
Concrete Browsing Of A Graphical Toolkit Library

Denys Duchier

Department of Computer Science

University of Ottawa

January 31, 1994

Abstract

The guidar project aims to support the complete activity of Graphical User

Interface Development And Reuse. We propose to organize the system as a col-

laborative architecture of independent automated agents that actively participate

in the design and development process and promote reuse.

This paper introduces Concrete Browsing as an improved method of consult-

ing a graphical library, and Spreading Computation as novel paradigm for search

and retrieval.

A concrete browser allows the user to browse and interact with prototypi-

cal instances of graphical components, thus grounding the user's understanding

in direct and concrete experience. We have implemented a prototype concrete

browser for the garnet toolkit.

We also present a combinator-based language with spreading computation

semantics for expressing search through graphs of nodes and links such as an

object-oriented graphical library. It serves as the mediating layer between the

browser, and eventually all agents, and the library. Our prototype includes a

graphical interface for editing queries in this language.

1 Introduction

Anyone who has ever attempted to design a user interface knows what a daunting

task that can be. Large amounts of complex code are required to achieve the simplest

interactions and con�gurations, and a tedious process of iterated experimentation is

necessary to arrive at a design which is both aesthetically and ergonomically satisfac-

tory.

Toolkits help alleviate the programming burden, but the granularity they a�ord is

still quite small and typically not commensurate with the designer's conceptualization

of the desired interface. The designer is stuck with a �xed set of primitive interface

components and must start every new design from scratch.

Direct manipulation is a seductive technique to facilitate certain aspects of toolkit-

based interface development. Using primarily the mouse, the designer is allowed to

interactively assemble and modify the very components of the interface under construc-

tion. The chief advantage of this approach is the concreteness in which it grounds the

development process. Yet, since there is only so much that can be conveyed with a

pointing device, such systems necessarily have limited expressiveness. Moreover, the

very concreteness of the process does not lend itself well to the elaboration of general,

or abstract, designs.

We propose to overcome these limitations by encouraging the reuse of elaborate

designs through improved browsing technology and case-based reasoning assistance.

This research program is part of the motivation for the guidar system, currently

under development at the University of Ottawa, and whose purpose is to support the

activity of Graphical User Interface Development And Reuse.

In order to promote reuse, it is necessary to locate, understand, evaluate, and adapt

existing software components. In the �rst phase of the project, we tackled the problem

of browsing libraries of graphical components. These libraries tend to be large and

densely connected { primarily through the taxonomic and meronomic hierarchies { and

require sophisticated ways of navigating and searching through them. We addressed

this issue with a completely general, domain-independent, framework for searching and

browsing densely connected graphs: it consists of an elegant language for expressing

search programs using a small set of primitive combinators and of a novel execution

paradigm, which we called Spreading Computation, that extends and generalizes the

now classical AI technique of marker passing, or spreading activation.

To enhance browsing, we must not only make it easier to navigate and search

the library, but also facilitate the understanding and evaluation of what is eventually

retrieved. To this end, we introduced the notion of Concrete Browsing whose funda-

mental tenet is that the user should be allowed to browse the `real' thing. Thus, when

a query identi�es a number of relevant components in the library, instances of these

components are placed in the view where the user can look at them and interact with

them. Furthermore, the user can select elements of a view to serve as the `root set'

1

for subsequent queries, for example to �nd similar components modulo some similarity

metric or to �nd other designs that use them as components. The latter possibility is

presented as an example in this paper.

The guidar project is investigating means of facilitating software development and

promoting reuse through the application of knowledge-based, case-based, and machine

learning techniques. However, rather than take a traditional approach and implement

a case system with a �xed set of built-in passive capabilities { passive in the sense that

it is the user's responsibility to exercise them { we envision an extensible collaborative

architecture of independent automated assistants that actively participate in the design

and development process, and promote the reuse of complex past designs.

In this paper, we introduce the idea of Concrete Browsing, which extends to library

perusal the concreteness pioneered by direct manipulation systems. We also introduce

Spreading Computation, an original paradigm of execution that generalizes marker

passing and allows us to de�ne an elegant combinator-based language for expressing

search, evaluation, and retrieval strategies in object-oriented graphical libraries, and,

more generally, in densely connected knowledge bases. At present, this language serves

to support browsing and the programming of new search strategies by the user. We

plan to use it as the common mediating layer between the library and all intelligent

agents that we shall develop and plug into the guidar architecture.

