
TAG Parsing as Model Enumeration

Ralph Debusmann
Programming Systems Lab

Saarland University

Postfach 15 11 50

66041 Saarbrücken

Germany

rade@ps.uni-sb.de

Denys Duchier
Équipe Calligramme

LORIA – UMR 7503

Campus Scientifique, B. P. 239

54506 Vandœuvre lès NancyCEDEX

France

duchier@loria.fr

Marco Kuhlmann
Programming Systems Lab

Saarland University

Postfach 15 11 50

66041 Saarbrücken

Germany

kuhlmann@ps.uni-sb.de

Stefan Thater
Computational Linguistics

Saarland University

Postfach 15 11 50

66041 Saarbrücken

Germany

stth@coli.uni-sb.de

Abstract

This paper introduceswell-orderedderivation
trees and makes use of this concept in a novel
axiomatization of theTAG parsing problem as
a constraint satisfaction problem. Contrary to
prior approaches, our axiomatization focuses
on the derivation trees rather than the derived
trees. Well-ordered derivation trees are our pri-
mary models, whereas the derived trees serve
solely to determine word order.

1 Introduction

Tree Adjoining Grammar (TAG) relates strings with two
kinds of structures: derivation trees and corresponding
derived trees. Derivation trees are more informative than
their corresponding derived trees in the sense that the
derived trees can be reconstructed from them. However,
derivation trees are usually interpreted as unordered trees;
they then cannot be used to formulate theTAG parsing
problem directly, as they do not encode word order infor-
mation.

This paper suggests to interpret derivation trees as
ordered trees. It introduces the notion ofwell-ordered
derivation trees: A derivation tree is called well-ordered
if its nodes stand in the same precedence relation as
the anchors in the corresponding derived tree. Because
TAG can generate non-context-free languages, well-or-
dered derivation trees can be non-projective, i.e., they can
contain “crossing” edges. The main contribution of this
paper is an axiomatization of the exact form of non-pro-
jectivity licensed byTAG operations. It thereby provides a
novel model-theoretic interpretation of theLTAG parsing
problem.

The axiomatization of well-ordered derivation trees is
put into practice in a description-based approach toTAG

parsing, in which the parsing problem of strongly lexical-
ized TAGs1 is interpreted as amodel enumeration prob-

1A TAG is called strongly lexicalized, if each of its elementary
trees contains exactly one anchor.

lem: given a description (a logical formula)φ of the input
string, enumerate all and only those well-ordered deriva-
tion trees that are licensed byφ . Based on earlier work by
Koller and Striegnitz (2002), we show that the solutions
to this problem can in turn be characterised as the solu-
tions of a constraint-satisfaction problem (CSP) on finite
set integer variables, which can be solved by state-of-the-
art constraint technology.

Our approach offers at least two interesting perspec-
tives. First, it enables the encoding ofLTAG grammars as
certaindependency grammars, thereby illuminating the
exact relation between the two formalisms. Second, the
formulation of theLTAG parsing problem as aCSPopens
up a large quantity of existing data to evaluate the con-
straint-based approach to parsing more thoroughly than
what could be done before.

Plan of the paper. In §2, we show how the relation be-
tweenTAG derivation trees and elementary trees can be
formulated as the relation between models and logical
descriptions, and introduce the notion of aTAG satisfia-
bility problem. In §3, we extend satisfiability problems
to parsing problems; we formalize the notion of well-or-
dered derivation trees as the structures under investiga-
tion in these problems, and show how their solutions can
be obtained by solving aCSP. We illustrate this approach
by means of an example in §4. §5 discusses the two per-
spectives of our approach mentioned above. Finally, §6
concludes the paper and presents ideas for future work.

2 TAG Satisfiability Problem

There are two major and constrasting formal perspectives
on parsing: proof-theoretic and model-theoretic. The for-
mer emphasizes the construction of logical derivations,
while the latter more directly states how models sat-
isfy descriptions. The model-theoretic perspective (Cor-
nell and Rogers, 1998) applied to a description-based
specification of parsing problems is often more readily
amenable to constraint-based processing. This is the view
which we adopt for the remainder of this paper.

