
Channel Routing With CLP(FD)Denys DuchierSerge Le HuitouzeIntelligent Software GroupSimon Fraser University{duchier,serge}@cs.sfu.ca1 IntroductionChannel routing is an important problem for the automated layout of integratedcircuits. In [10], Neng-Fa Zhou claims that traditional CLP languages, such aschip, are ill-suited to the task, and that multi-layer channel routing problemsare di�cult to solve with �nite domain variables ranging over integers. Instead,he describes a technique for explicit management of �nite domains using �-prolog's state tables, and argues for its superior e�ciency.We set out to challenge that claim, and in the present paper we report onour experience applying �nite domains to the channel routing problem usingclp(fd) [2, 3]. Our approach is quite elegant. We believe it is simpler thanZhou's �-prolog version, but, more to the point, it is just as performant.We begin with a description of the channel routing problem and contributea formalization which is well-suited to a constraint-based approach. Then wepresent Zhou's solution.In section 5.1 we introduce a preliminary version (using two �nite domainvariables per net) which is the natural encoding of our formalization, but whosee�ciency leaves something to be desired. Then, in section 5.2 we describe a bet-ter encoding (using only one �nite domain variable per net) whose performancecompares favorably with Zhou's solution.In section 5.3, we document a useful technique for representing and updatinggraphs using �nite domain variables. Finally, we report on and discuss compar-ative benchmarks: they validate our claim that clp(fd) is competitive with�-prolog for this problem.2 Problem Description1The channel consists of a rectlinear grid of rows (aka tracks) and columns.The grid points along the top and bottom tracks are called terminals; they are1This section is endebted to the excellent description of channel routing in [1].1

numbered from 1 to n according to the column in which they lie. A net is a setof terminals which must be interconnected. A terminal can be in at most onenet. By convention, we reject the degenerate cases of empty and singleton nets:a net must have at least 2 terminals.How the problem can be solved further depends on the wiring model; inparticular, it depends on the number of layers available. In the Manhattanrouting model, 2 layers are available: all horizontal wires go in one layer and allvertical wires in the other; thus wires can cross, but they cannot overlap.We also impose the \no dogleg" restriction. This means that the wiring ofa net contains at most one horizontal segment to which all the net's verticalsegments are connected.Finally, we will allow k pairs of layers to be used as described above, so thata net may be placed on any one pair.As a matter of convenience, we will say \layer" instead of \pair of layers,"and the number of tracks will not include the top and bottom tracks because wemake the further assumption that these two tracks can't be used for (horizontal)wiring.3 Problem FormalizationA net will be implemented by a wiring consisting of one horizontal segmentspanning the width from the net's letfmost terminal to its rightmost terminal,and one vertical segment per terminal connecting it to the horizontal segment.Our only constraint is that wires going in the same direction should not overlap.This can only happen when 2 nets' horizontal extents intersect. In that case,the horizontal segments cannot be laid on the same track: either they must beon di�erent layers, or on the same layer but on di�erent tracks. Furthermore,vertical segments should not overlap either: this can only happen when one netincludes top terminal i and the other net includes bottom terminal i. To preventoverlap of these vertical segments, either the nets must be laid on di�erent layers,or the net with top terminal i must be laid on a track above that of the netwith bottom terminal i.Note that, when the horizontal extents of two nets overlap but they do notshare a column, then they must be laid on di�erent tracks, but there is noordering constraint between these tracks.Let us write � for a net, �:t (resp. �:b) for the set of indices of top (resp.bottom) terminals in net �. Let �:e be the extent of net �, i.e. the interval [k1; k2]where k1 is the minimum index of the terminals in � and k2 is the maximum.Di�erent Tracks. When two nets �1 and �2 have overlapping extents, theymust be placed on di�erent tracks, which we write �1 6�T �2:�1:e\ �2:e 6= ;) �1 6�T �22

