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Combinatorial results

Theorem 1

If G is coverable by k shortest paths then, for any vertex a and fixed distance D,
the number of vertices at distance exactly D from a is upper bounded by some
function

® Edge-coverable : g(k) = O(3").
® Vertex-coverable : g(k) = O(k - 3).

Corollary 1

G is of treewidth at most
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Treewidth

® Tree decomposition :

® Each vertex and each edge is in at least on bag
® The bags containing a vertex v induce a connected subtree

® Width of a decomposition : size of the biggest bag —1

® Treewidth : smallest width among all tree decomposition
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function
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D=0 a

D=1 Tree decomposition :

D=2 ® Do a a breadth-first search (BFS)
from a vertex a.
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Combinatorial results

Theorem 1

If G is coverable by k shortest paths then, for any vertex a and fixed distance D,
the number of vertices at distance exactly D from a is upper bounded by some
function

® Edge-coverable : g(k) = O(3%).
® Vertex-coverable : g(k) = O(k - 3%).

Corollary 1

G is of treewidth at most

Tree decomposition :

® Do a a breadth-first search (BFS)
from a vertex a.

® Each bag : two consecutive layers.
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Graphs edge-coverable by k shortest paths



Base paths colouring

Base paths : k shortest paths p1,.. ., uk that cover the graph
To each base path u. we give :

® A colour ¢, 1 <c <k,

® An arbitrary direction.

Heq

Heco

For an edge e of the graph : colours(e) = {i | e € u;}.
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Colouring of a path

Colouring col of P : Ve € E(P), col(e) € colours(e)
Coloured path : (P, col)

Heg
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Colours-signs word

For a coloured path (P, col) :
® divide it in monochromatic subpath of colour c¢;,

® each subpath induce a “+" sign or a “—" sign w.r.t. the direction of ;.

b Her

— 0 — O0—O0— P

Heo

— o —0o—0—0—P
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Good colouring of a path

Well-coloured : the edges using a colour ¢ form a connected subpath of P.

A path well-coloured :

A path not well-coloured :
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Good colouring of a path

Good colouring Lemma
For every pair of vertices a, b, there exists a shortest well-coloured 2-6 path. J
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Good colouring of a path

Good colouring Lemma
For every pair of vertices a, b, there exists a shortest well-coloured a-6 path. J

If a a-b shortest path (P, col) isn't well-coloured :

= Replace P[x,y] by pc[x, y].
The constructed path is still a shortest path (|uc[x, y]| < |P[x,y]|)-

The number of colours-signs words possible on every well-coloured paths is upper
bounded by
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A first bound

Multiple shortest paths of same length may have the same colours-signs word :
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The shortest paths starting at a vertex a, of length D and colours-signs word w all
ends at the same vertex b.
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A first bound

Multiple shortest paths of same length may have the same colours-signs word :

Colours-signs word Lemma

The shortest paths starting at a vertex a, of length D and colours-signs word w all
ends at the same vertex b.

(weak) Theorem 1

For any vertex a and any fixed distance D, the number of vertices at distance
exactly D from a is upper bounded by (number of colours-signs words).
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Proof of the Colours-signs word Lemma

Let b and ¢ be vertices at same distance from a vertex a of G.
Let (P, col), (P’,col’) be a well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

P , b
Pl > . ..C

Y
N

Y
N

9/20



Proof of the Colours-signs word Lemma

Let b and ¢ be vertices at same distance from a vertex a of G.
Let (P, col), (P’,col’) be a well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters £ of the colours-signs word.
Ife=1

P b
Pl

YVY

dist(a, b) = dist(a, c) thus b= c.
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Proof of the Colours-signs word Lemma

Let b and ¢ be vertices at same distance from a vertex a of G.
Let (P, col), (P’,col’) be a well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters £ of the colours-signs word.
Ife>1

P z b
P ‘

Y
N

Y
N
[ ]

Take P the path with the longest subpath of the colour c;.
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Proof of the Colours-signs word Lemma

Let b and ¢ be vertices at same distance from a vertex a of G.
Let (P, col), (P’,col’) be a well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters £ of the colours-signs word.
Ife>1

a x T b

F ~ N < ) - -0
T T T~

P/ = < D ...C

The vertex x’ is in the path p, [a, x], thus in the path P

9/20



Proof of the Colours-signs word Lemma

Let b and ¢ be vertices at same distance from a vertex a of G.
Let (P, col), (P’,col’) be a well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters £ of the colours-signs word.
Ife>1

a X
Py s z < : b
P/ > < 3 ...c

Replace P[x’, x] by pc,[X', x].
P[x’, b] and P’[x’, c] have £ — 1 colours, by the induction hypothesis,
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A better bound?

