_FORMATION_RATE];
reaction A_degration <protein> [A_DEGRADATION_RATE];
reaction A_demotion <protein> [A_DEMOTION_RATE];
reaction R_demotion <protein> [R_DEMOTION_RATE];

class A
{

port promoteA = A_promotion.protein;
port promoteR = R_promotion.protein;
port complexAR = AR_complex_formation.a;
port degrade = A_degradation.protein;
port demotingA = A_demotion.protein;
port demotingR = R_demotion.protein;

constructor init[] {} become <free>;

state <free>
{

port promoteA -> [slow] become <promotingA>[slow] {}
port promoteR -> [slow] become <promotingR>[slow] {}
port complexAR [<free>] -> [free] become <complex>[free] {}
port degrade become dead {}

}
state <promotingA>[slow]
{

port demotingA become slow; become <free> {}
}
state <promotingR>[slow]
{

port demotingR become slow; become <free> {}
}
state <complex>[free]
{

port degrade become free; become dead {}
}

}

Fig. 12. A Protein

reaction R_degradation <protein> [R_DEGRADATION_RATE];

class R
{

port complexAR = AR_complex_formation.r;
port degrade = R_degradation.protein;
constructor init[] {} become <free>;
state <free>
{

port complexAR[<free>] -> [free] become <complex>[free] {}
port degrade become dead {}

}
state <complex>[free]
{

port degrade become free; become dead {}
}

}

Fig. 13. R Protein
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