On graphs coverable with k shortest paths

Maël Dumas¹, Florent Foucaud², Anthony Perez¹, Ioan Todinca¹

¹LIFO, Université d'Orléans, France ²LIMOS, Université Clermont Auvergne, France

- Graphs edge-coverable by k shortest paths
- Graphs vertex-coverable by k shortest paths

2 Algorithmic Consequences

Theorem 1

If G is **coverable by** k **shortest paths** then, for any vertex a and fixed distance D, the number of vertices at distance exactly D from a is upper bounded by some function g(k).

- Edge-coverable : $g(k) = O(3^k)$.
- Vertex-coverable : $g(k) = O(k \cdot 3^k)$.

Corollary 1

G is of treewidth at most $2 \cdot g(k) - 1$.

Treewidth

• Tree decomposition :

- Each vertex and each edge is in at least on bag
- The bags containing a vertex v induce a connected subtree

- Width of a decomposition : size of the biggest bag -1
- Treewidth : smallest width among all tree decomposition

Theorem 1

If G is **coverable by** k **shortest paths** then, for any vertex a and fixed distance D, the number of vertices at distance exactly D from a is upper bounded by some function g(k).

- Edge-coverable : $g(k) = O(3^k)$.
- Vertex-coverable : $g(k) = O(k \cdot 3^k)$.

Corollary 1

G is of treewidth at most $2 \cdot g(k) - 1$.

Tree decomposition :

Theorem 1

If G is **coverable by** k **shortest paths** then, for any vertex a and fixed distance D, the number of vertices at distance exactly D from a is upper bounded by some function g(k).

- Edge-coverable : $g(k) = O(3^k)$.
- Vertex-coverable : $g(k) = O(k \cdot 3^k)$.

Corollary 1

G is of treewidth at most $2 \cdot g(k) - 1$.

Tree decomposition :

• Do a a breadth-first search (BFS) from a vertex *a*.

Theorem 1

If G is **coverable by** k **shortest paths** then, for any vertex a and fixed distance D, the number of vertices at distance exactly D from a is upper bounded by some function g(k).

- Edge-coverable : $g(k) = O(3^k)$.
- Vertex-coverable : $g(k) = O(k \cdot 3^k)$.

Corollary 1

G is of treewidth at most $2 \cdot g(k) - 1$.

Tree decomposition :

- Do a a breadth-first search (BFS) from a vertex *a*.
- Each bag : two consecutive layers.

Base paths colouring

Base paths : *k* shortest paths μ_1, \ldots, μ_k that cover the graph To each base path μ_c we give :

- A colour c, $1 \le c \le k$,
- An arbitrary direction.

For an edge e of the graph : colours $(e) = \{i \mid e \in \mu_i\}$.

Colouring of a path

Colouring col of $P : \forall e \in E(P)$, $col(e) \in colours(e)$ Coloured path : (P, col)

Colours-signs word

For a coloured path (P, col) :

- divide it in monochromatic subpath of colour c_i,
- each subpath induce a "+" sign or a "-" sign w.r.t. the direction of μ_{c_i} .

Well-coloured : the edges using a colour *c* form a **connected subpath** of *P*. A path well-coloured :

A path not well-coloured :

Good colouring Lemma

For every pair of vertices *a*, *b*, there exists a **shortest well-coloured** *a*-*b* path.

Good colouring Lemma

For every pair of vertices *a*, *b*, there exists a **shortest well-coloured** *a*-*b* path.

If a a-b shortest path (P, col) isn't well-coloured :

Good colouring Lemma

For every pair of vertices *a*, *b*, there exists a **shortest well-coloured** *a*-*b* path.

If a a-b shortest path (P, col) isn't well-coloured :

 \Rightarrow Replace P[x, y] by $\mu_c[x, y]$.

Good colouring Lemma

For every pair of vertices a, b, there exists a shortest well-coloured a-b path.

If a a-b shortest path (P, col) isn't well-coloured :

⇒ Replace P[x, y] by $\mu_c[x, y]$. The constructed path is still a shortest path $(|\mu_c[x, y]| \le |P[x, y]|)$.

Good colouring Lemma

For every pair of vertices a, b, there exists a shortest well-coloured a-b path.

If a a-b shortest path (P, col) isn't well-coloured :

⇒ Replace P[x, y] by $\mu_c[x, y]$. The constructed path is still a shortest path $(|\mu_c[x, y]| \le |P[x, y]|)$.

The number of colours-signs words possible on every well-coloured paths is upper bounded by $\sum_{l=1}^{k} 2^{l} \frac{k!}{(k-l)!} = O(k^{k}).$

A first bound

Multiple shortest paths of same length may have the same colours-signs word :

A first bound

Multiple shortest paths of same length may have the same colours-signs word :

Colours-signs word Lemma

The shortest paths starting at a vertex *a*, of length *D* and colours-signs word ω all ends at the same vertex *b*.

A first bound

Multiple shortest paths of same length may have the same colours-signs word :

Colours-signs word Lemma

The shortest paths starting at a vertex *a*, of length *D* and colours-signs word ω all ends at the same vertex *b*.

(weak) Theorem 1

For any vertex *a* and any fixed distance *D*, the number of vertices at distance exactly *D* from *a* is upper bounded by $O(k^k)$ (number of colours-signs words).

Let *b* and *c* be vertices at same distance from a vertex *a* of *G*. Let (P, col), (P', col') be a well-coloured shortest *a*-*b* and *a*-*c* paths. **Claim** : If they have the same colours-signs word, then b = c.