Ordered Tracks. When two nets have terminals in the same column, eitherthey must be placed on di�erent layers or the net �1 with the bottom terminalmust be placed below the net �2 with the top terminal. We write �1 � �2:�1:b\ �2:t 6= ;) �1 � �2Di�erent Layers. When two nets must simultaneously satisfy incompatibleordering constraints, they must be placed on di�erent layers, which we write�1 6�L �2: �1 � �2 ^ �2 � �1) �1 6�L �2A solution � in n layers and m tracks is a set of elements � : hi; ji assigninga layer number 1 � i � n and a track number 1 � j � m to each net, and suchthat it respects all constraints on non-overlap:Di�erent Tracks. � satis�es �1 6�T �2 i� �1 : hi1; j1i 2 � and �2 : hi2; j2i 2 �and i1 6= i2 or j1 6= j2.Ordered Tracks. � satis�es �2 � �1 i� i1 6= i2 or j2 < j1.Di�erent Layers. � satis�es �1 6�L �2 i� i1 6= i2.4 �-Prolog SolutionZhou presents a solution that takes advantage of �-prolog's support for statetables, i.e. \relations in which each tuple is given a truth value true or false."He treats the problem as a CSP where the domains of variables are representedby a state table whose triples are all combinations of nets, layers and tracks. Astate table can also be regarded as a multidimensional array of boolean valuesindexed by atomic terms.Creation. The goal bt(p(X1,...,Xn),S) creates a state table p with n di-mensions, where each dimension is speci�ed by the range Xi, i.e. a list of atomsdenoting the legal indices on the ith dimension, and S is a boolean indicatingthe initial state of the entries. A range of integers can also be written i::j.For example bt(p1([a,b,c],1..4),true) creates a 3� 4 array, with eachentry initially true. The �rst dimension is accessed by either a, b or c, and thesecond one by either 1, 2, 3 or 4.Modi�cation. A state table can be modi�ed using primitives set_true andset_false. For example, set_false(p1(a,2))will set entry p1(a,2) to false.These primitives also accept tuple patterns as arguments, i.e. tuples where the�rst few arguments are atomic values (or intervals) and the remaining argu-ments are distinct variables; all entries matching the pattern will be modi�ed.If a state table is regarded as a discriminating tree, invoking set_false prunesan entire subtree. Modi�cations are undone on backtracking.3

Access. The goal select(p1(a,X))will non-deterministically enumerate uponbacktracking all possible values of X for which table entry p1(a,X) is true. Thegoal count(p1(a,_),C) will instantiate C to the number of tuples p1(a,X)which are true in table p1 (3 in our example).Zhou's solution uses a state table domain(Net,Layer,Track) to representthe possible assignments that are still valid for the remaining nets. He proceedswith a traditional, heuristically guided, enumeration of the nets together withthe propagation of constraints (here the update of the state table domain) aftereach instantiation. Thus propagation performs forward checking by updatingthe domains of the remaining variables.Once a net N has been chosen, enumeration of its domain is simply achievedby the goal select(domain(N,L,T)). Corresponding updates must maintainthe non-overlap constraints. Suppose we have just selected domain(Ni,Li,Ti):Di�erent Tracks. If Ni and Nj must be on di�erent tracks, we simply ex-ecute set_false(domain(Nj,Li,Ti)), thus eliminating the pair hLi,Tii fromthe domain of Nj.Ordered Tracks. If Nimust be above Nj, we correspondingly forbid tracks Tiand above on layer Li for Nj by executing set_false(domain(Nj,Li,Ti..M))where M is the number of tracks. If Ni must be below Nj, we eliminate tracks 1to Ti instead with set_false(domain(Nj,Li,1..Ti)).Di�erent Layers. If Ni and Nj must be on di�erent layers, we simply removeall entries on layer Li from the domain of Nj: set_false(domain(Nj,Li,_)).Zhou represents the set of non-overlap constraints by two graphs, also im-plemented by state tables: a directed vertical constraint graph Gv capturing the\ordered tracks" constraint, and an undirected horizontal constraint graph Ghcapturing the \di�erent tracks" constraint. There is an edge from �1 to �2 inGv i� �2 � �1. There is an edge between �1 and �2 in Gh i� �1 6�T �2. Toavoid unnecessary propagations, these graphs are also updated: each time a netis selected, corresponding constraints are looked up in these graphs and thendeleted.Some heuristics are based on the in/out degrees of nodes in Gv and Gh, thusmeasuring the number of constraints in which a particular node is involved.In Zhou's solution, degrees are easily computed by the count primitive. Thedepth of nodes in Gv is also used: Zhou's implementation requires that there beno cycles in the graph; ours lifts this limitation by collapsing cycles. In bothimplementations, a node's depth is computed statically in the original constraintgraph Gv and is not updated to reect the evolving topology when nodes aredeleted from Gv during labeling. 4