As a first step in our description-based approach toTAG

parsing, we formulate theTAG satisfiability problem:

Given a multiset of elementary trees, can they be com-
bined using operations of adjunction and substitution to
form a complete derived tree?

To formally expressTAG satisfiability problems, we in-
troduce the following description language:

φ ::= w : τ | φ ∧φ ′ , (1)

wherew is taken from a set oftree variables, andτ from
a set ofTAG elementary trees of some grammar. We call
w : τ a tree literal. We say thatφ is normal if every tree
variable inφ appears precisely in one tree literal.

It is well-known that the satisfiability problem is equiv-
alent to the existence of aderivation tree, hence the idea
to use derivation trees as models of normalφ descrip-
tions. In order to make this more precise, we need some
definitions:

Let Π be the set of finite paths, i.e. the finite sequences
of positive integers. For simplicity in the following, we
shall identify a node of a tree with the pathπ ∈ Π that
leads to it starting from the root of said tree.

A derivation treeis a tree(V,E) formed from vertices
V and labeled edgesE ⊆V×V×Π. A model of a normal
descriptionw1 : τ1∧ . . .∧wn : τn is a derivation tree where
V = {w1, . . . ,wn}

2 and such that the following conditions
are satisfied, where we writew1 −π→ w2 for an edge
labeled with pathπ and representing either an adjunction
or a substitution ofτ2 at nodeπ of τ1:

• If wk is the root of the tree, thenτk must be an initial
tree.

• For eachwi , its outgoing edges must all be labeled
with distinct paths, and for each substitution (resp.
adjunction) nodeπ in τi there must be exactly (resp.
at most) oneπ-labeled edge.3

• For each edgew1 −π → w2, if π is a substitution
(resp. adjunction) node inτ1, thenτ2 must be an ini-
tial (resp. auxiliary) tree.

In order to model lexical ambiguity, the description
language can be extended with a limited form of disjunc-
tion, using for example the following extended language:

φ ::= wk : {τk
1, . . . ,τk

nk
} | φ ∧φ ′ ,

where the set is to be interpreted disjunctively.

2Thus setting the interpretation of tree variables to be the iden-
tity substantially simplifies the presentation.

3For expositional simplicity, we do not cover adjunction con-
straints here. If an adjunction node is labeled with an ad-
junction constraint, then the exact well-formedness condi-
tion depends on that particular constraint.

The notion ofTAG satisfiability problem as outlined
above is implicit in (Koller and Striegnitz, 2002), who
formulate the surface realization problem of natural lan-
guagegenerationas the configuration problem of (un-
ordered) dependency trees. A natural question is whether
this treatment can be extended to parsing problems.

Given our formalization ofTAG satisfiability problems,
parsing problems cannot be expressed directly, as the
models under consideration—derivation trees—are un-
ordered trees. In order to express word order, a more natu-
ral class of models are derived trees, as these encode word
order information in a direct way. However, the problem
in using derived trees is that the formalization of the sat-
isfaction relation becomes non-trivial, as the adjunction
operation now requires a more complicated interpretation
of elementary trees—not as atomic entities, but as groups
of nodes that may get separated by material being “glued
in between” by adjunction. If not conditioned carefully,
this might lead to a formalism that is more expressive
thanTAG (Muskens, 2001; Rogers, 2003).

We suggest to solve the problem by considering deriva-
tion trees as being ordered. In the next section, we will
introduce the notion ofwell-ordered derivation trees,
which are possibly non-projective, ordered derivation
trees whose precedence relation agrees with the prece-
dence relation in the corresponding derived tree. This al-
lows for an extension of the description language from (1)
with precedence literals, which can be interpreted on
(well-ordered) derivation trees in a straightforward way.

3 Well-ordered Derivation Trees

Our ambition is to tackle the parsing problem where
word-order is part of the input specification. To this end,
we formulate theTAG parsing problemanalogously to our
earlier definition of theTAG satisfiability problem:

Given anordered multiset of elementary trees, can they
be combined using operations of adjunction and substitu-
tion to form a complete derived tree where the respective
anchors are realized in the same order as stipulated by
the input specification?

