
An EÆient Algorithm for the Con�guration Problemof Dominane Graphs1Ernst Althaus2 Denys Duhier3 Alexander Koller4 Kurt Mehlhorn2Joahim Niehren3 Sven Thiel2AbstratDominane onstraints are logial tree desriptions originat-ing from automata theory that have multiple appliations inomputational linguistis. The satis�ability problem of dom-inane onstraints is NP-omplete. In most appliations,however, only normal dominane onstraints are used. Thesatis�ability problem of normal dominane onstraints anbe redued in linear time to the on�guration problem ofdominane graphs, as shown reently. In this paper, we givea polynomial time algorithm testing on�gurability of dom-inane graphs (and thus satis�ability of normal dominaneonstraints). Previous to our work no polynomial time algo-rithms were known.1 IntrodutionThe dominane relation of a tree is the anestor relationbetween its nodes. Dominane onstraints are logialdesriptions of trees talking about the dominane rela-tion. Dominane based tree desriptions were �rst usedin automata theory in the sixties [TW67℄ and redisov-ered in omputational linguistis in the early eighties[MHF83℄. Sine then, they have found numerous appli-ations: they have been used for grammar formalisms[VS92, RVSW95℄, in semantis [Mus95, ENRX98℄, andfor disourse analysis [GW98℄.The satis�ability problem of dominane onstraintsis NP-omplete [KNT98℄. Earlier attempts at proess-ing dominane onstraints [Cor94, VSWR95, DN00℄ allsu�er from this fat. But it turns out that normal dom-inane onstraints, a restrited sublanguage, are suÆ-ient for most appliations. The starting point of thegraph based approah of this paper is another reent re-sult [KMN00℄ showing that the satis�ability problem ofnormal dominane onstraints an be redued in lineartime to the on�guration problem of dominane graphs.Informally, a dominane graph is given by a olle-tion of rooted trees and a set of dominane wishes. (A1Partially supported by the IST Programme of the EU underontrat number IST-1999-14186 (ALCOM-FT)2Max-Plank-Institute for Computer Siene, Saarbr�uken,Germany3Programming Systems Lab, Fahbereih Informatik, Univer-sit�at des Saarlandes, Saarbr�uken, Germany4Department of Computational Linguistis, Universit�at desSaarlandes, Saarbr�uken, Germany

preise de�nition follows in Setion 2.) A dominanewish is a direted edge from the leaf of some tree tothe root of some other tree. A on�guration of a domi-nane graph is obtained by assembling the trees of thegraph into a forest, by hooking roots into leaves suhthat all dominane wishes are translated into anestor-desendant relationships. The on�guration problem ofdominane graphs is the question whether there existsa on�guration for a given dominane graph.In this paper, we show that the on�guration prob-lem of dominane graphs is in polynomial time. Thisresult immediately leads the way for a polynomial timeand pratially more eÆient proessing of normal dom-inane onstraints in omputational linguistis.To get an idea of how on�gurations of dominanegraphs arise in linguistis, onsider the [ENRX98℄ anal-ysis of the following English sentene:(1.1) Every linguist speaks two languages.a. . . . , namely English and German.b. . . . , not neessarily the same ones.Depending on the ontext (indiated by the ontinua-tions a. and b.), this sentene an be read in two dif-ferent ways { it exhibits a sope ambiguity. It an meaneither that there is a set of two languages spoken by ev-ery linguist, or it an mean that eah linguist an pikhis own pair of languages.This ambiguity an be represented ompatly by thegraph in Figure 1, whih we an read as a dominanegraph by removing the node labels. Intuitively, theontributions of \every linguist" and \two languages"to the meaning of the sentene are represented asthe two upper trees; the ontribution of \speaks" isrepresented as the lower one. The tree on�gurationsof this dominane graph are obtained by plugging thetwo upper trees in some order on top on the lower tree.The two ways to arrange them orrespond to the twodi�erent readings of (1.1).Our paper is organized as follows. In Setion 2 wede�ne the terms dominane graph, solved form, and on-�guration formally and give a preview of the results in
