Channel Routing With CLP(FD)

Denys Duchier
Serge Le Huitouze
Intelligent Software Group
Simon Fraser University
{duchier,serge}@cs.sfu.ca

1 Introduction

Channel routing is an important problem for the automated layout of integrated
circuits. In [10], Neng-Fa Zhou claims that traditional CLP languages, such as
CHIP, are ill-suited to the task, and that multi-layer channel routing problems
are difficult to solve with finite domain variables ranging over integers. Instead,
he describes a technique for explicit management of finite domains using f-
PROLOG’s state tables, and argues for its superior efficiency.

We set out to challenge that claim, and in the present paper we report on
our experience applying finite domains to the channel routing problem using
CLP(FD) [2, 3]. Our approach is quite elegant. We believe it is simpler than
Zhou’s B-PROLOG version, but, more to the point, 1t is just as performant.

We begin with a description of the channel routing problem and contribute
a formalization which is well-suited to a constraint-based approach. Then we
present Zhou’s solution.

In section 5.1 we introduce a preliminary version (using two finite domain
variables per net) which is the natural encoding of our formalization, but whose
efficiency leaves something to be desired. Then, in section 5.2 we describe a bet-
ter encoding (using only one finite domain variable per net) whose performance
compares favorably with Zhou’s solution.

In section 5.3, we document a useful technique for representing and updating
graphs using finite domain variables. Finally, we report on and discuss compar-
ative benchmarks: they validate our claim that cLP(FD) is competitive with
B-PROLOG for this problem.

2 Problem Description'

The channel consists of a rectlinear grid of rows (aka tracks) and columns.
The grid points along the top and bottom tracks are called terminals; they are

1This section is endebted to the excellent description of channel routing in [1].

numbered from 1 to n according to the column in which they lie. A net is a set
of terminals which must be interconnected. A terminal can be in at most one
net. By convention, we reject the degenerate cases of empty and singleton nets:
a net must have at least 2 terminals.

How the problem can be solved further depends on the wiring model; in
particular, it depends on the number of layers available. In the Manhattan
routing model, 2 layers are available: all horizontal wires go in one layer and all
vertical wires in the other; thus wires can cross, but they cannot overlap.

We also impose the “no dogleg” restriction. This means that the wiring of
a net contains at most one horizontal segment to which all the net’s vertical
segments are connected.

Finally, we will allow k pairs of layers to be used as described above, so that
a net may be placed on any one pair.

As a matter of convenience, we will say “layer” instead of “pair of layers,”
and the number of tracks will not include the top and bottom tracks because we
make the further assumption that these two tracks can’t be used for (horizontal)
wiring.

3 Problem Formalization

A net will be implemented by a wiring consisting of one horizontal segment
spanning the width from the net’s letfmost terminal to its rightmost terminal,
and one vertical segment per terminal connecting it to the horizontal segment.
Our only constraint is that wires going in the same direction should not overlap.
This can only happen when 2 nets’ horizontal extents intersect. In that case,
the horizontal segments cannot be laid on the same track: either they must be
on different layers, or on the same layer but on different tracks. Furthermore,
vertical segments should not overlap either: this can only happen when one net
includes top terminal ¢ and the other net includes bottom terminal i. To prevent
overlap of these vertical segments, either the nets must be laid on different layers,
or the net with top terminal ¢ must be laid on a track above that of the net
with bottom terminal z.

Note that, when the horizontal extents of two nets overlap but they do not
share a column, then they must be laid on different tracks, but there is no
ordering constraint between these tracks.

Let us write 5 for a net, n.t (resp. n.b) for the set of indices of top (resp.
bottom) terminals in net 7. Let n.e be the extent of net), i.e. the interval [k, k2]
where k7 1s the minimum index of the terminals in 5 and ks is the maximum.