To formally express the parsing problem, we extend
our description language with precedence literalsw≺ w′:

φ ::= w : τ | w≺ w′ | φ ∧φ ′ (2)

wherew ≺ w′ means thatw’s anchor must precedew′’s.
For the same reasons as before, the approach that we will
develop for this language will trivially extend to one with
lexical ambiguity.

For the language of (1), the models where valid deriva-
tion trees. Now, however, we must additionally interpret
the precedence literals of (2), which means that we need
an order on the interpretations of the tree variables.

A derivation tree uniquely determines a derived tree
and moreover uniquely determines a mappingI from each
nodeπ of each elementary treew to its interpretation
I(w,π) as a node of the derived tree. The order that we
are interested in is the one induced by the precedence be-
tween the interpretations of the anchors. More formally,
writing w⋄ for the anchor node inw, we are interested in
the order defined by:

w≺ w′ ≡ I(w,w⋄) ≺ I(w′,w′
⋄) (3)

Thus, we arrive at the notion of awell-ordered derivation
tree: a pair of a derivation tree and of the total order it
induces on the elementary trees.

Unfortunately, we no longer have a simple way to enu-
merate these more complex models, unless we also con-
struct the derived trees. Our contribution in this section
is to show how the total order that we seek can also be
obtained as the solution of aCSP.

3.1 Principles

To talk about order, we will need to talk about the set of
anchors that are interpreted by nodes in the subtree (of
the derived tree) rooted atI(w,π). We write yield(w,π)
for this set.

Assuming for the moment that we can freely use
the notion ofyield, we now show that the well-ordered
derivation trees are precisely the valid derivation trees
that satisfy the two principles ofconvexityandorder:

Principle of convexity. The yield of the root of an ele-
mentary tree is convex. A setS is said to be convex with
respect to a total order≺ if for anyx 6∈S, x either precedes
all elements ofSor follows them all.

∀w,w′ ∈V : w′ /∈ yield(w,ε) ⇒

w′ ≺ yield(w,ε)∨w′ ≻ yield(w,ε) (4)

where we writex≺ Sas a shorthand for∀y∈ S. x≺ y.
Principle of order. If π1 andπ2 are leaves in elementary
treew andπ1 ≺ π2, then alsoyield(w,π1) ≺ yield(w,π2),
i.e. all anchors belowπ1 precede all anchors belowπ2.

∀w∈V : ∀π1,π2 ∈ Π :

π1 ≺ π2∧π1 ∈ leaves(w)∧π2 ∈ leaves(w) ⇒

yield(w,π1) ≺ yield(w,π2) (5)

It is easy to show that these principles hold at every
point of a TAG derivation. We now show that they suf-
fice to completely determine the order among anchors.
Consider the adjunction example of Figure 1. For brevity,
we omit to say “the yield of”: by (5), we know that
α1 ≺ α2 ≺ α3 andβ1 ≺ β2. The adjunction placesα2 in
the yield of the foot node ofβ . Therefore, again by (5),
we haveβ1 ≺ α2 ≺ β2. Now by (4)β1∪α2 ∪β2 is con-
vex, thereforeα1 must either precede or follow it. Since
α1 ≺ α2, we must haveα1 ≺ β1. Similarly for α3.

β 1 β 2α 1 α 2 α 3̟ 1̟ 2̟ 1
̟ 2β 1 β 2α 1 α 2 α 3

Figure 1: Adjunction

3.2 Axiomatization of Yield

Since we assume a strongly lexicalized version ofTAG,
each elementary tree has precisely one anchor. There-
fore, for simplicity, we shall identify an anchor with the
tree variable of the tree literal in which it appears. Thus
yield(w,π) is a set of tree variables (standing for their re-
spective anchors). We are going to show thatyield(w,π)
can also be obtained as the solution of aCSP. In order to
do this, we will need to introduce additional functions.