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Figure 1: Dominane graph for a sope ambiguity.the sueeding setions. In Setion 3, we show how toenumerate all on�gurations of a dominane graph inexponential time; this provides a framework for the ap-pliation of the later results. In Setion 4, we harater-ize on�gurable dominane graphs (a dominane graphhas a on�guration i� it ontains no hypernormal yle),and then we show in Setion 5 how the existene of ahypernormal yle an be deided by solving a weightedmathing problem in an auxiliary graph. This gives usa polynomial-time on�gurability test whih we use inSetion 6 to make the enumeration algorithm from Se-tion 3 eÆient. Setion 7 shows that a slight extensionof the on�guration problem by losed leaves is againNP-omplete. Finally, we o�er a short onlusion.2 De�nitionsA dominane graph is de�ned by a direted graph G =(V;E _[ D) satisfying the following two onditions: (1)the graph G = (V;E) de�nes5 a olletion T of nodedisjoint trees of height at least 1 and (2) eah edge inD goes from a leaf of some tree in the olletion to theroot of some tree in the olletion. In our �gures, wedraw the edges in E solid and the edges in D dashed.We all the edges in E solid edges or tree edges and weall the edges in D dashed edges or dominane edges ordominane wishes. A leaf is a node with no outgoingtree edge and a root is a node with no inoming treeedge.Now the idea is that we want to assemble the treesin T by plugging roots into leaves. We say that adominane graph G is in solved form i� it is a forest.If G = (V;E _[ D) is a dominane graph, we all adominane graph G0 = (V 0; E0 _[ D0) a solved form ofG i� V = V 0, E = E0, G0 is in solved form, and G0realizes all dominane wishes in G { that is, for everydominane wish (v; w) 2 D there is a path from v to win G0.In partiular, we all a solved form of G where thedominane edges in D0 are a mathing a on�guration of5Edges are assumed to go from parents to hildren.

G. Roots have at most one inoming dominane edge inon�gurations; the intuition is that the roots have been\plugged" into the leaves, and the remaining dominaneedges indiate whih root is plugged into whih leaves.A dominane graph is on�gurable if it has a on-�guration and solvable if it has a solved form. Figure 2shows a on�gurable graph and one on�guration. Fig-ure 3 displays an unon�gurable graph, the heavy edgesindiate an \unon�gurable yle", as we shall see later.1
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3 4Figure 2: A on�gurable dominane graph and a on-�guration of it.

Figure 3: An unon�gurable dominane graph; theheavy edges form an \unon�gurable yle".
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z1 zkFigure 4: Appliation of Rule 1: All dominane wishesof l0 exept for (l0; r) are shifted down to the leaf l.The problem we investigate in this paper is to deidewhether a given dominane graph has a on�guration.More preisely, we are going to onsider the problem ofwhether it has a solved form; but the following lemmaexpresses that this is the same problem.Lemma 2.1. Every dominane graph in solved form ison�gurable.Conversely, every on�gurable graph is trivially solv-able.Proof. For the proof, we de�ne a problem leaf to bea leaf with more than one outgoing dominane edge;our aim will be to eliminate problem leaves from solvedforms.The proof is by indution on weights (d; a) of graphsG, where d is the negative minimum depth of a problemleaf of G (or �1 if there aren't any), and a is the totalnumber of dominane edges emanating from problemleaves of minimum depth (potentially 0). We onsiderthe lexiographi order on these weights.Solved forms without problem leaves (i.e. withweight (�1; 0)) are on�gurations, so the lemma istrivially true in this ase. So let G be a solved formthat does have problem leaves. Let G have weight (d; a),and assume that we know that all solved forms of lowerweight do have on�gurations. Then we an apply thefollowing rule to a problem leaf l0 of minimum depth:Simplifiation Rule 1. Let e = (l0; r) be a domi-nane edge from the leaf l0 of a tree t0 to the root rof a tree t. Let l be an arbitrary leaf of t. Change anydominane edge (l0; z) with z 6= r into (l; z), see Fig-ure 4.The result G0 is still in solved form, and its weightis stritly lower than that of G; so by the indution