Different Tracks. When two nets 1; and 7y have overlapping extents, they
must be placed on different tracks, which we write 11 %7 92:

n.eNnze# 0= n &7

Ordered Tracks. When two nets have terminals in the same column, either
they must be placed on different layers or the net 7, with the bottom terminal
must be placed below the net 72 with the top terminal. We write 11 < 72:

7]1.bﬂ7]2.t7£®:>7]1 =< N2

Different Layers. When two nets must simultaneously satisfy incompatible
ordering constraints, they must be placed on different layers, which we write
M #L N2
M= 2 Ang <= AL 2
A solution T in n layers and m tracks is a set of elements 7 : (4, j) assigning
a layer number 1 < ¢ < n and a track number 1 < j < m to each net, and such
that it respects all constraints on non-overlap:

Different Tracks. T satisfies 3 %871 no iff 1 @ (i1,51) € T and 2 : ({2, 42) €T
and il ;é iz or j1 ;é jz.

Ordered Tracks. [T satisfies o < ny iff i1 # iz or ja < j1.

Different Layers. [satisfies n1 561 1o iff 41 # is.

4 [-Prolog Solution

Zhou presents a solution that takes advantage of g-prolog’s support for state
tables, i.e. “relations in which each tuple is given a truth value true or false.”
He treats the problem as a CSP where the domains of variables are represented
by a state table whose triples are all combinations of nets, layers and tracks. A
state table can also be regarded as a multidimensional array of boolean values
indexed by atomic terms.

Creation. The goal bt(p(X1,...,Xn),S) creates a state table p with n di-
mensions, where each dimension is specified by the range Xi, i.e. a list of atoms
denoting the legal indices on the ith dimension, and S is a boolean indicating
the initial state of the entries. A range of integers can also be written z..7.

For example bt (p1([a,b,c],1..4),true) creates a 3 X 4 array, with each
entry initially true. The first dimension is accessed by either a, b or ¢, and the
second one by either 1, 2, 3 or 4.

Modification. A state table can be modified using primitives set_true and
set_false. For example, set_false(pi(a,2)) will set entry p1(a,2) to false.
These primitives also accept tuple patterns as arguments, i.e. tuples where the
first few arguments are atomic values (or intervals) and the remaining argu-
ments are distinct variables; all entries matching the pattern will be modified.
If a state table is regarded as a discriminating tree, invoking set_false prunes
an entire subtree. Modifications are undone on backtracking.

Access. The goal select(pi(a,X)) will non-deterministically enumerate upon
backtracking all possible values of X for which table entry p1(a,X) is true. The
goal count(pi(a,_),C) will instantiate C to the number of tuples pi(a,X)
which are true in table p1 (3 in our example).

Zhou’s solution uses a state table domain(Net,Layer,Track) to represent
the possible assignments that are still valid for the remaining nets. He proceeds
with a traditional, heuristically guided, enumeration of the nets together with
the propagation of constraints (here the update of the state table domain) after
each instantiation. Thus propagation performs forward checking by updating
the domains of the remaining variables.

Once a net N has been chosen, enumeration of its domain is simply achieved
by the goal select(domain(N,L,T)). Corresponding updates must maintain
the non-overlap constraints. Suppose we have just selected domain(Ni,Li,Ti):

Different Tracks. If Ni and Nj must be on different tracks, we simply ex-
ecute set_false(domain(Nj,Li,Ti)), thus eliminating the pair (Li,Ti) from
the domain of Nj.

Ordered Tracks. If Ni must be above Ij, we correspondingly forbid tracks Ti
and above on layer Li for Nj by executing set_false(domain(Nj,Li,Ti..M))
where M is the number of tracks. If Ni must be below Nj, we eliminate tracks 1
to Ti instead with set_false(domain(Nj,Li,1..Ti)).

Different Layers. If Ni and Nj must be on different layers, we simply remove
all entries on layer Li from the domain of Nj: set_false(domain(Nj,Li,_)).

