Modification et couverture de graphes : Approches paramétrées

Maël Dumas

Sous la direction de : Anthony Perez & Ioan Todinca

15 Décembre 2023

1. Introduction

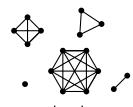
2. Modification de graphes

- Noyau polynomial pour Trivially Perfect Editing
- Noyaux polynomiaux pour d'autres classes

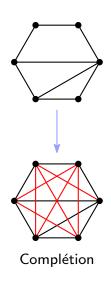
3. Graphes couvrables par k plus courts chemins

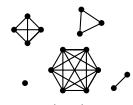
- Conséquences algorithmiques
- Graphes arête-couvrables par k plus cours chemins

4. Conclusion et perspectives

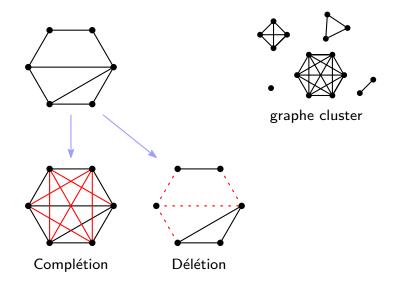


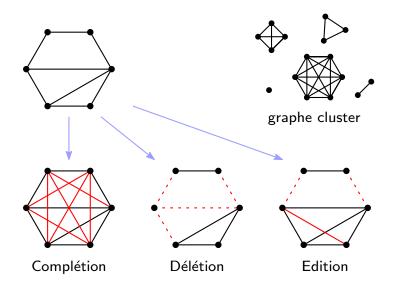
graphe cluster



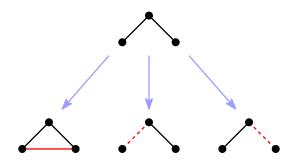


graphe cluster

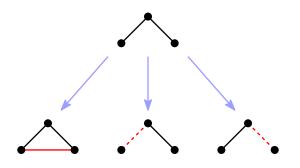




Graphes cluster : $\{P_3\}$ -Free



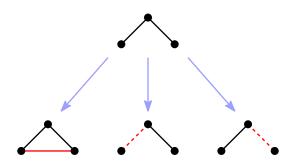
Graphes cluster : $\{P_3\}$ -Free



Combien de temps pour résoudre les problèmes?

• Complétion : $O(n^2)$ — polynomial

Graphes cluster : $\{P_3\}$ -Free



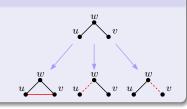
Combien de temps pour résoudre les problèmes?

- Complétion : $O(n^2)$ polynomial
- Délétion & Édition : Problèmes NP-complets
 - \longrightarrow Pas d'algorithme polynomial (à moins que P = NP)

Un algortihme pour Cluster Edition

ClusterEd(G,k)

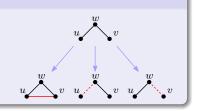
- 1. Si *G* ne contient pas de *P*₃ : Gagné!
- 2. Si k = 0 et G contient un P_3 : Perdu...
- 3. Sinon, choisir un P_3 {u, v, w} et brancher :
 - ClusterEd(G + uv, k − 1)
 - ClusterEd(G uw, k 1)
 - ClusterEd(G vw, k 1)

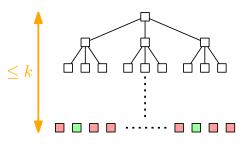


Un algortihme pour Cluster Edition

ClusterEd(G,k)

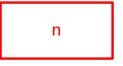
- 1. Si *G* ne contient pas de *P*₃ : Gagné!
- 2. Si k = 0 et G contient un P_3 : Perdu...
- 3. Sinon, choisir un P_3 {u, v, w} et brancher :
 - ClusterEd(G + uv, k 1)
 - ClusterEd(G uw, k 1)
 - ClusterEd(G vw, k 1)

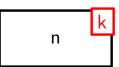




Complexité : $3^k \cdot poly(n)$

Complexité paramétrée





Complexité paramétrée

- Étudier la difficulté des problèmes en fonction de paramètres.
- Algorithmes « efficaces » quand les paramètres sont petits.
- Paramètres : taille de la solution, largeur arborescente, degré maximum...

Algorithmes paramétrés

• FPT (fixed-parameter tractable) : $f(k) \cdot poly(n)$

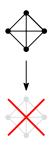
 $ex.: O(3^k \cdot n^3)$

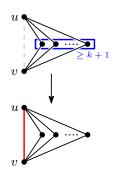
• XP (polynomial par tranche) : $n^{f(k)}$

ex. : $O(n^{k^2+3k})$

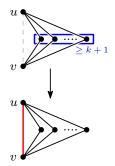
Règles de réduction :

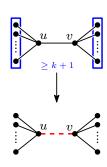
Règles de réduction :





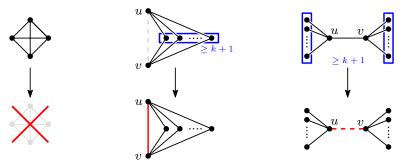
Règles de réduction :





Simplifier une instance de CLUSTER EDITION

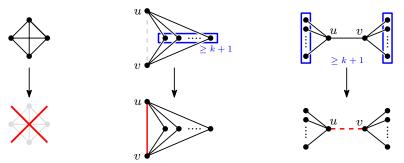
Règles de réduction:



Taille d'une instance réduite?

1. Appliquer les règles sur (G,k) \longrightarrow instance réduite (G',k')

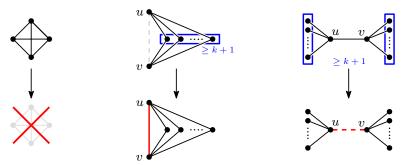
Règles de réduction :



Taille d'une instance réduite?