hypothesis, G0 has a on�guration G. But G alsorealizes all dominane wishes of G. This is obvious for(l0; r) and for all wishes whih do not start in l0. For awish (l0; z) with z 6= r we note that this wish is realizedbeause there is a path from l0 to l in G0 and G realizesthe wish (l; z). So G has a on�guration as well. utFinally, we all a dominane wish d = (v; w)redundant if there is a path from v to w in G n d.A dominane graph is alled redued if it ontains noredundant dominane wish. As usual, we use n and m,respetively, to denote the number of nodes and edgesof G.In the following setions we show:� Con�gurability of a dominane graph has a simpleharaterization.� Con�gurability of a dominane graph an be de-ided in polynomial time. More preisely, it an bedeided by solving a weighted mathing problemin an auxiliary graph with n0 = O(m) nodes andm0 =Pv2V indeg2v edges; here indegv is the degreeof v in G. The mathing problem an be solved intime O(n0m0 logn0), see [GMG86℄.� A solved form of a (on�gurable) dominane graphan be onstruted in polynomial time. Morepreisely, it an be found in time O(n2n0m0 logn0).� All solved forms of a dominane graph an beenumerated in polynomial time per on�guration.More preisely, if N denotes the number of solvedforms then all on�gurations an be enumerated intime O((N + 1)T ), where T is the time to �nd asingle one.� Our theoretial results lead to a pratially eÆientalgorithm for handling dominane graphs. The al-gorithm has been implemented. In our appliation,we havem = O(n), andPv2V indeg2v = O(n). Theexistane of a on�guration an therefore be testedin time T = O(n2 logn), and a solved form anbe onstruted in time O(n2T ). The atual run-ning times are smaller sine the arising weightedmathing problems seem to be fairly simple and thenumber of mathing problems to be solved seemsto be muh less than n2. Our implementation usesLEDA [MNSU, MN99℄ and the mathing odes ofT. Ziegler and G. Sh�afer [Zie95, Sh00℄.3 Enumeration of Solved FormsIn this setion, we show how to enumerate the solvedforms of a dominane graph G. The algorithm wepresent may take exponential time to produe even a



single on�guration beause it blindly enumerates allases. In Setion 5, we will present a polynomial al-gorithm for determining on�gurability. By pluggingthis algorithm into the enumeration algorithm, we anenumerate on�gurations in polynomial time per on-�guration (Setion 6).The enumeration algorithm applies the followingsimpli�ation rules:Simplifiation Rule 2. (Redundany Elim.) Allredundant dominane edges, i.e. edges that are impliedby transitivity, an be removed. In partiular, paralleledges an be ombined into one.Simplifiation Rule 3. (Choie) Let v be a rootwith at least two inoming dominane wishes (l; v) and(l0; v) and let r and r0 be the roots of the trees ontainingleaves l and l0, respetively. Generate two new graphsH and H 0 by adding either (l0; r) or (l; r0) to D, seeFigure 5.The enumeration of the solved forms an be arriedout by a reursive algorithm:1. Make the graph redued, i.e. apply Rule 2.2. If the graph ontains a (direted) yle, terminatethis reursion sine the graph has no on�guration.3. If the graph is in solved form, report it andterminate this reursion.4. Otherwise, apply the hoie rule and apply thealgorithm to the two newly generated graphs.Every solved form derived by the algorithm islearly a solved form of the original graph. On theother hand, the algorithm enumerates