We shown an the upper bound :

Lower bound : O(2)

O(k*)

ok=1

k-1

Ha

Goal : Single exponential bound.

k=2

k3
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A better bound?
We shown an the upper bound : O(k*)
Lower bound : O(2X)

1 k-1

k=2 k=2
ok=1

k-2

Goal : Single exponential bound.

Observation : two colours-signs word may define the same vertex.

a

P > b
Py

N
Y
o
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A better bound?

We shown an the upper bound :

Lower bound : O(2X)

Iz

O(k*)

k-1

k=2

ok=1
k3
gk=2 :

Goal : Single exponential bound.

Observation : two colours-signs word may define the same vertex.

P4

> b

Py

x
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Branched colouring

Idea : Generalize the previous observation recursively.

Take a set of paths from a to the vertices at distance D from a.

P

P

Ps

¢ w> > € « b1
S, o b2

< —> .- o b3
——> e o ba

Py

The colours red, blue and

does not appear in the dotted subpaths.
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Branched colouring

Idea : Generalize the previous observation recursively.

Take a set of paths from a to the vertices at distance D from a.

a €T

P

P
Ps
Py

The colours red, blue and

......... e b1
S, o b2
....... o b3

——> e o ba

does not appear in the dotted subpaths.
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Branched colouring

Idea : Generalize the previous observation recursively.

Take a set of paths from a to the vertices at distance D from a.

P, a T_—<— by
Py S ettt o b2
P3 ------- ° b3
Pt TSN— > el o b4
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Branched colouring

Idea : Generalize the previous observation recursively.

Take a set of paths from a to the vertices at distance D from a.

a €T

—EP]_ --------- ° bl
+ P et o b2

P3 ....... ° b3
+CPi— TS .« by

The colours red, blue and does not appear in the dotted subpaths.

= Apply recursively this process on each subset of paths independently.
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Branched colouring

Structure of the paths at the end of the recursive process :
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Branched colouring

Structure of the paths at the end of the recursive process :

No : e red
* blue -
e purple
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Graphs vertex-coverable by k shortest paths



Colouring of a path

A colour and a direction given to each base path.

Heo

Hey
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Colouring of a path

A colour and a direction given to each base path.

a ,LLCl
Heo
b My

Colouring col of P : Vv € V(P), col(v) € colours(v)
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Colouring of a path

A colour and a direction given to each base path.

a ,LLCl
Heo
b Hey

Colouring col of P : Vv € V(P), col(v) € colours(v)

Colours-signs words are defined the same way as in the edge case.
Here : w = ((C17 +)7 (C27 +)? ( ) +)7 (C47 _)7 )
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Bound for the vertex case

® Good colouring Lemma works the same way.
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Bound for the vertex case

® Good colouring Lemma works the same way.

Colours-signs word Lemma

The shortest paths starting in a vertex a, of length D and colours-signs word w all
ends in the same vertex b.

—> FALSE in the vertex case

a

\

® Branched colouring can be adapted to
the vertex case, but > O(k) paths
may share the same colours-signs
word.
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Bound for the vertex case

® Good colouring Lemma works the same way.

Colours-signs word Lemma

The shortest paths starting in a vertex a, of length D and colours-signs word w all
ends in the same vertex b.

—> FALSE in the vertex case

a

\

® Branched colouring can be adapted to
the vertex case, but > O(k) paths
may share the same colours-signs
word.