- 1. Appliquer les règles sur (G,k) \longrightarrow instance réduite (G',k')
- 2. Si $|V(G')| > k^2 + 2k$: instance négative

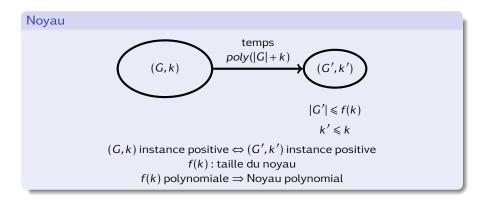
Règles de réduction :



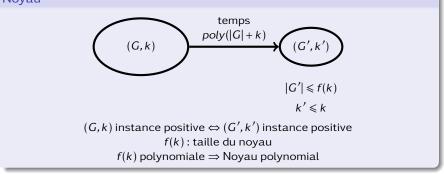
Taille d'une instance réduite?

- 1. Appliquer les règles sur $(G,k) \longrightarrow$ instance réduite (G',k')
- 2. Si $|V(G')| > k^2 + 2k$: instance négative
- 3. Sinon $|V(G')| \le k^2 + 2k$: taille bornée par une fonction de k

Algorithmes de noyau



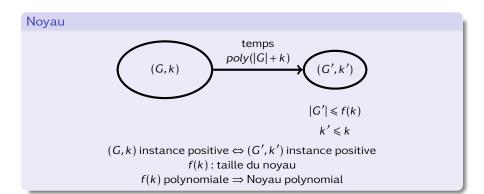
Algorithmes de noyau



Théorème

Un problème paramétré \mathcal{Q} est FPT $\Leftrightarrow \mathcal{Q}$ admet un noyau.

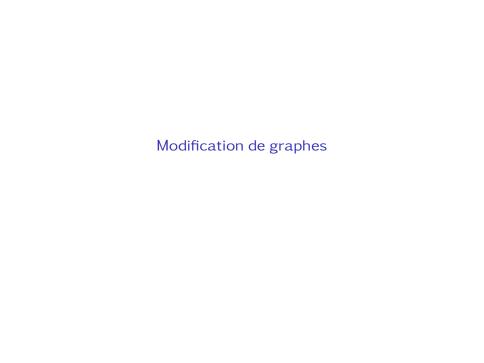
Algorithmes de noyau

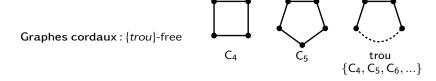


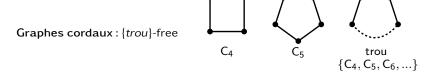
Théorème

Un problème paramétré Q est $\mathsf{FPT} \Leftrightarrow Q$ admet un noyau.

Question: Un problème FPT admet-il un noyau polynomial?

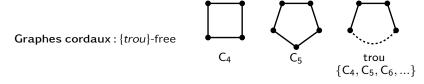






Conjecture [Bessy, Perez 2013]

Le problème \mathcal{G} -Completion admet un noyau polynomial si \mathcal{G} est une classe interdisant les trous plus un ensemble fini de graphes.

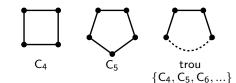


Conjecture [Bessy, Perez 2013]

Le problème \mathcal{G} -Completion admet un **noyau polynomial** si \mathcal{G} est une classe interdisant les **trous** plus un **ensemble fini de graphes**.

• Existence de noyaux polynomiaux montrée pour de nombreux $\mathcal G$

Graphes cordaux : {trou}-free

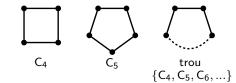


Conjecture [Bessy, Perez 2013]

Le problème \mathcal{G} -Completion admet un **noyau polynomial** si \mathcal{G} est une classe interdisant les **trous** plus un **ensemble fini de graphes**.

- ullet Existence de noyaux polynomiaux montrée pour de nombreux ${\mathcal G}$
- En complétion, $trou = \{C_4, C_5, ..., C_{k+3}\}$:
 - $\longrightarrow k$ arêtes nécessaires pour compléter C_{k+3}

 ${\bf Graphes\ cordaux:} \{ {\it trou} \} \hbox{-} {\it free}$

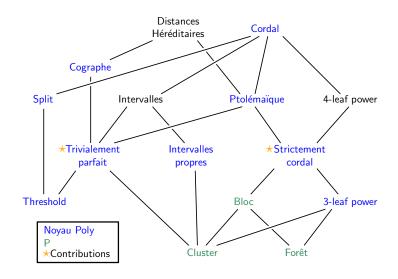


Conjecture [Bessy, Perez 2013]

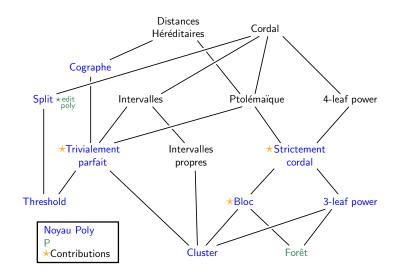
Le problème \mathcal{G} -Completion admet un noyau polynomial si \mathcal{G} est une classe interdisant les trous plus un ensemble fini de graphes.

- ullet Existence de noyaux polynomiaux montrée pour de nombreux ${\mathcal G}$
- En complétion, trou = {C₄, C₅,..., C_{k+3}}:
 → k arêtes nécessaires pour compléter C_{k+3}
- G-COMPLETION est FPT

Complétion vers des classes de graphes cordales



Délétion/Edition vers des classes de graphes cordales



Contributions

Contributions

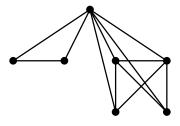
• Noyaux polynomiaux pour la modification d'arêtes vers les graphes :

Classe	Complétion	Délétion	Édition
Trivialement parfait	$O(k^2)$	$O(k^2)$	$O(k^2)$
Bloc	Р	$O(k^2)$	$O(k^2)$
Strictement cordal	$O(k^3)$	$O(k^3)$	$O(k^4)$

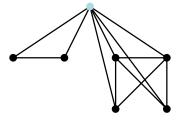
• Utilisation d'une même approche : « décomposition et sommets affectés »

Noyau polynomial pour Trivially Perfect Editing

Graphes trivialements parfaits : $\{P_4, C_4\}$ -free



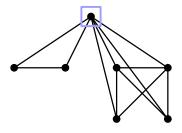
Graphes trivialements parfaits: $\{P_4, C_4\}$ -free