5 CLP(FD) Solutionclp(fd) [2, 3] is a Constraint Logic Programming language where constraintsapply to �nite domain variables ranging over integers. The basic constraint isX in R, stating that the (�nite domain) variable X must always be compatiblewith the range R, which means that the possible values that X can take mustbelong to the set represented by R.A range can be a constant range (e.g. 1..10). It can also be what is calledan indexical range, involving the values and/or limits of other �nite domainvariables. For example, the range min(Y)..max(Z) represents the set of allintegers between the minimum value in the domain of Y and the maximumvalue in the domain of Z.A important requirement on ranges is that they must be negatively mono-tonic, that is, additional constraints can only make the domains smaller. Itfollows that ranges like max(Y)..min(Z) are forbidden: constraining variableY would eventually decrease its possible maximum value, thus increasing theabove range (the same reasoning applies to Z too in this example).Other indexical ranges are dom(V) denoting the domain of a �nite domainvariable, and val(V), denoting the value of a �nite domain variable; the latteris only meaningful when V becomes instantiated, thus a constraint involvingval(V) only takes e�ect when the domain of V has been reduced to a singleinteger.Indexical ranges are very important in clp(fd): they determine how con-straints propagate whenever ranges change.A little example might provide some insight on how this works:rel1(X,Y) :-X in min(Y)+3..max(Y)+3,Y in min(X)-3..max(X)-3.rel2(X,Y) :-X in dom(Y)+3,Y in dom(X)-3.rel3(X,Y) :-X in {val(Y)+3},Y in {val(X)-3}.These three predicates almost state the same constraint, namely X = Y+3.They only di�er in the amount of propagation which is performed when thedomains of X and Y are updated.Suppose X and Y have current domain 1..10. Then execution of rel1(X,Y)constrains the domain of X to 4..10 and the domain of Y to 1..7.Further stating X in -{5}2 results in X's domain being reduced to {4}:6..10,but no modi�cation of Y's domain (minimumand maximumvalues for X, namely2Range �r denotes the complement of range r.5

4 and 10 have not been changed).On the other hand, using rel2 instead would result in Y's domain beingreduced to {1}:3..7.Finally, using rel3 instead, X's and Y's initial domain would remain un-changed (1..10) after execution of rel3(X,Y) and the subsequent constraintX in -{5} would not a�ect Y's domain. Propagation would only take placewhen X (resp. Y) is instantiated to a particular integer, leading to instantiatingY (resp. X) to integer value X-3 (resp. Y+3).To summarize, indexical constraints implement the following propagations:� forward checking, with val(V),� full lookahead, with dom(V),� partial lookahead, with min(V) and max(V).Moreover, it is possible to mix di�erent propagation schemes in a singlerange: X in min(Y)..{val(Z)} performs partial lookahead on Y and forwardchecking on Z (this example is for illustration purposes only and should not beconfused with good programming style!).5.1 Solution with two variables per netclp(fd) is very well suited for solving �nite domainCSP problems, provided youcan express your constraints in terms of indexical ranges. If so, you can simplypost all your constraints and then invoke an appropriate labeling procedure.As we shall see, the channel routing problem can be easily coded using �nitedomain constraints.Our �rst solution is an almost direct encoding of the mathematical formula-tion: let's assume each net Ni is represented by two �nite domain variables Liand Ti, denoting its layer and track number.Di�erent Layers. This constraint can be simply enforced by the library call'x<>y'/2, which is implemented by forward checkable constraints:different_layers(L1,T1,L2,T2,NbT) :- 'x<>y'(L1,L2).'x<>y'(X,Y) :- X in -{val(Y)}, Y in -{val(X)}.The e�ect will be to suppress X's (resp. Y's) value from Y's (resp. X's) domainas soon as it is instantiated to a particular integer.The two other constraints are a little bit trickier because they involve a dis-junction (recall the mathematical de�nition): either the two layers are di�erentor some relation holds between the two tracks. It is well known that some dis-junctions can be represented by addition. We tried to apply this idea to ourproblem. 6