2 Concrete Browsing

The primary advantage of direct manipulation systems is the concreteness which they

a�ord during the development process. We propose to harness this same advantage

for the purpose of searching and browsing a library of graphical interface components.

A concrete browser presents the user with a view, i.e. a subset, of the library.

This view contains some number of graphical interface components. The user can

directly see what they look like, and is able to interact with them (i.e. try them out)

to understand what they do.

Naturally, a library will normally contain generic designs which can be instantiated

in many di�erent ways to obtain actual interface components. Since a generic design

does not lend itself directly to concrete browsing, we must instead illustrate it using a

small number of representative instances. For this reason, we introduce the notion of

prototypical examples.

For each design in the library, a small number of well-chosen instances (typically,

just one) must be supplied and become this design's set of prototypical examples.

These are what the user gets to see displayed in a view. Each prototypical example

provides a speci�c example of parameterization, instantiation and use and serves as a

visual and interactive illustration of its design.

2

There is a secondary practical reason for introducing a distinguished set of proto-

typical examples: some interface components require a special protocol to insert them

in a view.

1

Prototypical examples will be equipped with whatever additional handling

protocol is necessary.

We selected the garnet toolkit from CMU [4] to serve both as the application

library and as the implementation vehicle. The guidar concrete browser allows the

user to search, inspect and interact with the contents of the garnet library. In

addition, it supports both actual and iconic presentations of the prototypical examples

included in the current view. The �gure below shows the two alternatives side by side

for a view consisting of a large number of prototypical examples.

V i e w P a n e l

I c o n s S c h e m a s

O p e r a t e S e l e c t

R e l a y o u t S h u f f l e

S a v e C l e a r

D e l e t e K e e p

Q u e r y P a n e l

S e a r c h P a n e l

V i e w M e n u

iconic view

V i e w P a n e l

I c o n s S c h e m a s

O p e r a t e S e l e c t

R e l a y o u t S h u f f l e

S a v e C l e a r

D e l e t e K e e p

Q u e r y P a n e l

S e a r c h P a n e l

V i e w M e n u

Lavender Blush

Misty Rose

Slate Grey

Pale Turkoise

Sea Green

Saddle Brown

Dark Salmon

Medium Orchid

Firebrick

120

140

160

180

scrolling in ...

Label: Field
Radio-text 1

Radio-text 2

X-label 1

X-label 2

X-label 3

Text 1

Text 2

Text 3

Text 4

Radio buttonX ButtonText Button
0

Palette
Lavender Blush

Misty Rose

Slate Grey

Pale Turkoise

Sea Green

Palette
Lavender Blush

Misty Rose

Slate Grey

Pale Turkoise

Sea Green

Saddle Brown

Dark Salmon

Medium Orchid

Firebrick

0

0 10 20 30 40 50 60 70 80 90 100

0

0

20

40

60

80100

120

140

160

180

Gauge

60.000

0

0

10

20

30

40

50
60

70

80

90

100

0

actual view

A concrete browser must address two issues: the search for information and its

e�ective presentation. The guidar system attends to the �rst one by supplying a

general search language for expressing queries. It also makes available a graphical

editor for visual programming in that language. The issue of presentation is addressed

by a fast yet e�ective layout algorithm. The two �gures above show that it is quite

successful at arranging a large number of objects in a compact con�guration.

3 Search Language

The guidar search language is completely general and only makes the assumption

that the application library can be described by a graph of nodes and links, where the

nodes can be annotated. The execution paradigm can be summarized as follows: �rst,

a subset of the nodes in the graph are somehow selected to serve as starting points.

Then, search proceeds by propagation from this set of distinguished roots, evaluates

1

For example, in order to place a component that involves a window W in the view, it is necessary

to originally create W not as a top-level window, but as a subwindow of the view.

3

the nodes which are being visited and annotates them. Finally, interesting slices can

be extracted from the graph by �ltering on the basis of these annotations.

The process described above can be regarded as a generalization of marker passing,

or spreading activation, where, instead of a simple marker, it is a program continuation

that is being propagated. We characterize this mechanism as spreading computation

and we have devised an e�cient engine for it based on the concept of a token passing

graph [3]. We have also developed a preliminary implementation in Concurrent ML

[6] using threads and synchronous communication through channels.

Our approach not only subsumes traditionally keyword oriented retrieval systems,

but also allows queries to take full advantage of the structure of the library and ex-

plore relationships by link traversal. The language is su�ciently powerful to express

computationally challenging queries such as approximate structure matching.