Quelques définitions

• Sommet universel : sommet adjacent à tous les autres

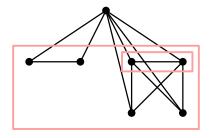
Graphes trivialements parfaits: $\{P_4, C_4\}$ -free



Quelques définitions

- Sommet universel : sommet adjacent à tous les autres
- Clique universelle : ensemble des sommets universels

Graphes trivialements parfaits: $\{P_4, C_4\}$ -free

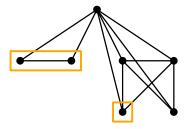


Quelques définitions

- Sommet universel : sommet adjacent à tous les autres
- Clique universelle : ensemble des sommets universels
- Module : ensemble de sommets M ayant le même voisinage en dehors de M

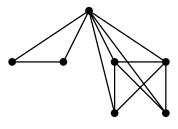
Graphes trivialements parfaits

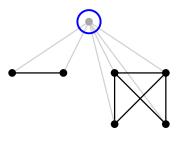
Graphes trivialements parfaits : $\{P_4, C_4\}$ -free

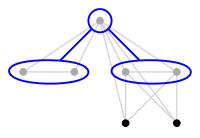


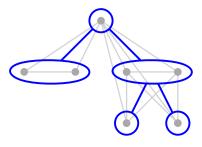
Quelques définitions

- Sommet universel : sommet adjacent à tous les autres
- Clique universelle : ensemble des sommets universels
- Module : ensemble de sommets M ayant le même voisinage en dehors de M
- Clique critique : module clique maximal (pour l'inclusion)

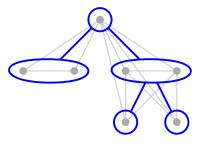




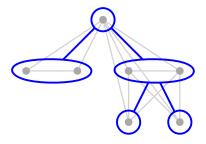




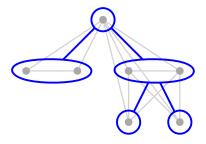
Décomposition en clique universelle : Arbre des cliques universelles



• G est trivialement parfait $\Leftrightarrow G$ admet une DCU.

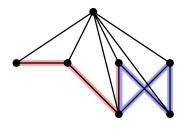


- G est trivialement parfait $\Leftrightarrow G$ admet une DCU.
- Sac de la DCU \Leftrightarrow clique critique.



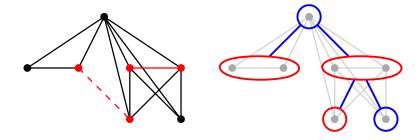
- G est trivialement parfait $\Leftrightarrow G$ admet une DCU.
- Sac de la DCU ⇔ clique critique.
- Sous-arbre enraciné de la DCU ⇔ module trivialement parfait.

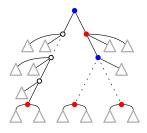
Edition et sommets affectés



DCU?

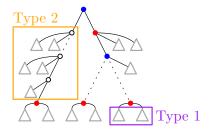
Edition et sommets affectés





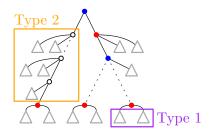
Considérer T la DCU de $H = G \triangle F$ (où F k-édition de G):

- A : sacs contenant un sommet affecté par F,
- A': clôture par plus petits ancêtres communs de A,
- $|F| \le k \Rightarrow |A| \le 2k$ and $|A'| \le 2k$.



Trois types de composantes connexes dans $T \setminus (A \cup A')$:

- Type 0 : adjacente à 0 noeud de A ∪ A'
- Type 1 : adjacente à 1 noeud de $A \cup A'$ (module trivialement parfait)
- Type 2 : adjacente à 2 noeuds de $A \cup A'$ (peigne)



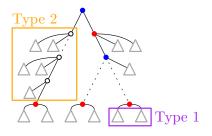
Trois types de composantes connexes dans $T \setminus (A \cup A')$:

- Type 0 : adjacente à 0 noeud de A ∪ A'
- Type 1 : adjacente à 1 noeud de $A \cup A'$ (module trivialement parfait)
- Type 2: adjacente à 2 noeuds de $A \cup A'$ (peigne)

Théorème

Trivially Perfect Editing admet un noyau avec $O(k \cdot (f(k) + g(k) + h(k)))$ sommets.

f(k) sac DCUg(k) module TPh(k) peigne



Trois types de composantes connexes dans $T \setminus (A \cup A')$:

- Type 0 : adjacente à 0 noeud de A ∪ A'
- Type 1 : adjacente à 1 noeud de $A \cup A'$ (module trivialement parfait)
- Type 2 : adjacente à 2 noeuds de $A \cup A'$ (peigne)

Théorème

TRIVIALLY PERFECT EDITING admet un noyau avec $O(k \cdot (f(k) + g(k) + h(k)))$ sommets.

f(k) sac DCU g(k) module TP

h(k) peigne

 \longrightarrow Nous montrons, f(k), g(k), h(k) = O(k), donc noyau avec $O(k^2)$ sommets.

Règles classiques

Règle 1

Retirer les composantes connexes trivialement parfaites.

→ Supprime les composantes de type 0.

Règles classiques

Règle 1

Retirer les composantes connexes trivialement parfaites.

→ Supprime les composantes de type 0.

Règle 2

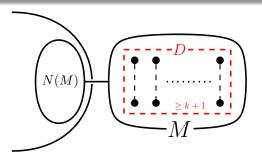
Garder au plus k + 1 sommets dans une clique critique et retirer les autres.

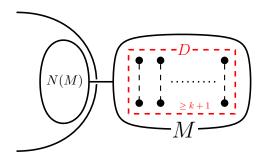
 \longrightarrow Borne la taille des sacs de la DCU par k + 1.

Borner la taille des modules trivialements parfaits

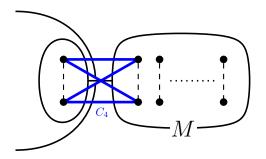
Règle 3

Si un module trivialement parfait M contient un anti-couplage D de taille (k+1), alors retirer les sommets de $M \setminus D$.