Zhou represents the set of non-overlap constraints by two graphs, also im-
plemented by state tables: a directed vertical constraint graph Gv capturing the
“ordered tracks” constraint, and an undirected horizontal constraint graph Gh
capturing the “different tracks” constraint. There is an edge from 5, to 72 in
Gv iff 93 < 1. There is an edge between 1, and ns in Gh iff m %7 2. To
avoid unnecessary propagations, these graphs are also updated: each time a net
is selected, corresponding constraints are looked up in these graphs and then
deleted.

Some heuristics are based on the in/out degrees of nodes in Gv and Gh, thus
measuring the number of constraints in which a particular node is involved.
In Zhou’s solution, degrees are easily computed by the count primitive. The
depth of nodes in Gv is also used: Zhou’s implementation requires that there be
no cycles in the graph; ours lifts this limitation by collapsing cycles. In both
implementations, a node’s depth is computed statically in the original constraint
graph Gv and is not updated to reflect the evolving topology when nodes are
deleted from Gv during labeling.

5 CLP(FD) Solution

CLP(FD) [2, 3] is a Constraint Logic Programming language where constraints
apply to finite domain variables ranging over integers. The basic constraint is
X in R, stating that the (finite domain) variable X must always be compatible
with the range R, which means that the possible values that X can take must
belong to the set represented by R.

A range can be a constant range (e.g. 1..10). It can also be what is called
an indexical range, involving the values and/or limits of other finite domain
variables. For example, the range min(Y)..max(Z) represents the set of all
integers between the minimum value in the domain of ¥ and the maximum
value in the domain of Z.

A important requirement on ranges is that they must be negatively mono-
tonic, that 1s, additional constraints can only make the domains smaller. It
follows that ranges like max(Y)..min(Z) are forbidden: constraining variable
Y would eventually decrease its possible maximum value, thus increasing the
above range (the same reasoning applies to Z too in this example).

Other indexical ranges are dom(V) denoting the domain of a finite domain
variable, and val(V), denoting the value of a finite domain variable; the latter
is only meaningful when V becomes instantiated, thus a constraint involving
val(V) only takes effect when the domain of V has been reduced to a single
integer.

Indexical ranges are very important in ¢cLP(FD): they determine how con-
straints propagate whenever ranges change.

A little example might provide some insight on how this works:

rel1(X,Y) :-
X in min(Y)+3..max(Y)+3,
Y in min(X)-3..max(X)-3.

rel2(X,Y) :-
X in dom(Y)+3,
Y in dom(X)-3.

rel3(X,Y) :-
X in {val(Y)+3},
Y in {val(X)-3}.

These three predicates almost state the same constraint, namely X = Y+3.
They only differ in the amount of propagation which is performed when the
domains of X and Y are updated.

Suppose X and Y have current domain 1..10. Then execution of rel1(X,Y)
constrains the domain of X to 4. .10 and the domain of Y to 1..7.

Further stating X in —{5}? results in X’s domain being reduced to {4}:6. .10,
but no modification of Y’s domain (minimum and maximum values for X, namely

?Range —r denotes the complement of range r.

4 and 10 have not been changed).

On the other hand, using rel2 instead would result in Y’s domain being
reduced to {1}:3..7.

Finally, using rel3 instead, X’s and Y’s initial domain would remain un-
changed (1..10) after execution of rel3(X,Y) and the subsequent constraint
X in -{5} would not affect ¥’s domain. Propagation would only take place
when X (resp. Y) is instantiated to a particular integer, leading to instantiating
Y (resp. X) to integer value X-3 (resp. Y+3).

To summarize, indexical constraints implement the following propagations:

e forward checking, with val(V),
e full lookahead, with dom(V),
e partial lookahead, with min(V) and max (V).

Moreover, it is possible to mix different propagation schemes in a single
range: X in min(Y)..{val(Z)} performs partial lookahead on Y and forward
checking on Z (this example is for illustration purposes only and should not be
confused with good programming style!).