® There is at most
vertices at a given distance of a.
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Algorithmic Consequences



Problems

Isometric Path Cover (IPC)

Input : A graph G and an integer k.
Question : Does there exists a set of k shortest paths of G, such that each vertex

of G belongs to at least one of the shortest paths?
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with terminals

Isometric Path Cover with Terminals (IPC-WT)

Input :A graph G, and k pairs of vertices (s1, t1), ..., (Sk, tk), the terminals.
Question : Does there exists a set of k shortest paths of G, the ith path being an
si-t; shortest path, such that each vertex of G belongs to at least one of the

shortest paths?

15/ 20



Context

What is known ?

® |PC is NP-Complete even on chordal graphs
[Chakraborty, Dailly, Das, Foucaud, Gahlawat, and Ghosh, 2022]

® |[PC is polynomial on block graphs [Pan and Chang, 2005]

® |PC is approximable by a factor log(d) on graphs of diameter d
[Thiessen and Gaertner, 2021]
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Context

What is known ?
® |PC is NP-Complete even on chordal graphs
[Chakraborty, Dailly, Das, Foucaud, Gahlawat, and Ghosh, 2022]
® |[PC is polynomial on block graphs [Pan and Chang, 2005]

® |PC is approximable by a factor log(d) on graphs of diameter d
[Thiessen and Gaertner, 2021]

We have shown that IPC-WT is NP-Complete

Question
Are problems IPC and IPC-WT FPT ? Or at least XP ? J

FPT : running time f(k) - n°®

XP : running time nf(®

16 /20



Algorithmic consequences

Theorem 2
Problem IPC-WT is FPT, with running time O(7 (k) n). J
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Algorithmic consequences

Theorem 2
Problem IPC-WT is FPT, with running time J

® Yes-instances have bounded treewidth by Corollary 1,

® Courcelle’'s theorem to solve this problem on bounded treewidth graphs.

Corollary 2
Problem IPC is XP for parameter k. J

® Brute force : try all possible pairs of k terminals + FPT algorithm
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Courcelle's Theorem

Theorem [Courcelle. 1990]

Every problem expressible in monadic second order logic (MSO- ) can be solved in
f(w) - n time on graphs of treewidth at most w.
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Courcelle’s Theorem

Theorem [Courcelle. 1990]

Every problem expressible in monadic second order logic (MSO- ) can be solved in
f(w) - n time on graphs of treewidth at most w.

Extended MSO> problem :

® MSO, formula ¢(Xu,..., X)) and an linear function g(|X1|,...,|X|)
® Find an assignation of Xi, ..., X; that satisfies p(X1,...,X;) and
maximize/minimize g(|X1|,...,|Xi|)

Theorem [Arnborg, Lagergren, Seese. 1991]

Every problem expressible as an EMSO, problem can be solved in f(w) - n time on
graphs of treewidth at most w.
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IPC-WT is FPT

Corollary 1
Graphs coverable with k shortest paths have treewidth bounded by 2g(k). J
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Graphs coverable with k shortest paths have treewidth bounded by 2g(k). J

FPT algortihm :
1. Compute a tree decomposition by BFS. If width > 2g(k) return false.
2. Find Eu,..., Ex minimizing |E1| + - - - + | E«| and satisfying the MSO, formula :

@(Er,...,E) = 3 Vi,..., Vi, Cover(Vi,..., V) /\ Path(V;,E,si,t)
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IPC-WT is FPT

Corollary 1
Graphs coverable with k shortest paths have treewidth bounded by 2g(k). J

FPT algortihm :
1. Compute a tree decomposition by BFS. If width > 2g(k) return false.
2. Find Eu,..., Ex minimizing |E1| + - - - + | E«| and satisfying the MSO, formula :

@(Er,...,E) = 3 Vi,..., Vi, Cover(Vi,..., V) /\ Path(V;,E,si,t)
1<i<k

3. If Vi, |Ej| = dist(s;, t;) then answer true, else answer false.

= Can be easily generalized to edge covering & edge/vertex partitioning.

19/20



Conclusion



Conclusion

In graphs vertex/edge-coverable by k shortest paths, the number of vertices at
same distance of a source is upper bounded by g(k) = 0*(3).

Implies a O*(3%) upper bound on treewidth.
® Problem IPC-WT is FPT.
® Problem IPC is XP.

Questions
® Polynomial bound on the treewidth/pathwidth ?
® |s IPC (without terminals) FPT ? W-hard ?
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