By using the search language as the mediating layer on top of the graph description

of the application library, we make it possible for users and automated agents alike to

express equally sophisticated queries. Also, our approach, which abstracts away from

the speci�cs of the library and provides a uniform interface for navigation, browsing,

and search, should make independent automated agents easier to develop and plug

into a cooperative architecture.

The complete language is an extension of lisp and will not be discussed here. We

shall only describe the restricted version currently supported by the graphical editor.

In order to more easily understand the language and its execution model it may be

helpful to conjure up an analogy with unix processes and pipes.

In our language, a program fragment is like a process that reads an input stream of

nodes (objects in the library) and writes as output another stream of nodes.

2

Complex

programs are constructed by connecting the output port of one program fragment to

the input port of another, i.e. by piping the former into the latter. A program fragment

repeatedly reads a node from its input port, does some computation, and, as a result,

may or may not write something to its output port. If it writes anything to its output

port, it is either the node itself or the set of neighbours that can be reached from that

node by traversing a particular link.

Nodes can be annotated. That is, they can bear named marks and named counters.

For example, a search program might decorate certain nodes with the mark named

selected to indicate that they should be included in the solution. Another program

might use a counter to keep track of the degree of relevancy or matching for each

component in the library.

The language currently contains the following primitive constructs:

2

The whole truth is that these streams carry tokens rather than nodes, where a token is a pair

hnode,datai and data carries information such as partial results along the thread. To simplify the

exposition, we do not make this distinction here.

4

(mark name)

Place the named mark as an annotation on the current node, then output the

node.

(incr name)

Similarly, increment the named counter which appears as an annotation on the

current node.

(pipe e

1

: : : e

n

)

This is the primary means of constructing complex programs. The output of

each fragment e

i

is piped into the input of the next fragment e

i+1

.

(branch e

1

: : : e

n

)

This construct duplicates the incoming stream of nodes and sends a copy through

each program fragment e

i

. These fragments represent independent threads of

computation, all writing to the same output stream.

(to link)

Spread this thread of computation to all neighbouring nodes that can be reached

by traversing the named link.

(when test) (unless test)

Continue this thread of computation i� the node satis�es (resp. fails) the test.

(repeat e)

Each incoming node is written to the output port and also sent through the

program fragment e. The output from e is fed back into the repeat loop's input

port. The repeat construct is particularly useful for computing the transitive

closure of a relation. For example:

(repeat (to :is-a))

will apply the remainder of this thread to the node and all of its ancestors.

(until test e)

If an incoming node satis�es the test, then write it to the output port, otherwise

send it through the program fragment e and feed the resulting stream back into

the until construct. For example:

(until prototypical? (to :is-a))

Reads an incoming node and initiates a new thread searching up the instance

hierarchy for a prototypical example. If one is found, it is written to the output

port and the thread terminates.

5

4 Query Editor

Query programs can be assembled interactively through a graphical editor. To illus-

trate the use of this tool, we are now going to write a program to select all prototypical

examples of vertical scroll bars that can be found in the library.

The editor tool is invoked by selecting the Program option from the Query Panel.

We are presented with a program frame (Figure 1) containing an empty pipe which

we are going to �ll by selecting constructs from the Query Panel. A small downward

pointing triangular shape indicates the insertion point and can be set with the mouse.

Figure 1

V i e w P a n e l

Q u e r y P a n e l

P r o g r a m E x e c u t e

S a v e D e l e t e

B r a n c h T o

M a r k Inc r

W h e n U n l e s s

D o R e p e a t

Unt i l

S e a r c h P a n e l

V i e w M e n u

P r o g r a m

In the guidar library, each design is assigned a set of facets. At the moment, facets

are simply keywords arranged in a loose conceptual hierarchy. The facet scroll-bar

indicates a design that captures our intuitive concept of a scroll-bar, and the facet

vertical is assigned to designs that have a vertical orientation. Therefore, our program

need only search the set of prototypical examples, �lter those that have both these

facets, and mark them selected.

First, we are going to introduce a �lter that lets through only those components

that have facet scroll-bar. We select the When construct from the Query Panel which

pops up a menu of tests (Figure 2). From this menu we choose the Facet option. We

are then prompted for the name of the desired facet. In response we type scroll-bar

(Figure 3).

6

Figure 2

V i e w P a n e l

Q u e r y P a n e l

P r o g r a m E x e c u t e

S a v e D e l e t e

B r a n c h T o

M a r k Inc r

W h e n U n l e s s

D o R e p e a t

Unt i l

S e a r c h P a n e l

V i e w M e n u

P r o g r a m

A b o r t P r o t o t y p i c a l ?