5.1 Solution with two variables per net

CLP(FD) is very well suited for solving finite domain CSP problems, provided you
can express your constraints in terms of indexical ranges. If so, you can simply
post all your constraints and then invoke an appropriate labeling procedure.
As we shall see, the channel routing problem can be easily coded using finite
domain constraints.

Our first solution is an almost direct encoding of the mathematical formula-
tion: let’s assume each net Ni is represented by two finite domain variables Li
and Ti, denoting its layer and track number.

Different Layers. This constraint can be simply enforced by the library call
’x<>y’ /2, which is implemented by forward checkable constraints:

different_layers(L1,T1,L2,T2,NbT) :- ’x<>y’(L1,L2).

'x<>y° (X,Y) = X in —{val(Y)}, Y in -{val(X)}.

The effect will be to suppress X’s (resp. Y’s) value from Y’s (resp. X’s) domain
as soon as 1t 1s instantiated to a particular integer.

The two other constraints are a little bit trickier because they involve a dis-
junction (recall the mathematical definition): either the two layers are different
or some relation holds between the two tracks. It is well known that some dis-
junctions can be represented by addition. We tried to apply this idea to our
problem.

Different Tracks. If 7; and 7} are the finite domain variables representing
the tracks in question, the idea is to enforce 7} +6;; # 1; where 6;; is 0 when the
layers are equal and is a large number (bigger than the number of possible tracks)
when the tracks are different (thus causing the constraint to be necessarily
satisfied).

The challenge is to express 0;; in terms of indexical ranges: we used the
absolute difference between the layers, scaled by the maximum number of tracks.
Also, instead of just computing 6;;, we compute 7; 4 6;;. We used a definition
similar to the > |x—y|=z’/3 library call. The idea is to consider two cases: either
x is smaller than y or the other way around. Depending on the case, we are
interested in either y-x or x-y. Merging these two intervals (by using :, the
union constructor) will do the job, because eventually the ‘wrong’ one (i.e. the
one yielding an interval of negative numbers) will be discarded due to the fact
that cLP(FD) only manipulates non-negative integers.

This leads to the following definition, where L1 and L2 are the two layers, T
is one of the tracks, NbT is the maximum number of tracks for the problem, and
PseudoT is the resulting pseudo-track to be confronted with the other track:

pseudo_track_number(L1,L2,T,NbT, PseudoT) :-
Delta in NbT#*(min(L1)-max(L2) .. NbT*(max(L1)-min(L2)
: NbT*(min(L2)-max(L1) .. NbT*(max(L2)-min(L1),
T in min(PseudoT)-max(Delta) .. max(PseudoT)-min(Delta),
PseudoT in min(Delta)+min(T) .. max(Delta)+max(T).

Now, we can express the constraint:

different_tracks(L1,T1,L2,T2,NbT) :-
pseudo_track_number(L1,L2,T2,NbT, PseudoT2),
'x<>y’ (PseudoT2,T1).

Ordered Tracks. Here again, either the nets are on different layers or the
first one must be placed below the second one. By enforcing T; + 6;; > 1; we
are guaranteed to succeed when the layers are different (since §;; is so large),
and we are enforcing 7; > 7; when the layers are equal.

ordered_tracks(L1,T1,L2,T2,NbT) :-
pseudo_track_number(L1,L2,T2,NbT, PseudoT2),
*x>y’ (PseudoT2,T1).

5.2 Solution with one variable per net

Our second solution is less intuitive, but shows the power of the glass-box ap-
proach used in CLP(FD).

Here, each net is represented by a single finite domain variable LTi, which
is indeed a composite value of both the layer and the track number. More
precisely, this variable corresponds to Li*NbT+T1, assuming Li (resp. Ti) ranges
over [0..NbLayers-1] (resp. [0..NbT-1]).

Different Tracks. We can simply enforce this constraint by the forward
checkable constraint *x<>y’/2, because we forbid a particular pair of layer and
track, i.e. a particular value for a composite variable.

different_tracks(LT1,LT2,NbT) :- ’x<>y’(LT1,LT2).