Di�erent Tracks. If Ti and Tj are the �nite domain variables representingthe tracks in question, the idea is to enforce Tj+�ij 6= Ti where �ij is 0 when thelayers are equal and is a large number (bigger than the number of possible tracks)when the tracks are di�erent (thus causing the constraint to be necessarilysatis�ed).The challenge is to express �ij in terms of indexical ranges: we used theabsolute di�erence between the layers, scaled by the maximumnumber of tracks.Also, instead of just computing �ij , we compute Tj + �ij . We used a de�nitionsimilar to the '|x-y|=z'/3 library call. The idea is to consider two cases: eitherx is smaller than y or the other way around. Depending on the case, we areinterested in either y-x or x-y. Merging these two intervals (by using :, theunion constructor) will do the job, because eventually the `wrong' one (i.e. theone yielding an interval of negative numbers) will be discarded due to the factthat clp(fd) only manipulates non-negative integers.This leads to the following de�nition, where L1 and L2 are the two layers, Tis one of the tracks, NbT is the maximumnumber of tracks for the problem, andPseudoT is the resulting pseudo-track to be confronted with the other track:pseudo_track_number(L1,L2,T,NbT, PseudoT) :-Delta in NbT*(min(L1)-max(L2) .. NbT*(max(L1)-min(L2): NbT*(min(L2)-max(L1) .. NbT*(max(L2)-min(L1),T in min(PseudoT)-max(Delta) .. max(PseudoT)-min(Delta),PseudoT in min(Delta)+min(T) .. max(Delta)+max(T).Now, we can express the constraint:different_tracks(L1,T1,L2,T2,NbT) :-pseudo_track_number(L1,L2,T2,NbT, PseudoT2),'x<>y'(PseudoT2,T1).Ordered Tracks. Here again, either the nets are on di�erent layers or the�rst one must be placed below the second one. By enforcing Tj + �ij > Ti weare guaranteed to succeed when the layers are di�erent (since �ij is so large),and we are enforcing Tj > Ti when the layers are equal.ordered_tracks(L1,T1,L2,T2,NbT) :-pseudo_track_number(L1,L2,T2,NbT, PseudoT2),'x>y'(PseudoT2,T1).5.2 Solution with one variable per netOur second solution is less intuitive, but shows the power of the glass-box ap-proach used in clp(fd).Here, each net is represented by a single �nite domain variable LTi, whichis indeed a composite value of both the layer and the track number. Moreprecisely, this variable corresponds to Li*NbT+Ti, assuming Li (resp. Ti) rangesover [0..NbLayers-1] (resp. [0..NbT-1]).7

Di�erent Tracks. We can simply enforce this constraint by the forwardcheckable constraint 'x<>y'/2, because we forbid a particular pair of layer andtrack, i.e. a particular value for a composite variable.different_tracks(LT1,LT2,NbT) :- 'x<>y'(LT1,LT2).The two other constraints are also implemented in a forward checkable man-ner, by deleting an interval of values corresponding to a particular layer. Allthe di�culty here is to express this interval.Given a particular value for LTi, the value for Li is simply LTi//NbT (//stands for the integer division). The value for Ti can be computed accordingly.Di�erent Layers. Suppose nets Ni and Nj must be laid on di�erent lay-ers. When �nite domain variable LTi is instantiated to a particular value, onehas to forbid values corresponding to Li for LTj, that is delete the interval[Li*NbT..Li*NbT+NbT-1].different_layers(LT1,LT2, NbT) :-LT1 in -((val(LT2)//NbT)*NbT .. (val(LT2)//NbT)*NbT+(NbT-1)),LT2 in -((val(LT1)//NbT)*NbT .. (val(LT1)//NbT)*NbT+(NbT-1)).Ordered Tracks. If net Ni must be placed below net Nj: whenever LTi isinstantiated to a particular value corresponding to Li and Ti, we must removeall values from Li*NbT+0 to Li*Nbt+Ti from the domain of Nj; whenever LTjis instantiated with a value corresponding to Lj and Tj, we must remove allvalues from Lj*NbT+Tj to Lj*NbT+NbT-1 from the domain of Ni.ordered_tracks(LT1,LT2,NbT) :-LT1 in -(val(LT2) .. (val(LT2)//NbT)*NbT+(NbT-1)),LT2 in -((val(LT1)//NbT)*NbT .. val(LT1)).5.3 Another application of �nite domain variablesCertain heuristics employed during the labeling process make use of the in/outdegrees of the horizontal and vertical constraint graphs. We chose not to rep-resent these graphs explicitly. Instead, we use a �nite domain variable for eachnode and each graph. The domain of these variables represent the nodes thatare connected to this particular node (i.e. net) in this particular graph. Hence,the degree can be computed simply by the builtin predicate fd_size/2.Some caution must be taken, however, in the case where a node becomescompletely disconnected from the rest of the graph. In such a case, accordingto our previous de�nition, the associated �nite domain variable would have anempty domain, thus causing a failure! To circumvent this problem, we hadto extend the domains of these variables with an extra fake value: since wenumbered nets from 1 to n, we chose 0 for this extra value.8