all of its solvedforms. This is beause appliation of Rule 2 to adominane graph does not hange the set of solvedforms. Appliation of Rule 3 partitions the set: Thetwo new graphs have disjoint sets of solved forms, butthe union of these sets is the same as the old set ofsolved forms. This an be seen as follows. In a solvedform Gs of G the nodes l and l0 are both anestors of vand therefore either l0 is anestor of l and hene of r orvie versa. This implies that Gs is either a solved formof H or of H 0.To prove termination, we derive an upper boundfor the maximum reursion depth. Consider for anydominane graph G its reahability relation RG { the setof all pairs (u; v) of nodes suh that there is a (direted)path from u to v in G. If G is ayli, the ardinalityof RG is at most �n2� � n2. Thus, whenever the sizeof the relation beomes greater than �n2�, the reursionterminates immediately. But if we apply the hoie rule

to a redued, ayli dominane graph, the size of therelation inreases stritly, i.e. jRGj < min(jRH j; jRH0 j).This is beause RH � RG, and (l0; r) 2 RH but (l0; r)annot be in RG, otherwise (l0; v) would have beenredundant. A similar argument holds for H 0.4 A Graph-Theoreti Charaterization ofSolvabilityWe give a graph theoreti haraterization of solvability;as this is equivalent to on�gurability by Lemma 2.1, theresult arries over to on�gurability. The harateriza-tion implies that the solvability problem for dominanegraphs is in NP \ o-NP .The undireted dominane graph Gu orrespondingto the dominane graphG = (V;E _[D) is the undiretedgraph obtained by making all edges of G undireted.Now, we want to de�ne the notion of a yle in anundireted graph, whih may di�er from the reader'susual notion. A yle C in an undireted graph is asequene of edges e0 Æ e1 Æ : : : Æ en�1 with n > 1 suhthat for i = 0; : : : ; n� 1 the following holds:� there is a node vi inident to both ei and e(i+1)modn� ei 6= e(i+1)modnWe all C edge-simple if the edges in the sequene arepairwise di�erent. C is said to be simple if all the visitednodes v0; : : : ; vn�1 are pairwise di�erent.4.1 Hypernormal Dominane GraphsLet us �rst investigate a simpler subproblem of thesolvability problem. A dominane graph G = (V;E _[D)is hypernormal if for every leaf l in (V;E) there is atmost one dominane wish (l; :) in D. Hypernormaldominane graphs are redued6.Proposition 4.1. Let G = (V;E _[ D) be a hypernor-mal dominane graph. If Gu ontains a yle then G isunsolvable.Proof. The proof is by indution on the minimal numberk of dominane edges in a simple yle C of Gu. Clearly,the ase k = 0 annot our, and if k = 1 then G is notsolvable. On the other hand, assume that we know theresult to be true for k � 1. C either does not ontainany nodes at whih its edges hange diretions; then itis also a yle in G and hene, G is learly unsolvable.Or C does hange diretions, then it must ontain twodominane edges (l; r) and (l0; r) into the same root.Both results of applying the hoie rule produe graphs6An alternative de�nition of hypernormal graphs is as follows:Out of two dominane wishes (l; v) and (l; v0) at least one isredundant.
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vFigure 5: Two graphs are generated by applying the hoie rule to the graph on the left hand side.with a simple yle ontaining k � 1 dominane edges,so both are unsolvable. But then, G must be unsolvableas well. utThe onverse of the above proposition is also true.If G is not solvable, then Gu ontains a yle. Thisstatement will be a orollary of Theorem 4.1, whih wewill prove below.4.2 Dominane GraphsThe Proposition 4.1 does not arry over literally to thegeneral ase: Figure 6 is a ounterexample. In orderto state our theorem for the general ase, we all asubgraph Hu of Gu hypernormal if the orrespondingdireted subgraph H of G is hypernormal.Theorem 4.1. Let G = (V;E _[ D) be a dominanegraph.(a) G is solvable i� Gu does not ontain a hypernormalyle.