The two other constraints are also implemented in a forward checkable man-
ner, by deleting an interval of values corresponding to a particular layer. All
the difficulty here is to express this interval.

Given a particular value for LTi, the value for Li is simply LTi//NbT (//
stands for the integer division). The value for Ti can be computed accordingly.

Different Layers. Suppose nets Ni and Nj must be laid on different lay-
ers. When finite domain variable LT1 is instantiated to a particular value, one
has to forbid values corresponding to Li for LTj, that is delete the interval
[Li*NbT..Li*NbT+NbT-1].

different_layers(LT1,LT2, NbT) :-
LT1 in -((val(LT2)//NbT)*NbT .. (val(LT2)//NbT)*NbT+(NbT-1)),
LT2 in -((val(LT1)//NbT)*NbT .. (val(LT1)//NbT)*NbT+(NbT-1)).

Ordered Tracks. If net Ni must be placed below net Nj: whenever LT1 is
instantiated to a particular value corresponding to Li and Ti, we must remove
all values from Li*NbT+0 to Li*Nbt+Ti from the domain of Nj; whenever LTj
is instantiated with a value corresponding to Lj and Tj, we must remove all
values from Lj*NbT+Tj to Lj*NbT+NbT-1 from the domain of Ni.

ordered_tracks(LT1,LT2,NbT) :-
LT1 in -(val(LT2) .. (val(LT2)//NbT)*NbT+(NbT-1)),
LT2 in -((val(LT1)//NbT)#*NbT .. val(LT1)).

5.3 Another application of finite domain variables

Certain heuristics employed during the labeling process make use of the in/out
degrees of the horizontal and vertical constraint graphs. We chose not to rep-
resent these graphs explicitly. Instead, we use a finite domain variable for each
node and each graph. The domain of these variables represent the nodes that
are connected to this particular node (i.e. net) in this particular graph. Hence,
the degree can be computed simply by the builtin predicate £d_size/2.

Some caution must be taken, however, in the case where a node becomes
completely disconnected from the rest of the graph. In such a case, according
to our previous definition, the associated finite domain variable would have an
empty domain, thus causing a failure! To circumvent this problem, we had
to extend the domains of these variables with an extra fake value: since we
numbered nets from 1 to n, we chose 0 for this extra value.

As an example, consider a vertical constraints graph consisting of four nodes
and three arcs : {(1,2),(2,3),(2,4)}. The initial domains for the variables
representing degrees for the node 2 are {0}: {1} for the in-degree, {0}:{3}:{4}
for the out-degree.

The update amounts to deleting the chosen net (in the labeling process) from
all degree variables. This can be achieved simply by constraining all the degree
variables to be included in the domain of an extra finite domain variable repre-
senting the set of the nodes still to be instantiated. So, for every degree variable
DVi, we must install the following constraint: DVi in dom(NonInstNodes). The
propagation implemented by dom being a full lookahead, each modification of
NonInstNodes in the labeling process is immediately reflected in the domains
of the degree variables, thus insuring that correct values are available to the
heuristics.

This is not a canonical use of finite domain variables: degree variables are not
part of any labeling process. Their possible values do not correspond to values
that can be enumerated for them. They are just, we think, a convenient way of
representing the degrees of particular graphs, and perhaps the only reasonable
one in a language lacking backtrackable assignment.

Our trick works fine on this example because we start with initial graphs
(representing the set of all constraints) and we suppress nodes (i.e. nets) from
the graphs as execution proceeds. If non-monotonic modifications were required,
we could not get away with it. Note, however, that if you need to add rather
than suppress values, you could operate on the complement of your domain
instead.