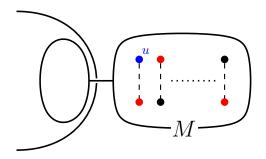




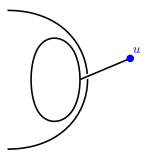
Idée : Montrer qu'il existe une k-édition qui n'affecte pas M.



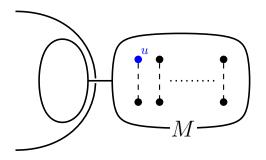
• Le voisinage de M doit être une clique dans toute k-édition F de G.



- Le voisinage de *M* doit être une clique dans toute *k*-édition *F* de *G*.
- $|F| \le k \Rightarrow$ il existe un sommet $u \in M$ non affecté dans $H = G \triangle F$.

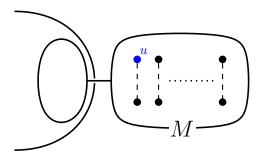


- Le voisinage de *M* doit être une clique dans toute *k*-édition *F* de *G*.
- $|F| \le k \Rightarrow$ il existe un sommet $u \in M$ non affecté dans $H = G \triangle F$.
- Retirer de H tous les sommets de M sauf u.



- Le voisinage de *M* doit être une clique dans toute *k*-édition *F* de *G*.
- $|F| \le k \Rightarrow$ il existe un sommet $u \in M$ non affecté dans $H = G \triangle F$.
- Retirer de *H* tous les sommets de *M* sauf *u*.
- Substituer u par G[M]
 → le graphe obtenu est trivialement parfait car N(u) est une clique.

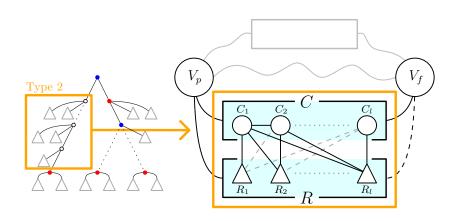
Idée : Montrer qu'il existe une k-édition qui n'affecte pas M.



- Le voisinage de *M* doit être une clique dans toute *k*-édition *F* de *G*.
- $|F| \le k \Rightarrow$ il existe un sommet $u \in M$ non affecté dans $H = G \triangle F$.
- Retirer de *H* tous les sommets de *M* sauf *u*.
- Substituer u par G[M]
 - \longrightarrow le graphe obtenu est trivialement parfait car N(u) est une clique.

Question: Comment borner la taille des modules avec petit anti-couplage?

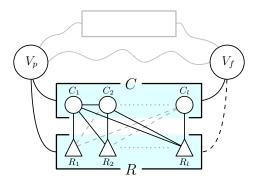
Peigne



Peigne

Un **peigne** est une paire (C,R) d'ensemble de sommets où :

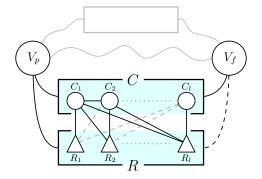
- Manche : C une clique composée l cliques critiques
- Dents : R un ensemble de l modules trivialement parfaits non adjacents



Peigne

Un **peigne** est une paire (C,R) d'ensemble de sommets où :

- Manche : C une clique composée l cliques critiques
- **Dents** : *R* un ensemble de *l* modules trivialement parfaits non adjacents

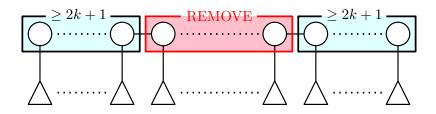


Objectif: Borner à O(k) le nombre de sommets dans un peigne.

Réduire le manche d'un peigne

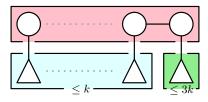
Règle 4

Garder $\ge 2k + 1$ sommets au début et à la fin du manche, retirer les autres.



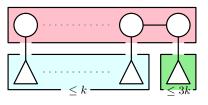
Borner les modules avec petit anti-couplage

- Un module trivialement parfait peut être décomposé en un peigne,
- Si petit anti-couplage, alors il existe (C,R) tel que |R| = O(k).



Borner les modules avec petit anti-couplage

- Un module trivialement parfait peut être décomposé en un peigne,
- Si petit anti-couplage, alors il existe (C, R) tel que |R| = O(k).



Règle $4 \Rightarrow |C| = O(k)$

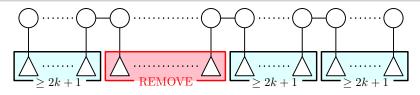
Taille modules trivialement parfaits

- Grand anti-couplage : Règle $3 \Rightarrow \leq 2k + 2$ sommets,
- Petit anti-couplage : Règle $4 \Rightarrow O(k)$ sommets.
 - \longrightarrow Taille d'un module trivialement parfait : g(k) = O(k)

Réduire le manche d'un peigne

Règle 4

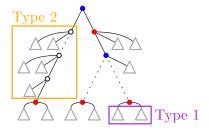
Dans les dents garder $\ge 2k+1$ sommets au début, ainsi que deux ensembles disjoints de $\ge 2k+1$ sommets à la fin, retirer les autres sommets.



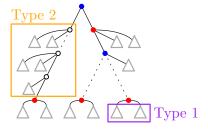
Taille d'un peigne

- Règle 4: O(k) sommets dans le manche,
- Règle 5 : O(k) sommets dans les dents.
 - \longrightarrow Taille d'un peigne : h(k) = O(k)

Nous avons montré f(k), g(k), h(k) = O(k)Ainsi, une instance réduite contient $O(k \cdot (f(k) + g(k) + h(k))) = O(k^2)$ sommets.

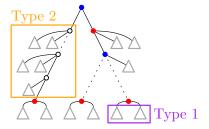


Nous avons montré f(k), g(k), h(k) = O(k)Ainsi, une instance réduite contient $O(k \cdot (f(k) + g(k) + h(k))) = O(k^2)$ sommets.



Remarque : Les règles 1 à 5 peuvent être appliquées en temps polynomial.

Nous avons montré f(k), g(k), h(k) = O(k)Ainsi, une instance réduite contient $O(k \cdot (f(k) + g(k) + h(k))) = O(k^2)$ sommets.