(b) G is solvable i� every hypernormal subgraph of Gis. Note that this implies that a graphG is on�gurablei� Gu has no hypernormal yle, by Lemma 2.1.Proof. Part (b) follows immediately from part (a). Ifsome hypernormal subgraph of G is unsolvable, G isunsolvable. If every hypernormal subgraph of G issolvable, Gu ontains no hypernormal yle, and heneG is solvable by part (a). We turn to part (a).Assume �rst that Gu ontains a hypernormal yleC. Let D0 be the dominane edges of G orrespondingto edges in C. Then G0 = (V;E _[D0) is a hypernormaldominane graph suh that G0u ontains C. By Propo-sition 4.1, G0 is unsolvable and hene G is unsolvable.It remains to prove the onverse: If G is unsolvable,Gu ontains a simple hypernormal yle. Assume thatthe statement is false. W.l.o.g. we may restrit ourattention to redued dominane graphs. If the hoie

rule is not appliable to a graph, this graph is either insolved form or has a direted yle, so the theorem istrue for these ases. Hene, there must be a \minimal"ounterexample G to the statement, in the followingsense:� G is redued and unsolvable� Gu does not ontain a hypernormal yle� The hoie rule an be applied to G. Both graphsH and H 0 whih are generated by it are unsolvable,and both Hu and H 0u do ontain hypernormalyles.We will derive a ontradition by showing that thisimplies that Gu ontains a hypernormal yle.Suppose that v is the root and that (l; v) and (l0; v)are the wishes onsidered in the above appliation of thehoie rule. Let r be the root of the tree with the leaf land r0 be the root of the tree with the leaf l0.We have a hypernormal yle C1 = fl; r0g Æ P1 in Huand a hypernormal yle C2 = fl0; rg Æ P2 in H 0u. SineC1 is hypernormal, P1 does not use any dominane edgeinident to l. If P1 does not use some dominane edgefl0; wg inident to l0, we are done sine Gu ontains thehypernormal yle fl; vgfv; l0g Æ (l0 ! r0) Æ P1, wherel0 ! r0 is the tree-path from l0 to r0. So assume we andeompose P1 = Q1 Æ fl0; wg Æ R1, then R1 does notuse any dominane edge inident to l or l0. A similarargument gives us a deomposition P2 = Q2 Æfl; ugÆR2suh that R2 avoids all dominane edges inident to land l0.Thus we have the yle C = fl0; wg ÆR1 Æ fl; ug ÆR2 inGu. This yle is not neessarily hypernormal but thepaths fl0; wg Æ R1 Æ fl; ug and fl; ug Æ R2 Æ fl0; wg are.The following lemma shows that this suÆes to provethat Gu ontains a hypernormal yle:Lemma 4.1. If Gu ontains a yle C = eS ÆS Æ eT ÆTwhere eS ; eT are edges and S; T are paths suh that
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Figure 6: A solvable dominane graph and one of its solved forms. The graph ontains an undireted yle, butno hypernormal yle.eS Æ S Æ eT and eT Æ T Æ eS are hypernormal, then Guontains a hypernormal yle.Before we prove the lemma, we want to give someintuition of its statement: If we an "glue" two hyper-normal paths (eS ÆS and eT ÆT ) togehter suh that theyform a yle whih is hypernormal at the "glue" nodes,then Gu ontains a hypernormal yle.Proof. We may assume that C is the smallest yle(i.e. with the least number of edges) in Gu ful�lling theondition of the lemma. We onsider two ases:� C is simple:Sine every node on C is an inner node of at leastone of the two hypernormal paths, we have that Cdoes not ontain a onseutive pair of dominaneedges inident to the same leaf. And hene, thesimpliity of C implies that C is hypernormal.� C is not simple:By the hoie of C the paths P1 = eS Æ S andP2 = eT Æ T are simple. We may assume that noneof the two is a yle, otherwise we are done. Letv be a node whih is visited twie by C. Then vmust be an inner node of both P1 and P2, and wean deompose the paths at v: P1 = eS ÆS0 Æf ÆS00and P2 = eT Æ T 0 Æ g Æ T 00. Here f and g are edgesand S0; S00; T 0; T 00 are (possibly empty) paths suhthat eS Æ S0 and eT Æ T 0 end at v. Altogehter, wehave the following deomposition:C = eS Æ S0 Æ f Æ S00 Æ eT Æ T 0 Æ g Æ T 00We have to distinguish two ases:1. f is not a dominane edge:Then C 0 = eT Æ T 0 Æ f Æ S00 is a yle andeT Æ T 0 Æ f and f Æ S00 Æ eT are hypernormalpaths.