D e s i g n ? M a r k e d

C o u n t e r S l o t

L o c a l S l o t F a c e t

Figure 3

V i e w P a n e l

Q u e r y P a n e l

P r o g r a m E x e c u t e

S a v e D e l e t e

B r a n c h T o

M a r k Inc r

W h e n U n l e s s

D o R e p e a t

Unt i l

S e a r c h P a n e l

V i e w M e n u

P r o g r a m

H a s F a c e t scroll-bar

The system assembles the corresponding program fragment and places it at the inser-

tion point (Figure 4). Following a similar interaction sequence, we introduce another

�lter that lets through only those components that have facet vertical (Figure 5).

Figure 4

V i e w P a n e l

Q u e r y P a n e l

P r o g r a m E x e c u t e

S a v e D e l e t e

B r a n c h T o

M a r k Inc r

W h e n U n l e s s

D o R e p e a t

Unt i l

S e a r c h P a n e l

V i e w M e n u

P r o g r a m

W h e n h a s f a c e t s c r o l l - b a r

Figure 5

V i e w P a n e l

Q u e r y P a n e l

P r o g r a m E x e c u t e

S a v e D e l e t e

B r a n c h T o

M a r k Inc r

W h e n U n l e s s

D o R e p e a t

Unt i l

S e a r c h P a n e l

V i e w M e n u

P r o g r a m

W h e n h a s f a c e t s c r o l l - b a r

W h e n h a s f a c e t v e r t i c a l

Finally, we mark as selected all the components that have made it successfully through

both �lters. We select the Mark option from the Query Panel and type in selected in

response to the prompt (Figure 6).

Figure 6

V i e w P a n e l

Q u e r y P a n e l

P r o g r a m E x e c u t e

S a v e D e l e t e

B r a n c h T o

M a r k Inc r

W h e n U n l e s s

D o R e p e a t

Unt i l

S e a r c h P a n e l

V i e w M e n u

P r o g r a m

W h e n h a s f a c e t s c r o l l - b a r

W h e n h a s f a c e t v e r t i c a l

M a r k selected

Figure 7

V i e w P a n e l

Q u e r y P a n e l

P r o g r a m E x e c u t e

S a v e D e l e t e

B r a n c h T o

M a r k Inc r

W h e n U n l e s s

D o R e p e a t

Unt i l

S e a r c h P a n e l

V i e w M e n u

P r o g r a m

W h e n h a s f a c e t s c r o l l - b a r

W h e n h a s f a c e t v e r t i c a l

M a r k s e l e c t e d

7

Before we can execute this query, we must specify the set of root nodes from which

search will proceed and supply a selection criterion as well to extract the answer after

the program terminates. After opening up the Search Panel (Figure 8), we click on the

Library button to indicate that the root set should be the collection of prototypical

examples recorded in the library.

Then we proceed to supply a selection criterion by selecting the When option,

choosing the Marked entry from the pop-up menu of tests, and typing in selected in

response to the prompt. Thus, the solution will consist of all prototypical examples

bearing the selected mark.

Finally, we can initiate the query by selecting the Execute option from the Query

Panel. The system compiles and runs the query program, then displays the result in

the view. Three components were found (Figure 9).

Figure 8

V i e w P a n e l

Q u e r y P a n e l

S e a r c h P a n e l

W h e n U n l e s s

V i e w L i b r a r y

S h o w

V i e w M e n u

Figure 9

V i e w P a n e l

Q u e r y P a n e l

P r o g r a m E x e c u t e

S a v e D e l e t e

B r a n c h T o

M a r k Inc r

W h e n U n l e s s

D o R e p e a t

Unt i l

S e a r c h P a n e l

V i e w M e n u

0

0

5 Searching Through The Library Structure

The guidar search language allows us to formulate queries that take advantage of the

very structure of the application library. In this section, we are going to demonstrate

this ability by constructing a program to look for all designs that make use of any one

of the three vertical scroll bars we have just found.

Before we get started, a brief introduction to the garnet library structure is in

order. The garnet toolkit is implemented with an object-oriented language based

on the prototype/instance model. As a consequence, the primary structure of the

library corresponds to the specialization hierarchy as re
ected by the is-a relation

and its inverse is-a-inv. Naturally, complex interface components are constructed by

aggregation thus yielding the usual part-of hierarchy embodied in the components and

parent relations.