6 Results

We tried our two different versions against Zhou’s version with different heuris-
tics. After some experimentation, we found that the best heuristic ordering for
net selection was as follows:

e first we select nets with the fewest number of ordering constraints placing
nets below them: i.e. with minimum out-degree in Gv. Since values are
enumerated in increasing order, starting from the low end of a domain, this
policy minimizes the likelihood of picking a value that will subsequently
prove incompatible with a net to be placed below.

e then, the nets which are deepest in Gv, i.e. which have constraining effect
on the largest number of other nets above them, directly or indirectly.
This maximizes the pruning effect of solving for this net.

e then, the nets with the largest in-degree in Gv, i.e. nets which have the
most direct effect on nets above them.

e then, the nets with the largest degree in Gh, i.e. nets with the most number
of difference contraints.

In the sequel, we refer to this heuristics as H1.

The measurements were made on Deutsch’s difficult problem [5], for various
numbers of layers with the corresponding minimal number of tracks, namely 1
layer /28 tracks, 2 layers/11 tracks or 3 layers/7 tracks.

The measurements reflect only the time required for finding the first solution,
excluding the initialization phase. The raw results are in milliseconds and were
obtained on a Sparc 10, 40 MHz. Also included in the tables is a corrected ratio
between the two versions, taking into account the 1.76 average speed-up of -
prolog over cLP(FD) which we measured on a few benchmark programs — our
purpose was to evaluate the use of state tables vs. finite domain variables, not to
compare the raw speed of S-prolog’s implementation against that of cLP(FD)’s.

For this problem, the initialization time was about 1800 msec for the cLP (FD)
version, and 1000 msec for the [F-prolog version. Considering the speed-up
factor, these times are almost the same.

6.1 Version with two variables per net

BetaProlog | clp(FD) | ratio
1 layer 253 642 1.44
2 layers 250 728 1.65
3 layers 250 7T 1.77

This version is quite efficient, though not as efficient as Zhou’s on this bench-
mark. However, 1ts performance decreases markedly with the number of layers.

Zhou’s version performs only forward checking, ours performs partial looka-
head in the 1 layer case for the “Ordered Tracks” constraint. However, lookahead
isn’t helpful in this particular case.

In the multi-layer case, our version doesn’t perform immediate forward
checking. Due to the coding of the two disjunctive constraints (see pseudo_
track_number, p7), ordering constraints on track values of two nets will nor-
mally only take effect after instantiation of the layer values. This might delay
failures detected earlier in Zhou’s version, and that is probably the cause of the
slight degradation one can observe in the measurements.

However, with this particular heuristics, this version still performs quite well.

We experimented with two other heuristics also used in Zhou’s program.
Though not useful for solving this example more efficiently (even in Zhou’s
version), they showed a marked penalty in our version.

H2 uses, in addition to H1, the minimum values (L,T) for nets: we choose
first, all other things being equal, the net with the smaller minimum. This
cannot be simply implemented as the minimum value of L together with the
minimum value of T, because of the delayed forward checking our version im-
plements. Thus, we have to enumerate on the layer value until a proper value 1s
found. Only then can we pick up the minimum value for the track. Of course,

10

we must then undo the bindings and propagation just performed. The code
looks as follows:

min_val(Layer,Track, _,_) :- first_val(Layer,Track), fail.
min_val(_,_, MinL,MinT) :- retract(minv(MinL,MinT)).

first_val(Layer,Track) :-
in_domain(Layer), fd_min(Track,MinT), !,
asserta(minv(Layer,MinT)).

BetaProlog | clp(FD) | ratio
1 layer 292 1060 2.06
2 layers 299 6865 13.05
3 layers 303 8530 16.00

H3 uses, in addition to H1, the number of remaining values (L,T) for nets:
we choose first, all other things being equal, the net with the smaller number of
remaining values. The implementation for this measure is even worse than the
previous one! We have to perform a complete enumeration on the layer value
and sum the numbers of possible values for the track. The code looks as follows:

size_dom(Layer,Track, _) :-

asserta(sz(0)),

indomain(Layer), fd_size(Track, NbTracks),

update_sz(NbTracks),

fail.
size_dom(_,_, Size) :- retract(sz(Size)).
update_sz(NbTracks) :-

retract(sz(S0)), S1 is SO+NbTracks, asserta(sz(S1)).