2. f is a dominane edge:Then eS Æ S0 does not end with a dominaneedge. Hene C 0 = eS ÆS0 ÆgÆT 00 is a yle andboth eS ÆS0Æg and gÆT 00ÆeS are hypernomal.In both ases C 0 is smaller than C, and C 0 ful�llsthe ondition of the lemma, a ontradition. utThe haraterization theorem has an interestingonsequene. The solvability problem for dominanegraphs is learly in NP . Non-solvability is tantamountto the existane of a simple hypernormal yle, andthe existane of suh a yle is learly in NP . Thussolvability is in NP \ o-NP .5 Testing for Hypernormal CylesNow we show how to test for the presene of hypernor-mal yles in a dominane graph in polynomial time.This immediately gives us a polynomial algorithm fortesting solvability (and hene, on�gurability) of domi-nane graphs.The test is by solving a weighted perfet mathingproblem on an auxiliary graph A whih is onstrutedas follows. For every edge e = (v; w) 2 G we have twonodes ev = ((v; w); v) and ew = ((v; w); w) in A. Wealso have the following two kinds of edges.(Type A) For every edge e we have the edge fev; ewg.(Type B) For every node v and distint inident edgese = (u; v) and f = (v; w) we have the edge fev; fvgif either v is not a leaf or v is a leaf and either e orf is a tree edge.The type A edges form a perfet mathing in A. Wegive type A edges weight zero and type B edges weightone.



Lemma 5.1. The maximum weight of a perfet math-ing in A is positive i� Gu ontains a simple hypernormalyle.Proof. Suppose �rst that Gu ontains a hypernormalyle C. We may assume that C is simple. We onstruta mathingM of positive weight. For any pair e = (u; v)and f = (v; w) of onseutive edges in C, we putfev; fvg into M . Observe that fev; fvg 2 A sine Cis hypernormal. For any edge e = (v; w) 2 (E [D) n Cwe put the fev; ewg into M . M is learly a perfetmathing. It ontains edges of type B and hene haspositive weight.Assume next that A has a perfet mathing M ofpositive weight. We onstrut a simple hypernormalyle in Gu. For any edge fev; fvg 2 M we put theedges e and f into the set C. Sine for any edgee = (v; w) 2 Gu we have nodes ev and ew in A and sineboth nodes must be mathed in a perfet mathing, thisrule will onstrut a olletion of hypernormal yles inGu. utWe assume that all non-leaves in the dominanegraph G have outdegree at most two7. Observe thatwe have one edge of type A for every edge of G, aomplete graph on 2 + indegv nodes for every rootv, and a graph of size 1 + outdegv for every leaf v.Thus the auxiliary graph A has n0 = m nodes andm0 = O(m) +Pv2V (2 + indegv)2 edges. The graph Gan be redued in time O(nm), see [AGU72℄. Then wehave no parallel edges, and hene a root r with indegreegreater than n must have two dominane edges fromdi�erent leaves of the same tree to r, whih is trivialto reognize in time O(nm). So we an assume thatthe indegree of any root is at most n. Let us say thatwe have r � n roots and let di be the indegree of thei-th root. We have Pri=1 di � m and di � n. Whatis the maximum value of S = Pi(2 + di)2? We haveS = O(n +m) +Pi d2i . The sum Pi d2i is maximizedif we make the dis as unequal as possible. So we attainthe maximum if we set m=n of the dis equal to n andall others equal to zero. Thus Pv2V (2 + indegv)2 =O(n+m)+O(m=n �n2) = O(mn). A maximal weightedmathing in a graph with n0 nodes and m0 edges an befound in time O(n0m0 logn0), see [GMG86℄.Theorem 5.1. The existene of a hypernormal ylean be deided in time O(n0m0 logn0), where n0 = mand m0 = O(m) + Pv2V (2 + indegv)2. A (simple)7We an replae eah non-leaf with outdegree more than twoand its hildren by a small binary tree. This onstrution inreasesthe number of nodes and the number of edges only by a onstantfator.