Let us now generalize the problem: given a collection of prototypical examples of

components (E

i

), discover all prototypical examples of designs that include as a part

some specialization of the design of any one of the E

i

's.

8

Algorithm: For each E

i

, search up the is-a hierarchy for its design, i.e. an object

which has been identi�ed to guidar as being a generic design. Find all specializations

of this design using the transitive closure of the is-a-inv relation. For each specialization,

climb up the parent hierarchy (aka. part-of) marking prototypical examples selected as

they are being encountered.

This algorithm can be expressed straightforwardly in our search language:

(pipe (until design? (to :is-a))

(repeat (to :is-a-inv))

(repeat (to :parent))

(when prototypical?)

(mark :selected))

Since search proceeds by propagation, we must consider the issue of redundant threads

and the possibility of loops. Redundancy is primarily the result of a node being

visited by several computationally indistinguishable threads, each proceeding to repeat

the same work already performed by its predecessors. In the program above, many

independent threads are created by the high branching factor when going down the

is-a hierarchy. Some of these threads may subsequently meet when going up the parent

hierarchy, at which point they become similar and only one need survive.

A useful technique to avoid redundant search is to leave a trail of marks and only

explore regions that have not been visited before

3

as evidenced by these marks. Our

program includes three link traversal instructions and we shall guard them with three

distinct marks, namely a, b, and c. The source form and graphical representation of

this program are shown side by side below.

(pipe (until design?

(unless (marked :a))

(mark :a)

(to :is-a))

(repeat

(unless (marked :b))

(mark :b)

(to :is-a-inv))

(repeat

(unless (marked :c))

(mark :c)

(to :parent))

(when prototypical?)

(mark :selected))

V i e w P a n e l

Q u e r y P a n e l

P r o g r a m E x e c u t e

S a v e D e l e t e

B r a n c h T o

M a r k Inc r

W h e n U n l e s s

D o R e p e a t

Unt i l

S e a r c h P a n e l

V i e w M e n u

P r o g r a m

U n t i l d e s i g n ?

U n l e s s m a r k e d a

M a r k a

T o : i s - a

R e p e a t

U n l e s s m a r k e d b

M a r k b

T o : i s - a - i n v

R e p e a t

U n l e s s m a r k e d c

M a r k c

T o : p a r e n t

W h e n p r o t o t y p i c a l ?

M a r k s e l e c t e d

3

More precisely, which have not been visited for the same purpose before.

9

Extending the interface. We could simply execute the program. Alternatively,

by selecting the Save option from the Query Panel, the user may cause the newly de�ned

program to become an integral part of the guidar interface. The user is prompted

for a name (Figure 10), and a new button with that name is added to the Query Panel

(Figure 11).

Figure 10

V i e w P a n e l

Q u e r y P a n e l

P r o g r a m E x e c u t e

S a v e D e l e t e

B r a n c h T o

M a r k Inc r

W h e n U n l e s s

D o R e p e a t

Unt i l

S e a r c h P a n e l

V i e w M e n u

P r o g r a m

U n t i l d e s i g n ?

U n l e s s m a r k e d a

M a r k a

T o : i s - a

R e p e a t

U n l e s s m a r k e d b

M a r k b

T o : i s - a - i n v

R e p e a t

U n l e s s m a r k e d c

M a r k c

T o : p a r e n t

W h e n p r o t o t y p i c a l ?

M a r k s e l e c t e d

B u t t o n N a m e Users

Figure 11

V i e w P a n e l

Q u e r y P a n e l

P r o g r a m E x e c u t e

S a v e D e l e t e

B r a n c h T o

M a r k Inc r

W h e n U n l e s s

D o R e p e a t

Unt i l U s e r s

S e a r c h P a n e l

V i e w M e n u

P r o g r a m

U n t i l d e s i g n ?

U n l e s s m a r k e d a

M a r k a

T o : i s - a

R e p e a t

U n l e s s m a r k e d b

M a r k b

T o : i s - a - i n v

R e p e a t

U n l e s s m a r k e d c

M a r k c

T o : p a r e n t

W h e n p r o t o t y p i c a l ?

M a r k s e l e c t e d

This button serves two functions: clicking it in browsing mode causes its program to

be executed, whereas in programming mode, it simply inserts a representation of that

program.