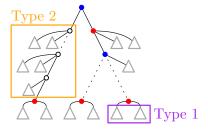


Remarque : Les règles 1 à 5 peuvent être appliquées en temps polynomial.

Théorème

• Trivially Perfect Editing admet un noyau avec $O(k^2)$ sommets

Nous avons montré f(k), g(k), h(k) = O(k)Ainsi, une instance réduite contient $O(k \cdot (f(k) + g(k) + h(k))) = O(k^2)$ sommets.



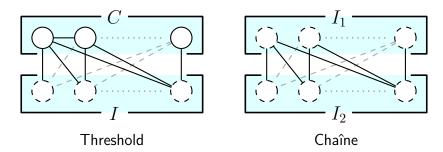
Remarque : Les règles 1 à 5 peuvent être appliquées en temps polynomial.

Théorème

- TRIVIALLY PERFECT EDITING admet un noyau avec $O(k^2)$ sommets
- Trivially Perfect Completion/Deletion admettent un noyau avec $O(k^2)$ sommets

Noyaux polynomiaux pour d'autres classes

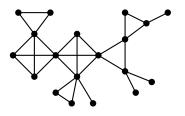
Graphes Threshold et Chaînes



Noyaux

- Threshold Completion/Deletion/ Edition \longrightarrow noyau avec $O(k^2)$ sommets
- Chain Completion/Deletion/ Edition \longrightarrow noyau avec $O(k^2)$ sommets

Graphes Blocs et Strictement Cordaux

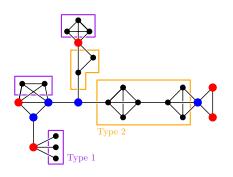


Bloc

Strictement Cordal

	Complétion	Délétion	Édition
Bloc	Р	$O(k^2)$	$O(k^2)$
Strictement cordal	$O(k^3)$	$O(k^3)$	$O(k^4)$

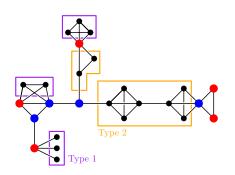
Idée du noyau



Approche « décomposition et sommets affectés »

- Décomposition avec structure arborescente
- Peu de sacs affectés
- Des « bonnes » parties rattachées en 1 ou 2 points

ldée du noyau



Approche « décomposition et sommets affectés »

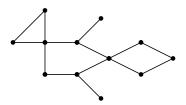
- Décomposition avec structure arborescente
- Peu de sacs affectés
- Des « bonnes » parties rattachées en 1 ou 2 points

Conclusion

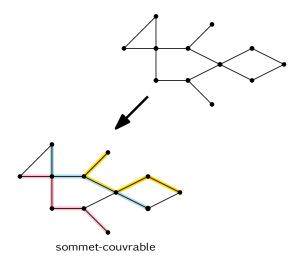
- Une approche qui permet d'obtenir des noyaux polynomiaux
- Nécessite une décomposition spécifique à la classe
- Ne permet pas de montrer la conjecture Bessy-Perez



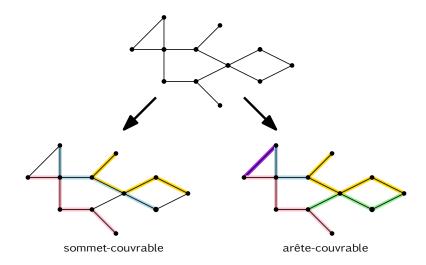
Graphes couvrables par *k* plus courts chemins



Graphes couvrables par k plus courts chemins



Graphes couvrables par *k* plus courts chemins



Résultats combinatoires

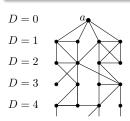
Théorème

Si G couvrable par k plus courts chemins alors, pour tout sommet a et toute distance D, le nombre de sommets à distance exactement D de a est borné supérieurement par une fonction g(k).

- Arête-couvrable : $g(k) = O(3^k)$.
- Sommet-couvrable : $g(k) = O(k \cdot 3^k)$.

Corollaire

G est de largeur arborescente au plus $2 \cdot g(k) - 1$.



Résultats combinatoires

Théorème

Si G couvrable par k plus courts chemins alors, pour tout sommet a et toute distance D, le nombre de sommets à distance exactement D de a est borné supérieurement par une fonction g(k).

- Arête-couvrable : $g(k) = O(3^k)$.
- Sommet-couvrable : $g(k) = O(k \cdot 3^k)$.

Corollaire

G est de largeur arborescente au plus $2 \cdot g(k) - 1$.

$$D = 0$$
 $D = 1$ $D = 2$ $D = 3$ $D = 4$

Décomposition arborescente :

• Parcours en largeur (BFS) à partir de a.

Résultats combinatoires

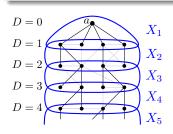
Théorème

Si G couvrable par k plus courts chemins alors, pour tout sommet a et toute distance D, le nombre de sommets à distance exactement D de a est borné supérieurement par une fonction g(k).

- Arête-couvrable : $g(k) = O(3^k)$.
- Sommet-couvrable : $g(k) = O(k \cdot 3^k)$.

Corollaire

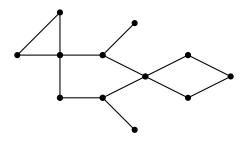
G est de largeur arborescente au plus $2 \cdot g(k) - 1$.



Décomposition arborescente :

- Parcours en largeur (BFS) à partir de a.
- Sacs: deux niveaux consécutifs.

Problèmes considérés



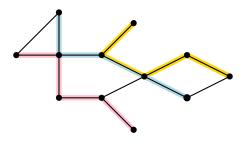
ISOMETRIC PATH COVER

Entrée : Un graphe G et un entier k.

Question: Existe-t-il un ensemble de k plus courts chemins qui couvrent tous les

sommets de G?

Problèmes considérés



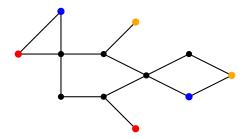
ISOMETRIC PATH COVER

Entrée : Un graphe *G* et un entier *k*.