anchors(w,π) is the set of anchors whose interpreta-
tions coincide withI(w,π). Clearly:

anchors(w,π) =

{

{w} if π is anchor inw

/0 otherwise
(6)

below(w,π) is the set of anchors whose interpretations lie
in the subtrees of the derived tree rooted at the interpreta-
tions of those nodes inw which are strictly dominated by
the nodeπ :

below(w,π) = {yield(w,π ′) | π ⊳+ π ′ in w} (7)

inserted(w,π) concerns nodes where a substitution or ad-
junction has taken place. What isinsertedis theyield of
the tree which is being substituted or adjoined at nodeπ
of elementary treew. We writew −π → w′ for an edge
in the derivation tree representing a substitution or an ad-
junction ofw′ at nodeπ of w:

inserted(w,π) =

{

yield(w′,ε) if ∃w−π → w′

/0 otherwise
(8)

Finally,pasted(w,π) concerns foot nodes. Whenw is ad-
joined intow′ at π ′, the subtrees hanging offπ ′ in w′ are
cut out and pasted back under the foot node ofw. Thus:

pasted(w,π) =

below(w′,π ′) if π is foot ofw,

and∃w′ −π ′→ w

/0 otherwise
(9)

The yield can be obtained by taking the union of these
quantities:

yield(w,π) = anchors(w,π)∪ inserted(w,π)∪

pasted(w,π)∪below(w,π) (10)

The intuition for why this is correct can be outlined with
an analysis by cases:

1. If π is anchor inw, thenanchors(w,π) = {w} and
all other quantities are empty sets.

2. If π is the foot node ofw, then there must be an
adjunctionw′ −π ′→ w and the anchors reachable
from I(w,π) are precisely those reachable from the
material pasted atπ as a result of the adjunction.
anchors, inserted andbelow are all empty.

3. If a substitution has taken place at nodeπ of w, then
π is at least a leaf ofw. The anchors reachable from
I(w,π) are precisely those reachable from the mate-
rial that wasinserted at (w,π). All other quantities
are empty.

4. If an adjunction has taken place at nodeπ of w,
then at leastπ is not an anchor. The anchors reach-
able fromI(w,π) are now precisely those reachable
from the material that was inserted at(w,π). Since
below(w,π) is pasted at the foot node of the mate-
rial that is being inserted, it ends up being included
in inserted(w,π). anchors andpasted are empty.

5. If none of the above applies, then the anchors reach-
able fromI(w,π) are precisely those reachable from
the children ofπ in w, i.e. from below(w,π). All
other quantities are empty.

The definitions of (6,8,9) each contain a case analysis.
In the definition ofanchors(w,π) (6), the case condition
is static:is π the anchor of w or not?Thus the satisfaction
relation can be stated statically, and (6) can be interpreted
as a constraint.

However, (8) and (9) both have conditions which dy-
namically depend on the existence of a substitution or
adjunction dependency in the derivation tree. In order to
arrive at a simpleCSP, we need to slightly refine the for-
mulation to avoid the case analysis. We take advantage of
the fact that there is at most one adjunction (or substitu-
tion) at a given node:

inserted(w,π) = ∪{yield(w′,ε) | w−π → w′} (11)

Let children(w,π) = {w′ | w−π → w′}. (Duchier, 2003)
showed how this equation could be reduced to a con-
straint and included in theCSP. Thus we obtain:

inserted(w,π) = ∪{yield(w′,ε) | w′ ∈ children(w,π)}
(12)

Again, as shown in (Duchier, 2003), this equation has
precisely the form required for implementation by these-
lection union constraint. Similarly for pasted we obtain:

pasted(w,π) =

∪{below(w′,π ′) | w∈ parents(w′,π ′)}

if π is foot inw

/0 otherwise
(13)

Given a (normal)TAG parsing problem, we are now
able enumerate its models (the well-ordered derivation
trees) as solutions of aCSP. First, the part of theCSP

which enumerates the derivation trees remains as de-
scribed by Koller and Striegnitz (2002). Second, for each
nodeπ of a treew, we add the constraints (6,7,10,12,13):
this allows us to obtainyield(w,π) as the solution of a
CSP. Finally, we add the constraints corresponding to the
principles of convexity and order, and the ordering con-
straints from the specification of the parsing problem. In
this manner, we obtain aCSPwhich allows us to enumer-
ate all and only thewell-ordered derivation trees.