As an example, consider a vertical constraints graph consisting of four nodesand three arcs : f(1; 2); (2; 3); (2; 4)g. The initial domains for the variablesrepresenting degrees for the node 2 are {0}:{1} for the in-degree, {0}:{3}:{4}for the out-degree.The update amounts to deleting the chosen net (in the labeling process) fromall degree variables. This can be achieved simply by constraining all the degreevariables to be included in the domain of an extra �nite domain variable repre-senting the set of the nodes still to be instantiated. So, for every degree variableDVi, we must install the following constraint: DVi in dom(NonInstNodes). Thepropagation implemented by dom being a full lookahead, each modi�cation ofNonInstNodes in the labeling process is immediately reected in the domainsof the degree variables, thus insuring that correct values are available to theheuristics.This is not a canonical use of �nite domain variables: degree variables are notpart of any labeling process. Their possible values do not correspond to valuesthat can be enumerated for them. They are just, we think, a convenient way ofrepresenting the degrees of particular graphs, and perhaps the only reasonableone in a language lacking backtrackable assignment.Our trick works �ne on this example because we start with initial graphs(representing the set of all constraints) and we suppress nodes (i.e. nets) fromthe graphs as execution proceeds. If non-monotonicmodi�cations were required,we could not get away with it. Note, however, that if you need to add ratherthan suppress values, you could operate on the complement of your domaininstead.6 ResultsWe tried our two di�erent versions against Zhou's version with di�erent heuris-tics. After some experimentation, we found that the best heuristic ordering fornet selection was as follows:� �rst we select nets with the fewest number of ordering constraints placingnets below them: i.e. with minimum out-degree in Gv. Since values areenumerated in increasing order, starting from the low end of a domain, thispolicy minimizes the likelihood of picking a value that will subsequentlyprove incompatible with a net to be placed below.� then, the nets which are deepest in Gv, i.e. which have constraining e�ecton the largest number of other nets above them, directly or indirectly.This maximizes the pruning e�ect of solving for this net.� then, the nets with the largest in-degree in Gv, i.e. nets which have themost direct e�ect on nets above them.� then, the nets with the largest degree in Gh, i.e. nets with the most numberof di�erence contraints. 9

In the sequel, we refer to this heuristics as H1.The measurements were made on Deutsch's di�cult problem [5], for variousnumbers of layers with the corresponding minimal number of tracks, namely 1layer/28 tracks, 2 layers/11 tracks or 3 layers/7 tracks.The measurements reect only the time required for �nding the �rst solution,excluding the initialization phase. The raw results are in milliseconds and wereobtained on a Sparc 10, 40 MHz. Also included in the tables is a corrected ratiobetween the two versions, taking into account the 1.76 average speed-up of �-prolog over clp(fd) which we measured on a few benchmark programs | ourpurpose was to evaluate the use of state tables vs. �nite domain variables, not tocompare the raw speed of �-prolog's implementation against that of clp(fd)'s.For this problem, the initialization time was about 1800 msec for the clp(fd)version, and 1000 msec for the �-prolog version. Considering the speed-upfactor, these times are almost the same.6.1 Version with two variables per netBetaProlog clp(FD) ratio1 layer 253 642 1.442 layers 250 728 1.653 layers 250 777 1.77This version is quite e�cient, though not as e�cient as Zhou's on this bench-mark. However, its performance decreases markedly with the number of layers.Zhou's version performs only forward checking, ours performs partial looka-head in the 1 layer case for the \Ordered Tracks" constraint. However, lookaheadisn't helpful in this particular case.In the multi-layer case, our version doesn't perform immediate forwardchecking. Due to the coding of the two disjunctive constraints (see pseudotrack number, p7), ordering constraints on track values of two nets will nor-mally only take e�ect after instantiation of the layer values. This might delayfailures detected earlier in Zhou's version, and that is probably the cause of theslight degradation one can observe in the measurements.However, with this particular heuristics, this version still performs quite well.We experimented with two other heuristics also used in Zhou's program.Though not useful for solving this example more e�ciently (even in Zhou'sversion), they showed a marked penalty in our version.H2 uses, in addition to H1, the minimum values (L,T) for nets: we choose�rst, all other things being equal, the net with the smaller minimum. Thiscannot be simply implemented as the minimum value of L together with theminimum value of T, because of the delayed forward checking our version im-plements. Thus, we have to enumerate on the layer value until a proper value isfound. Only then can we pick up the minimum value for the track. Of course,10