Question: Existe-t-il un ensemble de k plus courts chemins qui couvrent tous les

sommets de *G*?

Problèmes considérés



ISOMETRIC PATH COVER WITH TERMINALS (IPC-WT)

Entrée : Un graphe G et k paires de sommets $(s_1, t_1), \ldots, (s_k, t_k)$, les **terminaux**. **Question :** Existe-t-il un ensemble de k plus courts chemins qui couvrent tous les sommets de G tel que le i-ème chemin est un plus court chemin entre s_i et t_i ?

Théorème [Courcelle 1990]

Tout problème exprimable en **logique monadique du second ordre** (MSO₂) peut être résolu en temps $f(w) \cdot n$ sur les graphes de largeur arborescente au plus w.

Théorème [Courcelle 1990]

Tout problème exprimable en **logique monadique du second ordre** (MSO₂) peut être résolu en temps $f(w) \cdot n$ sur les graphes de largeur arborescente au plus w.

Algortihme FPT:

1. Construire une décomposition arborescente par BFS. Si largeur > 2g(k) renvoyer faux.

Théorème [Courcelle 1990]

Tout problème exprimable en **logique monadique du second ordre** (MSO₂) peut être résolu en temps $f(w) \cdot n$ sur les graphes de largeur arborescente au plus w.

Algortihme FPT:

- 1. Construire une décomposition arborescente par BFS. Si largeur > 2g(k) renvoyer faux.
- 2. Trouver $E_1, ..., E_k$ minimisant $|E_1| + \cdots + |E_k|$ et satisfaisant la formule MSO₂:

$$\varphi(E_1, \dots, E_k) = \exists V_1, \dots, V_k, \mathsf{Cover}(V_1, \dots, V_k) \bigwedge_{1 \leq i \leq k} \mathsf{Path}(V_i, E_i, s_i, t_i)$$

Théorème [Courcelle 1990]

Tout problème exprimable en **logique monadique du second ordre** (MSO₂) peut être résolu en temps $f(w) \cdot n$ sur les graphes de largeur arborescente au plus w.

Algortihme FPT:

- 1. Construire une décomposition arborescente par BFS. Si largeur > 2g(k) renvoyer faux.
- 2. Trouver $E_1, ..., E_k$ minimisant $|E_1| + \cdots + |E_k|$ et satisfaisant la formule MSO₂:

$$\varphi(E_1, \dots, E_k) = \exists V_1, \dots, V_k, \mathsf{Cover}(V_1, \dots, V_k) \bigwedge_{1 \leq i \leq k} \mathsf{Path}(V_i, E_i, s_i, t_i)$$

3. Si $\forall i, |E_i| = dist(s_i, t_i)$ alors répondre vrai, sinon répondre faux.

Conséquences algorthmiques

Théorème

ISOMETRIC PATH COVER WITH TERMINALS est FPT

 $(\text{temps}: O(f(k) \cdot n))$

Conséquences algorthmiques

Théorème

ISOMETRIC PATH COVER WITH TERMINALS est FPT $(temps : O(f(k) \cdot n))$

Corollary

ISOMETRIC PATH COVER est XP $(temps : O(n^{h(k)}))$

Idée : Tester toutes les combinaisons de *k* paires de terminaux + algorithme FPT.

Conséquences algorthmiques

Théorème

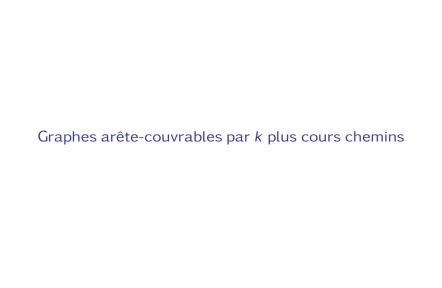
ISOMETRIC PATH COVER WITH TERMINALS est FPT $(temps : O(f(k) \cdot n))$

Corollary

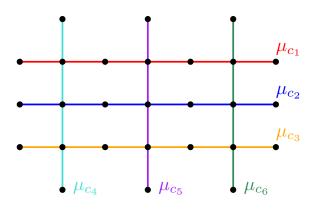
ISOMETRIC PATH COVER est XP $(temps : O(n^{h(k)}))$

ldée : Tester toutes les combinaisons de k paires de terminaux + algorithme FPT.

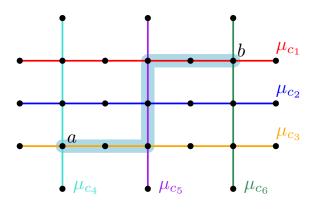
- → Ces résultats peuvent être généralisés à :
 - La couverture d'arêtes,
 - La partition d'arêtes/sommets.

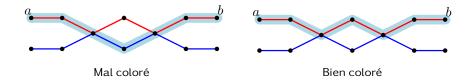


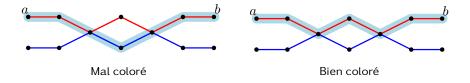
Coloration des chemins de base



Coloration des chemins de base

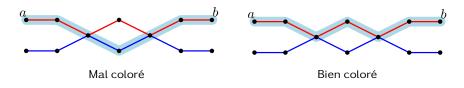






Lemme bonne coloration

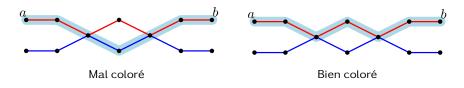
Pour toute paire de sommets a, b il existe un plus court a-b chemin bien coloré.



Lemme bonne coloration

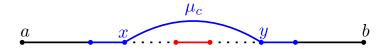
Pour toute paire de sommets *a*, *b* il existe un plus court *a*-*b* chemin bien coloré.

• Prendre un plus court chemin *P* entre *a* et *b*.

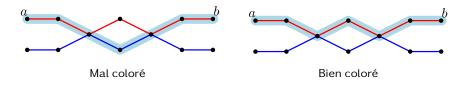


Lemme bonne coloration

Pour toute paire de sommets *a*, *b* il existe un plus court *a*-*b* chemin bien coloré.