4 Example

We now show how our axiomatization of yield and the
axiomatic principles derive the correct precedence con-
straints for a sampleLTAG grammar. The grammarG that
we are considering is the following:SSbA ↓ C ↓D ↓ SSbA ↓ C ↓D ↓S *A a C c D d

α ₁ : β ₁ :
α ₂ : α ₃ : α ₄ :

N A N A
G produces the languageL = {anbncndn | n≥ 1}, a lan-
guage not contained in the set of context-free languages.

Given G, the derivation tree for the stringaabbccdd
can be drawn as follows:2 2 2 32 3a a b b c c d d311α ₂ α ₂ α ₁ β ₁ α ₃ α ₃ α ₄ α ₄
(Recall that a labelπ on an edgew1 −π→w2 denotes the
path address inw1 at which the substitution or adjunction
of w2 has taken place.) In this tree, all edges except one
correspond to substitutions; the edge from the leftb to the
right b corresponds to the adjunction ofβ1 into α1.

The given drawing of the derivation tree is well-or-
dered: The order of the anchors in it (connected to the

nodes by vertical dashed lines) corresponds precisely to
the order of the anchors in the corresponding derived tree:

S

S

b

A

C

DS

S

b

A

C

D

a

da

d

c

c

To illustrate the axiomatization of yield, we give the
yields of the elementary trees participating in the deriva-
tion of the stringaabbccddin Figure 2. Each table row
pertains to a pair(w,π) of an elementary treew (identi-
fied by its anchor) and a path addressπ in w, and shows
the setsanchors(w,π), inserted(w,π), pasted(w,π) and
below(w,π), whose union equalsyield(w,π). With re-
spect to the case analysis in the preceding section, each
pair (row) corresponds to one of the cases:4

1. (a1,1), (a2,1), (c1,1) (c2,1), (d1,1) and(d2,1) cor-
respond to the first case (anchor) since for all these
elementary trees, 1 is the address of the anchor. The
same holds for(b1,21) and(b2,22).

2. (b2,22) corresponds to the second case (foot node).
This is the most interesting case, where the anchors
below the adjunction site(b1,2) (i.e. b1 andc2) are
“pasted” at the foot node(b2,22) of b2.

3. (b1,1), (b1,22), (b1,3), (b2,1), (b2,23) and(b2,3)
correspond to the third case (substitution), where
insert(w,π) is the only non-empty set, containing
the yields of the substituted trees.

4. (b1,2) corresponds to the fourth case (adjunction).
This works like substitution.

5. The pairs(w,ε) correspond to the fifth case (else
case) in the case analysis in the preceding section,
where only thebelow(w,π) set is non-empty, con-
taining the yields of the nodes below. The same
holds for(b2,2).

5 Perspectives

The notion of well-ordered derivation trees offers some
interesting perspectives. First, it allows us to encode each
LTAG grammar into an equivalent dependency grammar.
Second, the axiomatization of well-ordered derivation
trees can be transformed into a constraint-based parser
for LTAG in a straightforward way.

4In order to distinguish several occurrences of letters from
each other, we have indexed them.

5.1 TAG and Dependency Grammar

If we ignore word order, derivation trees have a natural
reading as dependency trees: anchors of elementary trees
correspond to lexical entries, substitution and adjunction
edges mirror the lexical entry’s valency.

Koller and Striegnitz (2002) develop this insight and
formulate the surface realization problem of natural lan-
guage generation as a parsing problem in a dependency
grammar with free word order. In their approach, the
dependency grammar lexicon is induced by “reading
off” the valencies of elementary trees: substitution sites
are encoded as obligatory valencies, adjunction sites as
valencies that can be filled arbitrarily often.5 This en-
coding embedsTAG into dependency grammar in that
well-formed dependency trees directly correspond toTAG

derivation trees and, indirectly, derived trees. However,
the embedding is weak in the sense that its correctness of
the encoding relies upon the fact that word order cannot
be specified in the grammar; thus, the encoding cannot be
applied to parsing problems.