we must then undo the bindings and propagation just performed. The codelooks as follows:min_val(Layer,Track, _,_) :- first_val(Layer,Track), fail.min_val(_,_, MinL,MinT) :- retract(minv(MinL,MinT)).first_val(Layer,Track) :-in_domain(Layer), fd_min(Track,MinT), !,asserta(minv(Layer,MinT)).BetaProlog clp(FD) ratio1 layer 292 1060 2.062 layers 299 6865 13.053 layers 303 8530 16.00H3 uses, in addition to H1, the number of remaining values (L,T) for nets:we choose �rst, all other things being equal, the net with the smaller number ofremaining values. The implementation for this measure is even worse than theprevious one! We have to perform a complete enumeration on the layer valueand sum the numbers of possible values for the track. The code looks as follows:size_dom(Layer,Track, _) :-asserta(sz(0)),indomain(Layer), fd_size(Track, NbTracks),update_sz(NbTracks),fail.size_dom(_,_, Size) :- retract(sz(Size)).update_sz(NbTracks) :-retract(sz(S0)), S1 is S0+NbTracks, asserta(sz(S1)).BetaProlog clp(FD) ratio1 layer 278 1248 2.172 layers 285 10171 20.283 layers 285 14885 29.68Again, it is important to note that these heuristics are not necessary. Evenin Zhou's version, H1 is more e�cient. In our \two variables per net" design,they are very expensive to compute; however, in our \one variable per net"design they become quite cheap (see below).6.2 Version with one variable per netHeuristic H1BetaProlog clp(FD) ratio1 layer 253 435 0.982 layers 250 440 1.003 layers 250 435 0.9911

As opposed to the previous one, this version performs exactly the samepruning at exactly the same time as Zhou's version. The e�ciency is the sametoo. Furthermore, heuristics H2 and H3 can be coded trivially using fd_minand fd_size respectively. Heuristic H2BetaProlog clp(FD) ratio1 layer 292 476 0.932 layers 299 467 0.893 layers 303 462 0.87Heuristic H3BetaProlog clp(FD) ratio1 layer 278 469 0.962 layers 285 469 0.933 layers 285 461 0.92As can be seen, our version is even a little quicker than Zhou's with H2 andH3.7 ConclusionWe presented a formalization of the channel routing problem which is well-suitedto a CLP approach: it dictates the constraints which must be posted a prioribefore proceeding with a labeling phase.We then described a concrete implementation of multi-layer dog-leg freechannel routing in clp(fd) using �nite domain variables. We also contributeda useful technique for representing and updating graphs using �nite domainvariables.Finally we reported our comparative measurements on Deutsch's di�cultproblem [5]. They disprove Zhou's conjecture [10] that �nite domain techniquesare inappropriate for solving channel routing problems: our solution is not onlyelegantly declarative, it is also as performant as Zhou's �-prolog version.We are grateful to Neng-Fa Zhou for bringing the problem to our attentionand for stimulating discussions during this research.References[1] Bonnie Berger, Martin Brady, Donna Brown, Tom Leighton. Nearly OptimalAlgorithms and Bounds for Multilayer Channel Routing. Journal of theACM, v42 n2, March 1995, pp 500{542.[2] P. Codognet and D. Diaz. A Minimal Extension of the WAM for clp(fd). In10th International Conference on Logic Programming, Budapest, Hungary,MIT Press, 1993. 12

[3] P. Codognet and D. Diaz. Compiling Constraint in clp(fd). To appear inJournal of Logic Programming.[4] D. Diaz. clp(fd) 2.21 User's Manual. INRIA, July 1994.ftp://ftp.inria.fr/INRIA/Projects/ChLoE/LOGIC PROGRAMMING/clp fd[5] David N. Deutsch. A \Dogleg" Channel Router. Design Automation Con-ference, 1976.[6] Sung-Chuan Fang, Wu-Shiung Feng and Shian-Lang Lee. A New E�cientApproach To Multilayer Channel Routing Problem. 29th ACM IEEE DesignAutomation Conference, 1992.[7] Shaodi Gao and Michael Kaufmann.Channel Routing of Multiterminal Nets.Journal of the ACM, v41 n4, July 1994, pp. 791{818.[8] Xingzhao Liu, Akio Sakamoto and Takashi Shimamoto. Genetic Chan-nel Router. 6th Karuizawa Workshop on Circuits and Systems, IEICETrans. Fundamentals, vE77{A n3, March 1994.[9] H. Simonis. Channel Routing Seen as a Constraint Problem. ECRC TR-LP-51, 1990.[10] Neng-Fa Zhou. A logic Programming Approach to Channel Routing. KyushuInstitute of Technology, Japan. ICLP'95.

13