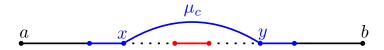


- Prendre un plus court chemin *P* entre *a* et *b*.
- Remplacer P[x,y] par $\mu_c[x,y]$.



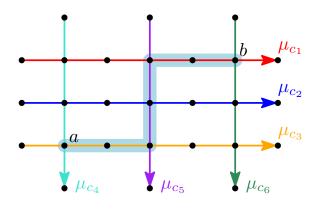
Lemme bonne coloration

Pour toute paire de sommets *a*, *b* il existe un plus court *a*-*b* chemin bien coloré.

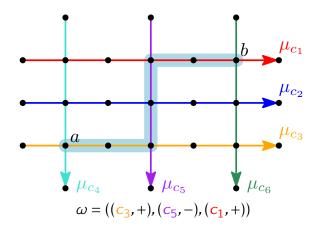


- Prendre un plus court chemin *P* entre *a* et *b*.
- Remplacer P[x,y] par $\mu_c[x,y]$.
- Répéter jusqu'à ce que le chemin soit bien coloré.

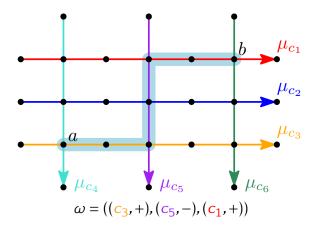
Mot couleurs-sens



Mot couleurs-sens



Mot couleurs-sens

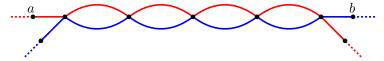


Nombre de mots couleurs-sens possible pour tous les chemins bien colorés :

$$\sum_{\ell=1}^{k} 2^{\ell} \cdot \ell! \cdot {k \choose \ell} = O(k^{k})$$

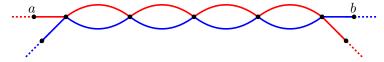
Une borne factorielle

Plusieurs plus courts chemins peuvent avoir le même mot couleurs-sens :



Une borne factorielle

Plusieurs plus courts chemins peuvent avoir le même mot couleurs-sens :

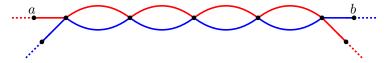


Lemme mot couleurs-sens

Les plus courts chemins commençant en un sommet a, de longueur D et de mot couleurs-sens ω terminent tous au même sommet b.

Une borne factorielle

Plusieurs plus courts chemins peuvent avoir le même mot couleurs-sens :



Lemme mot couleurs-sens

Les plus courts chemins commençant en un sommet a, de longueur D et de mot couleurs-sens ω terminent tous au même sommet b.

Théorème

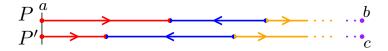
Pour tout sommet a et distance fixée D, le nombre de sommets à distance exactement D de a est borné par $O(k^k)$ (nombre de mots couleurs-sens).

Preuve du lemme mot couleurs-sens

Soit b et c des sommets à distance D de a.

Soit (P, col), (P', col') des plus courts chemins de $a \grave{a} b$ et de $a \grave{a} c$.

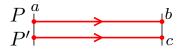
Affirmation : S'ils ont le même mot couleurs-sens ω alors b=c.



Soit *b* et *c* des sommets à distance *D* de *a*.

Soit (P, col), (P', col') des plus courts chemins de $a \grave{a} b$ et de $a \grave{a} c$.

Affirmation : S'ils ont le même mot couleurs-sens ω alors b=c.



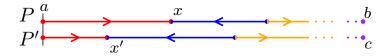
Preuve par induction sur ℓ la longueur de ω :

1. Vérifiée pour $\ell = 1$.

Soit *b* et *c* des sommets à distance *D* de *a*.

Soit (P, col), (P', col') des plus courts chemins de a à b et de a à c.

Affirmation : S'ils ont le même mot couleurs-sens ω alors b=c.

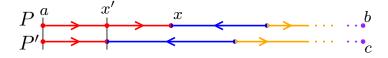


- 1. Vérifiée pour $\ell = 1$.
- 2. Pour $\ell > 1$:

Soit b et c des sommets à distance D de a.

Soit (P, col), (P', col') des plus courts chemins de a à b et de a à c.

Affirmation : S'ils ont le même mot couleurs-sens ω alors b=c.

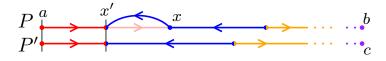


- 1. Vérifiée pour $\ell = 1$.
- 2. Pour $\ell > 1$:
 - Le sommet x' apparaît dans P,

Soit *b* et *c* des sommets à distance *D* de *a*.

Soit (P, col), (P', col') des plus courts chemins de a à b et de a à c.

Affirmation : S'ils ont le même mot couleurs-sens ω alors b=c.

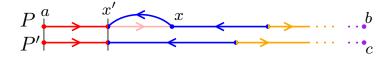


- 1. Vérifiée pour $\ell = 1$.
- 2. Pour $\ell > 1$:
 - Le sommet x' apparaît dans P,
 - Remplacer P[x',x] par $\mu_{c_2}[x',x]$,

Soit b et c des sommets à distance D de a.

Soit (P, col), (P', col') des plus courts chemins de a à b et de a à c.

Affirmation : S'ils ont le même mot couleurs-sens ω alors b=c.

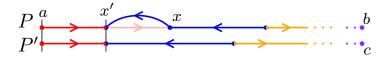


- 1. Vérifiée pour $\ell = 1$.
- 2. Pour $\ell > 1$:
 - Le sommet x' apparaît dans P,
 - Remplacer P[x',x] par $\mu_{c_2}[x',x]$,
 - P[x',b] et P'[x',c] ont $\ell-1$ couleurs, hypothèse d'induction $\Rightarrow b=c$.

Soit b et c des sommets à distance D de a.

Soit (P, col), (P', col') des plus courts chemins de a à b et de a à c.

Affirmation : S'ils ont le même mot couleurs-sens ω alors b = c.