The notion of well-ordered derivation trees allows us to
extend the encoding to directly formulate parsing prob-
lems. To this end, we need to (i) specify the local (lin-
ear) order of the substitution valencies of each lexical en-
try, (ii) specify the local dominance relation among va-
lencies and (iii) restrict the class of models to well-or-
dered derivation trees. Both the local order and the local
dominance relations can be read off theLTAG elemen-
tary trees. The restriction of the class of models to well-
ordered derivation trees then guarantees that the locally
specified orderings are consistent with the global order in
the dependency tree.

From other work on the interpretation ofTAG as depen-
dency grammar (Joshi and Rambow, 2003), this encoding
is distinguished by three features:

• It does not stipulate any non-traditional rules to
combine dependency structures, but only uses the
standard “plugging” operation to fill valencies.

• It does not assume nodes in the dependency tree ex-
cept for the nodes introduced by the (anchors of the)
elementary trees.

• It is able to maintain the dependencies associated to
a lexical anchor throughout the derivation. This is
achieved by “hiding” the structure of the (partially)
derived tree in the axiomatization of well-ordered
derivation trees.

5.2 Constraint-based parsing ofLTAG s

To solve the problem of surface realization as depen-
dency parsing, Koller and Striegnitz (2002) successfully

5The encoding is based on a notion of derivation trees where
different auxiliary trees can be adjoined at the same node.

(w,π) anchors inserted pasted below

(a1,1) {a1} /0 /0 /0
(a2,1) {a2} /0 /0 /0
(c1,1) {c1} /0 /0 /0
(c2,1) {c2} /0 /0 /0
(d1,1) {d1} /0 /0 /0
(d2,1) {d2} /0 /0 /0

(b1,21) {b1} /0 /0 /0
(b2,21) {b2} /0 /0 /0
(b2,22) /0 /0 {b1,c2} /0
(b1,1) /0 {a1} /0 /0

(b1,22) /0 {c2} /0 /0
(b1,3) /0 {d2} /0 /0
(b2,1) /0 {a2} /0 /0

(b2,23) /0 {c1} /0 /0
(b2,3) /0 {d1} /0 /0
(b1,2) /0 {a2,b2,c1,c2,d1} /0 /0
(a1,ε) /0 /0 /0 {a1}
(a2,ε) /0 /0 /0 {a2}
(c1,ε) /0 /0 /0 {c1}
(c2,ε) /0 /0 /0 {c2}
(d1,ε) /0 /0 /0 {d1}
(d2,ε) /0 /0 /0 {d2}
(b1,ε) /0 /0 /0 {a1,a2,b1,b2,c1,c2,d1,d2}
(b2,ε) /0 /0 /0 {a2,b2,c1,c2,d1}
(b2,2) /0 /0 /0 {b1,b2,c1,c2}

Figure 2: Yields in the analysis of stringaabbccdd

employ an existing constraint-based parser for Topolog-
ical Dependency Grammar (Duchier and Debusmann,
2001). In light of the fact that surface realization is an
NP-complete problem, the efficiency of this parser is
quite remarkable. One of the major questions for a de-
scription-based approach toLTAG parsingis, whether the
benign computational properties of existing, derivation-
based parsers forLTAG6 can be exploited even in the con-
straint framework.

We have started work into this direction by implement-
ing a prototypical constraint parser forLTAG, and inves-
tigating its properties. The implementation can be done
in a straightforward way by transforming the axiomati-
zation of well-ordered derivation trees that was given in
Section 3 into a constraint satisfaction problem along the
lines of Duchier (2003). The resulting parser is available
as a module for theXDG system (Debusmann, 2003).

Preliminary evaluation of the parser using the XTAG
grammar shows that it is not competitive with state-of-
the-artTAG parsers (Sarkar, 2000) in terms of run-time;
however, this measure is not the most significant one for
an evaluation of the constraint-based approach anyway.
More importantly, a closer look on the search spaces ex-

6The parsing problem ofLTAG can be decided in timeO(n6).

plored by the parser indicates that the inferences drawn
from the axiomatic principles are not strong enough to
rule out branches of the search that lead to only inconsis-
tent assignments of the problem variables. Future work
needs to closely investigate this issue; ideally, we would
arrive at an implementation that enumerates all well-or-
dered derivation trees for a given input without failure.