Before we execute the query, we must do one last thing: indicate to the system

that the root set should be taken from the view rather than from the library. This is

done by selecting the View option from the Search Panel. At last, we switch back to

browsing mode (by toggling the Program button) and click on the newly created Users

button (Figure 12). The query �nds two scrolling menus and one directory browser

(Figure 13).

10

Figure 12

V i e w P a n e l

Q u e r y P a n e l

P r o g r a m E x e c u t e

S a v e D e l e t e

B r a n c h T o

M a r k Inc r

W h e n U n l e s s

D o R e p e a t

Unt i l U s e r s

S e a r c h P a n e l

V i e w M e n u

0

0

Figure 13

V i e w P a n e l

Q u e r y P a n e l

P r o g r a m E x e c u t e

S a v e D e l e t e

B r a n c h T o

M a r k Inc r

W h e n U n l e s s

D o R e p e a t

Unt i l U s e r s

S e a r c h P a n e l

V i e w M e n u

0

0

Lavender Blush

Misty Rose

Slate Grey

Pale Turkoise

Sea Green

/home/kaml1/usr3/sr/dduchier/

#ange.el#

./

../

.addresses

.Aliases

Palette
Lavender Blush

Misty Rose

Slate Grey

Pale Turkoise

Sea Green

6 Conclusion

The guidar system introduces the idea of concrete browsing to facilitate the devel-

opment of graphical user interfaces and encourage the reuse of past designs. The user

is able to display and interact with instances of graphical components available in the

library, and thereby gains direct and concrete experience with them to better guide

his decisions.

The browsing activity is supported by a powerful search language whose execution

mechanism is based on the spreading computation paradigm. This language makes it

possible for the user to express queries far beyond the limited capabilities of keyword

oriented retrieval systems. In particular, the search process can take full advantage of

the very structure of the application library by navigating through its network of links

and relations while carrying out arbitrary computations to evaluate and annotate each

component thus visited.

Query programs can be elaborated interactively through a perspicuous visual in-

terface to a structure editing tool. Such programs can not only be executed, but may

also be automatically integrated into the guidar interface.

Future Work: An underlying theme of this project is that it should eventually

provide the framework for a cooperative architecture of automated agents, all conspir-

ing to facilitate and contribute to the design and development task. These agents will

be able to search the library using the same programmatic interface available to the

user. For example, we plan to implement an agent for active browsing as described in

[1], who, by observing the user's browsing action, formulates and constantly re�nes a

conjecture concerning the user's current interest, and, on the basis of this conjecture,

consults the library to determine entries relevant to that interest, and non-intrusively

o�ers suggestions for further browsing.

The development task can be further enhanced with such facilities as speci�cation

matching and similarity-based search by example. Active browsing itself can be for-

mulated as an incremental and adaptive technique of automating relevance feedback

11

search. Our search language, drawing on its ability to annotate components with

incrementally updated numeric values, is well-suited to the implementation of these

strategies. More generally, we believe that it is a convenient means of expressing search

strategies in densely connected knowledge bases.

The next immediate item on our agenda is to combine the guidar browser with an

interactive tool for constructing graphical user interfaces, such as garnet's gilt and

lapidary tools, or the forthcoming marquise [5]. However, the project now enters

a more ambitious phase, namely the development of a module to support case-based

design as well as the incremental re�nement of speci�cations and requirements. We

view this second phase as essential for the practical development of user interfaces and

the promotion of software reuse, and as a necessary step towards fully supporting the

idea of non-monotonic design [2].

References

[1] Chris Drummond. Automatic goal extraction from user actions to accelerate the

browsing of software libraries. Master's thesis, University of Ottawa, Department

of Electrical Engineering, 1992.

[2] Denys Duchier. Reuse and non-monotonic design of user interfaces. Technical

Report TR-92-17, University of Ottawa, Department of Computer Science, Apr

1992.

[3] Denys Duchier. Implementing search strategies with token passing graphs. Tech-

nical report, University of Ottawa, Department of Computer Science, 1993.

[4] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zanden,

David S. Kosbie, Edward Pervin, Andrew Mickish, and Philippe Marchal. Gar-

net: Comprehensive support for graphical, highly-interactive user interfaces.

IEEE Computer, 23(11):71{85, November 1990.

[5] Brad A. Myers, Richard G. McDaniel, and David S. Kosbie. Marquise: Creating

complete user interfaces by demonstration. In InterCHI'93, 1993.

[6] John Hamilton Reppy. Concurrent programming with events { the concurrent

ML manual. Technical report, AT&T Bell Laboratories, 1993.

12