1 2 k: : :Figure 7: Embedded hain of length k.hypernormal yle (if it exists) an be found in the sametime bound.In our appliation m = O(n) and the indegrees arebounded (the outdegrees are not) and hene on�gura-bility an be deided in time O(n2 logn). In the worstase, the running time is O(nm2 logn).6 EÆient EnumerationA �rst appliation of the polynomial-time on�gurabil-ity test from the previous setion is to make the enumer-ation of solved forms more eÆient. We modify the enu-meration algorithm from Setion 3 by testing for (undi-reted) simple hypernormal yles in step 2 instead ofdireted arbitrary yles. The reursion will terminateimmediately one the graph beomes unon�gurable,and we know that the reursion depth is bounded byn2. Thus:Corollary 6.1. A solved form of a solvable domi-nane graph an be onstruted in time O(n3m2 logn).If a dominane graph has N solved forms, they an beenumerated in time O(Nn3m2 logn).Note that N an still be exponential in n. Also notethat we an get on�gurations instead of solved formsin the same asymptoti time, by applying Lemma 2.1:Simpli�ation Rule 1 an only be applied at mostn2 times either, by a similar argument about thereahability relation.Going bak to the appliation in omputational lin-guistis desribed in the introdution, the algorithm forenumerating on�gurations that we have just skethedgives us a straightforward algorithm for enumeratingmodels of a normal dominane onstraint. We have im-plemented this algorithm, and this gives us a signi�antimprovement in runtimes over earlier solvers for dom-inane onstraints. By way of example, onsider thedominane graph in Figure 7. This graph is an embed-ded hain of length k. Suh graphs appear in the appli-ation; for instane, the graph for \John says that everylinguist speaks two languages" is an embedded hain oflength 2. Runtimes for enumerating all on�gurations of



k N Time (new) Time (old)3 5 20 1804 14 190 6705 42 1210 59006 132 4130 127407 429 16630 463408 1430 255000 n/aFigure 8: Runtimes on embedded hains of length k. Nis the respetive number of on�gurations. Times are inmilliseonds CPU time.embedded hains of various lengths (on a 550 MHz Pen-tium III) are displayed in Figure 8. In the table, \new"refers to the algorithm skethed above; \old" refers tothe dominane onstraint solver desribed in [DG99℄.7 Dominane Graphs with Closed LeavesA slight extension of the on�guration problem by losedleaves beomes NP-omplete again. A dominane graphwith losed leaves is given by a dominane graph G =(V;E _[D) and a set L of leaves. The members of L arealled losed, all other leaves are alled open. Closedleaves annot be the soure of dominane wishes. Asolved form of (G;L) with losed leaves L is a solvedform G0 = (V;E [ D0) of G whih has the additionalproperty that there is no edge (l; v) 2 E0 with l 2 L,but there is an edge (l; v) 2 D0 for every l =2 L. In otherwords, it is not allowed to attah a tree to a losedleaf, and every open leaf must be \plugged" with someother tree. We show that the on�guration problem ofdominane graphs with losed leaves is NP-omplete byreduing the 3-partition problem to it.8Fat 7.1. (3-partition) Let A denote a multisetfa1; : : : ; a3mg of integers and B 2 N suh that B=4 <ai < B=2 for all i; and P3mi=1 ai = mB. The question iswhether there is a partition A1 ℄ : : : ℄Am of A suh thatfor all i, Pa2Ai a = B. The problem is NP-omplete inthe strong sense [GJ79, problem SP15, page 224℄.We desribe the redution now, whih is shown inFigure 9. The tree T has m leaves. Eah leaf wantsto dominate B + 1 losed subtrees (i.e., subtrees whihhave only losed leaves). T is required to be the hildof some node l. This node l also wants to dominate thetrees t1, . . . , t3m. For all i, the tree ti has ai + 1 openleaves.8Exatly the same redution works if we do not require openleaves to have outgoing dominane edges in solved forms; so thismodi�ed problem is NP-omplete as well.