One of the benefits of the constraint formulation of de-
pendency parsing given in Duchier (2003) is that it pro-
vides a means of effectively dealing with disjunctive in-
formation, e.g. information introduced by lexical ambi-
guity. The idea is to make the common information in a
set of possible lexical entries available to the constraint
solver as soon as possible, without waiting for one entire
lexical entry from the set to be selected. If e.g. all elemen-
tary trees still possible for a given word are of different
shape, but have the same number of substitution and ad-
junction sites labeled with the same categories—i.e., have
the same valencies—, the constraint solver can configure
the derivation tree before it would need to commit to any
specific candidate tree. The question of whether this tech-
nique can be applied to widen the bottleneck that lexical
ambiguity constitutes forTAG parsing awaits further ex-
ploration. With the encoding presented here, and the large

grammatical resources forLTAG that it makes available to
the application of constraint parsing, we are at least in the
position now to properly evaluate the effectiveness of the
constraint-based treatment of constructive disjunction.

6 Conclusion

In this paper, we introduced the notion of well-ordered
derivation trees. Using this notion, we presented an ax-
iomatization of theTAG parsing problem with a natural
interpretation as a constraint satisfaction problem. The
main burden lay in the axiomatization of the yield, which
captures the dynamic aspects of aTAG derivation in terms
of declarative constraints.

Contrary to previous approaches, we have shifted the
emphasis away from the derived trees to the derivation
trees. From this perspective, the derivation tree is the cru-
cial ingredient of aTAG analysis, whereas the derived tree
serves solely to constrain word order. This focusing on
the derivation tree brings our approach in closer vicinity
to dependency grammar.

Our approach yields two new avenues for future re-
search. The first is to encodeLTAG grammars into equiv-
alent dependency grammars, and to intensify research on
the relationship betweenTAG andDG. Second, the axiom-
atization of well-ordered derivation trees can be straight-
forwardly transformed into a constraint-based parser for
LTAG. Koller and Striegnitz (2002) have shown that a
similar approach can yield interesting results for gener-
ation, but we have not yet been able to reproduce them
for parsing. To this end, we are moving towards the ab-
stract notion of aconfiguration problemencompassing
the constraint-based processing of bothTAG, DG, and
related frameworks, even semantic ones. We think that
this abstraction eases the search for efficiency criteria for
solving particular configuration problems, and can thus
help us to pin down ways how to do efficient constraint-
basedTAG parsing in particular.

References
Thomas Cornell and James Rogers. 1998. Model theoretic syn-

tax.

Ralph Debusmann. 2003. A parser system for exten-
sible dependency grammar. In Denys Duchier, editor,
Prospects and Advances in the Syntax/Semantics Interface,
Lorraine-Saarland Workshop Series, pages 103–106. LO-
RIA, Nancy/FRA.

Denys Duchier and Ralph Debusmann. 2001. Topological de-
pendency trees: A constraint-based account of linear prece-
dence. InProceedings of the 39th ACL, Toulouse, France.

Denys Duchier. 2003. Configuration of labeled trees under
lexicalized constraints and principles.Journal of Research
on Language and Computation, 1(3/4).

Aravind Joshi and Owen Rambow. 2003. A formalism for
dependency grammar based on tree adjoining grammar. In
Proc. of the First International Conference on Meaning-Text
Theory, pages 207–216, Paris, June.

Alexander Koller and Kristina Striegnitz. 2002. Generation
as dependency parsing. InProceedings of the 40th ACL,
Philadelphia.

Reinhard Muskens. 2001. Talking about Trees and Truth-
conditions. Journal of Logic, Language and Information,
10(4):417–455.

James Rogers. 2003. Syntactic structures as multi-dimensional
trees. Journal of Research on Language and Computation,
1(3/4).

Anoop Sarkar. 2000. Practical experiments in parsing using
tree adjoining grammars. InProceedings of the Fifth Work-
shop on Tree Adjoining Grammars, TAG+ 5, Paris.