Preuve par induction sur ℓ la longueur de ω :

- 1. Vérifiée pour $\ell = 1$.
- 2. Pour $\ell > 1$:
 - Le sommet x' apparaît dans P,
 - Remplacer P[x',x] par $\mu_{c_2}[x',x]$,
 - P[x',b] et P'[x',c] ont $\ell-1$ couleurs, hypothèse d'induction $\Rightarrow b=c$.

Théorème

Pour tout sommet a et distance fixée D, le nombre de sommets à distance exactement D de a est borné par $O(k^k)$ (nombre de mots couleurs-sens).

Graphes couvrables par k plus courts chemins

Résultats

- Graphes arêtes/sommets couvrables par *k* plus courts chemins :
 - Nombre de sommets à une distance fixée : $O^*(3^k)$
 - Largeur arborescente/linéaire : $O^*(3^k)$
- Le problème Isometric Path Cover with Terminals est FPT
- Le problème Isometric Path Cover est XP

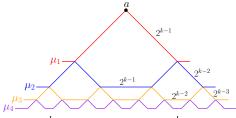
Graphes couvrables par k plus courts chemins

Résultats

- Graphes arêtes/sommets couvrables par *k* plus courts chemins :
 - Nombre de sommets à une distance fixée : $O^*(3^k)$
 - Largeur arborescente/linéaire : $O^*(3^k)$
- Le problème Isometric Path Cover with Terminals est FPT
- Le problème Isometric Path Cover est XP

Questions

- Borne polynomiale pour la largeur arborescente/linéaire?
- Le problème Isometric Path Cover est-il FPT? W-difficile?



 $\geqslant 2^k$ sommets à distance 2^k de a

Résultats

Noyaux polynomiaux avec l'approche « décomposition et sommets affectés »

 $\longrightarrow {\sf trivialement\ parfait,\ bloc,\ strictement\ cordal,\ threshold,\ chaîne}$

Résultats

Noyaux polynomiaux avec l'approche « décomposition et sommets affectés »

 $\longrightarrow {\sf trivialement\ parfait,\ bloc,\ strictement\ cordal,\ threshold,\ chaîne}$

Résultats

Noyaux polynomiaux avec l'approche « décomposition et sommets affectés » — trivialement parfait, bloc, strictement cordal, threshold, chaîne

Perspectives

- Conjecture Bessy-Perez:
 - Une décomposition générique?
 - Une autre approche?
 - Trouver une classe qui n'admet pas de noyau polynomial?

Résultats

Noyaux polynomiaux avec l'approche « décomposition et sommets affectés » — trivialement parfait, bloc, strictement cordal, threshold, chaîne

Perspectives

- Conjecture Bessy-Perez:
 - Une décomposition générique?
 - Une autre approche?
 - Trouver une classe qui n'admet pas de noyau polynomial?
- Considérer d'autres problèmes ouverts : Interval Completion
 - → Aborder le problème en partant de graphes déjà cordaux?

Merci!

Publications

Conférences Internationales:

- A Cubic Vertex-Kernel for Trivially Perfect Editing Avec Anthony Perez et Ioan Todinca. MFCS 2021.
- Polynomial kernels for strictly chordal edge modification problems Avec Anthony Perez et Ioan Todinca. IPEC 2021.
- On graphs coverable by k shortest paths
 Avec Florent Foucaud, Anthony Perez et Ioan Todinca. ISAAC 2022.
- An improved kernelization algorithm for Trivially Perfect Editing Avec Anthony Perez. IPEC 2023.

Journaux:

- A cubic vertex-kernel for Trivially Perfect Editing Avec Anthony Perez et Ioan Todinca. Algorithmica. 2023.
- On graphs coverable by k shortest paths
 Avec Florent Foucaud, Anthony Perez et Ioan Todinca. SIDMA (accepté)

Soumissions en journal:

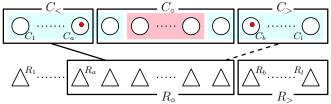
 Polynomial kernels for edge modification problems towards block and strictly chordal graphs
 Avec Anthony Perez, Mathis Rocton et Ioan Todinca.

Noyaux polynomiaux pour des classes de graphes cordales

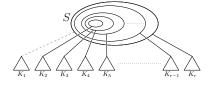
Classe	Complétion	Délétion	Édition
Cordal	$O(k^2)$	Ouvert	Ouvert
Cographe	$O(k^3)$	$O(k^3)$	$O(k^2 \log k)$
Trivialement parfait	$O(k^2)$	$O(k^2)$	$O(k^2)$
Threshold	$O(k^2)$	$O(k^2)$	$O(k^2)$
Co-chaîne	$O(k^2)$	$O(k^2)$	$O(k^2)$
Split	O(k)	O(k)	Р
Cluster	Р	2k	2k
Forêt d'étoiles	Р	4k	4k
Forêt de chemins	P	9k	9k
Clique + Indépendant	Р	$O(k/\log k)$	2k
Bloc	P	$O(k^2)$	$O(k^2)$
Strictement cordal	$O(k^3)$	$O(k^3)$	$O(k^4)$
3-leaf power	$O(k^3)$	$O(k^3)$	$O(k^3)$
4-leaf power	Ouvert	Ouvert	Ouvert
Intervalles	Ouvert	Ouvert	Ouvert
Intervalles propres	$O(k^3)$	Ouvert	Ouvert
Distances héréditaires	Ouvert	Ouvert	Ouvert
Ptolémaïque	$O(k^4)$	Ouvert	Ouvert

Règle 4 : idée de la preuve

ldée : il existe une k-édition qui n'affecte pas les sommets que l'on veut retirer.



- Deux sommets c_a , c_b non affectés dans le manche,
- Retirer tous les sommets du manche entre c_a et c_b (C_o),
- R_{\circ} est un module :
 - Prendre une clique maximale S contenant c_a et c_b,
 - Prendre un sommet v ∈ R_o
 → retirer tous les autres de R_o.
 - Voisinage de v: une clique $\subseteq S$ \longrightarrow remettre R_0 .



- Remettre les sommets du manche retirés (inclusions des voisinages des K_i)
- Gagné!