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Figure 9: The dominane graph onstruted in theredution of 3-partition.Theorem 7.1. The on�gurability problem for domi-nane graphs with losed leaves is NP-omplete.Proof. Consider an instane (A;B) of the 3-partitionproblem and the dominane graph G onstruted inthe redution. We show that the instane (A;B) hasa solution i� G is on�gurable.Assume �rst that the 3-partition problem has asolution. Observe that eah of the sets Ai must haveardinality three. Let Ai = faxi ; ayi ; azig be one of thesets in the partition. Then axi + ayi + azi = B. Weplug txi as hild into the i-th leaf of T , tyi into someleaf of txi and tzi into some leaf of tyi . Then the treeT has axi + 1 + ayi + 1 + azi + 1 � 2 = B + 1 openleaves below its i-th leaf. These leaves are plugged withthe B+1 losed subtrees whih the i-th leaf of T wantsto dominate. Finally, we plug l with T and obtain aon�guration of G.Assume next that the dominane graph G has aon�guration. Consider the subtree plugged to the i-th leaf of T . It ontains a subset Ai of the treesft1; : : : ; t3mg. We must have Ptj2Ai(aj + 1) � B +1+ jAij�1, sine B+1 losed subtrees must be pluggedinto some open leaf and sine every subtree in Ai alsorequires an open leaf.We next show that jAij � 3 for all i. It is lear thatAi annot be empty (sine B > 0). If Ai is a singleton,i.e. Ai = ftxg, we have a ontradition sine tx hasax + 1 < B=2 + 1 � B + 1 leaves. Now onsider thease, where Ai onsists of two elements tx and ty. Byattahing tx and ty below the i-th leaf of T , we obtainax+1+ay+1�1 < B=2+1+B=2 = B+1 open leaves,whih is also a ontradition.Sine eah set Ai has ardinality at least three, sinewe have m sets, and sine there are 3m elements todistribute, we onlude that jAij = 3 for all i. Thus



Ptj2Ai aj � B for every i. Finally, we observe that wehave equality sine Pa2A a = mB. Thus we also havea solution for the 3-partition problem. utNote that for solvability of dominane graphs withlosed leaves, Theorem 4.1 still holds. That is, solv-ability is still a polynomial problem. The di�ereneto the unrestrited problem is that Lemma 2.1 breaksdown: All the graphs we onstrut in the enoding of3-partition are in solved form, but they may well beunon�gurable.The relevane of this result is again in its relationto omputational linguistis. There are alternativeapproahes to sope [Bos96℄ whih require that the holesand roots of the trees must be paired uniquely: Theroots must be \plugged" into the roots, and every holemust be plugged. This orresponds to making the holesopen leaves, and all others losed leaves. Hene, we anshow that the satis�ability problems of these alternativeapproahes must be NP-omplete as well.8 ConlusionWe have presented a polynomial time algorithm thatsolves the on�guration problem of dominane graphs.This problem is of interest to appliations: It an beused to enode satis�ability of normal dominane on-straints, a formalism used in omputational linguistis.Thus, our result establishes a di�erene in omplex-ity between normal dominane onstraints and unre-strited dominane onstraints, whose satis�ability isNP-omplete. Previously, no polynomial time algo-rithms for any interesting fragment of dominane on-straints were known. Tests with a �rst implementationshow that the presented graph algorithm also improvesin runtime on a previous solver for (unrestrited) dom-inane onstraints.Referenes[AGU72℄ A. V. Aho, M. R. Garey, and J. D. Ullman. Thetransitive redution of a direted graph. SIAM Journalon Computing, 1:131{137, 1972.[Bos96℄ Johan Bos. Prediate logi unplugged. In Proeed-ings of the 10th Amsterdam Colloquium, pages 133{143,1996.[Cor94℄ Thomas Cornell. On determining the onsistenyof partial desriptions of trees. In Pro. of the 32ndAnnual Meeting of the Assoiation for ComputationalLinguistis, pages 163{170, 1994.[DG99℄ Denys Duhier and Claire Gardent. A onstraint-based treatment of desriptions. In Proeedings of the3rd Intern. Workshop on Comp. Semantis, Tilburg,1999.
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