BetaProlog | clp(FD) | ratio
1 layer 278 1248 2.17
2 layers 285 10171 | 20.28
3 layers 285 14885 | 29.68

Again, 1t 1s important to note that these heuristics are not necessary. Even
in Zhou’s version, H1 is more efficient. In our “two variables per net” design,
they are very expensive to compute; however, in our “one variable per net”
design they become quite cheap (see below).

6.2 Version with one variable per net

Heuristic H1

BetaProlog | clp(FD) | ratio
1 layer 253 435 0.98
2 layers 250 440 1.00
3 layers 250 435 0.99

11

As opposed to the previous one, this version performs exactly the same
pruning at exactly the same time as Zhou’s version. The efficiency is the same
too. Furthermore, heuristics H2 and H3 can be coded trivially using £d_min
and fd_size respectively.

Heuristic H2
BetaProlog | clp(FD) | ratio

1 layer 292 476 0.93
2 layers 299 467 0.89
3 layers 303 462 0.87

Heuristic H3
BetaProlog | clp(FD) | ratio

1 layer 278 469 0.96
2 layers 285 469 0.93
3 layers 285 461 0.92

As can be seen, our version is even a little quicker than Zhou’s with H2 and

H3.

7 Conclusion

We presented a formalization of the channel routing problem which is well-suited
to a CLP approach: it dictates the constraints which must be posted a priori
before proceeding with a labeling phase.

We then described a concrete implementation of multi-layer dog-leg free
channel routing in cLP(FD) using finite domain variables. We also contributed
a useful technique for representing and updating graphs using finite domain
variables.

Finally we reported our comparative measurements on Deutsch’s difficult
problem [5]. They disprove Zhou’s conjecture [10] that finite domain techniques
are inappropriate for solving channel routing problems: our solution is not only
elegantly declarative, 1t 1s also as performant as Zhou’s G-PROLOG version.

We are grateful to Neng-Fa Zhou for bringing the problem to our attention
and for stimulating discussions during this research.

References

[1] Bonnie Berger, Martin Brady, Donna Brown, Tom Leighton. Nearly Optimal
Algorithms and Bounds for Multilayer Channel Routing. Journal of the
ACM, v42 n2, March 1995, pp 500-542.

[2] P. Codognet and D. Diaz. A Minimal Extension of the WAM for cLP(FD). In
10th International Conference on Logic Programming, Budapest, Hungary,

MIT Press, 1993.

12

[3] P. Codognet and D. Diaz. Compiling Constraint in cLP(FD). To appear in
Journal of Logic Programming.

[4] D. Diaz. cLP(FD) 2.21 User’s Manual. INRIA, July 1994.
ftp://ftp.inria.fr/INRIA/Projects/ChLoE/LOGIC PROGRAMMING/clp£fd

[5] David N. Deutsch. A “Dogleg” Channel Router. Design Automation Con-
ference, 1976.

[6] Sung-Chuan Fang, Wu-Shiung Feng and Shian-Lang Lee. A New Efficient
Approach To Multilayer Channel Routing Problem. 29th ACM IEEE Design
Automation Conference, 1992.

[7] Shaodi Gao and Michael Kaufmann. Channel Routing of Multiterminal Nets.
Journal of the ACM, v41 n4, July 1994, pp. 791-818.

[8] Xingzhao Liu, Akio Sakamoto and Takashi Shimamoto. Genetic Chan-
nel Router. 6th Karuizawa Workshop on Circuits and Systems, TEICE
Trans. Fundamentals, vE77-A n3, March 1994.

[9] H. Simonis. Channel Routing Seen as a Constraint Problem. ECRC TR-LP-
51, 1990.

[10] Neng-Fa Zhou. A logic Programming Approach to Channel Routing. Kyushu
Institute of Technology, Japan. ICLP’95.

13