Let *b* and *c* be vertices at same distance from a vertex *a* of *G*. Let (P, col), (P', col') be a well-coloured shortest *a*-*b* and *a*-*c* paths. **Claim :** If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs word. If $\ell=1$

dist(a, b) = dist(a, c) thus b = c.

Let *b* and *c* be vertices at same distance from a vertex *a* of *G*. Let (P, col), (P', col') be a well-coloured shortest *a*-*b* and *a*-*c* paths. **Claim** : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs word. If $\ell>1$

Take *P* the path with the longest subpath of the colour c_1 .

Let *b* and *c* be vertices at same distance from a vertex *a* of *G*. Let (P, col), (P', col') be a well-coloured shortest *a*-*b* and *a*-*c* paths. **Claim** : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs word. If $\ell>1$

The vertex x' is in the path $\mu_{c1}[a, x]$, thus in the path P

Let *b* and *c* be vertices at same distance from a vertex *a* of *G*. Let (P, col), (P', col') be a well-coloured shortest *a*-*b* and *a*-*c* paths. **Claim** : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs word. If $\ell>1$

Replace P[x', x] by $\mu_{c_2}[x', x]$. P[x', b] and P'[x', c] have $\ell - 1$ colours, by the induction hypothesis, b = c.

A better bound?

We shown an the upper bound : $O(k^k)$

Lower bound : $O(2^k)$

Goal : Single exponential bound.

A better bound?

We shown an the upper bound : $O(k^k)$

Lower bound : $O(2^k)$

Goal : Single exponential bound.

Observation : two colours-signs word may define the same vertex.

A better bound?

We shown an the upper bound : $O(k^k)$

Lower bound : $O(2^k)$

Goal : Single exponential bound.

Observation : two colours-signs word may define the same vertex.

Idea : Generalize the previous observation recursively. Take a set of paths from a to the vertices at distance D from a.

The colours red, blue and green does not appear in the dotted subpaths.

Idea : Generalize the previous observation recursively. Take a set of paths from a to the vertices at distance D from a.

The colours red, blue and green does not appear in the dotted subpaths.

Idea : Generalize the previous observation recursively. Take a set of paths from a to the vertices at distance D from a.

The colours red, blue and green does not appear in the dotted subpaths.

Idea : Generalize the previous observation recursively. Take a set of paths from a to the vertices at distance D from a.

The colours red, blue and green does not appear in the dotted subpaths.
Idea : Generalize the previous observation recursively. Take a set of paths from a to the vertices at distance D from a.

The colours red, blue and green does not appear in the dotted subpaths.

 \Rightarrow Apply recursively this process on each subset of paths independently.

Structure of the paths at the end of the recursive process :

• k colours, 2 signs $\Rightarrow O(4^k)$ leaves $(O(3^k)$ with a more precise analysis)

- k colours, 2 signs $\Rightarrow O(4^k)$ leaves $(O(3^k)$ with a more precise analysis)
- bijection between leaves and vertices at distance D

- k colours, 2 signs $\Rightarrow O(4^k)$ leaves $(O(3^k)$ with a more precise analysis)
- bijection between leaves and vertices at distance D
- Theorem 1 : $O(3^k)$ vertices at a given distance of an arbitrary vertex

- k colours, 2 signs $\Rightarrow O(4^k)$ leaves $(O(3^k)$ with a more precise analysis)
- bijection between leaves and vertices at distance D
- Theorem 1 : $O(3^k)$ vertices at a given distance of an arbitrary vertex

Graphs vertex-coverable by k shortest paths

Colouring of a path

A colour and a direction given to each base path.

Colouring of a path

A colour and a direction given to each base path.

Colouring col of $P : \forall v \in V(P)$, col $(v) \in colours(v)$

Colouring of a path

A colour and a direction given to each base path.

Colouring col of $P : \forall v \in V(P)$, col(v) \in colours(v)

Colours-signs words are defined the same way as in the edge case. Here : $\omega = ((c_1, +), (c_2, +), (c_3, +), (c_4, -),)$

• Good colouring Lemma works the same way.

• Good colouring Lemma works the same way.

Colours-signs word Lemma

The shortest paths starting in a vertex *a*, of length *D* and colours-signs word ω all ends in the same vertex *b*.

• Good colouring Lemma works the same way.

Colours-signs word Lemma

The shortest paths starting in a vertex *a*, of length *D* and colours-signs word ω all ends in the same vertex *b*.

• Good colouring Lemma works the same way.

Colours-signs word Lemma

The shortest paths starting in a vertex *a*, of length *D* and colours-signs word ω all ends in the same vertex *b*.

 Branched colouring can be adapted to the vertex case, but > O(k) paths may share the same colours-signs word.

Good colouring Lemma works the same way.

Colours-signs word Lemma

The shortest paths starting in a vertex *a*, of length *D* and colours-signs word ω all ends in the same vertex *b*.

- Branched colouring can be adapted to the vertex case, but > O(k) paths may share the same colours-signs word.
- There is at most $g(k) = O(k \cdot 3^k)$ vertices at a given distance of *a*.

Algorithmic Consequences

Problems

Isometric Path Cover (IPC)

Input : A graph G and an integer k. **Question :** Does there exists a set of k shortest paths of G, such that each vertex of G belongs to at least one of the shortest paths?

Problems

Isometric Path Cover (IPC)

Input : A graph G and an integer k. **Question :** Does there exists a set of k shortest paths of G, such that each vertex of G belongs to at least one of the shortest paths?

with terminals

Isometric Path Cover with Terminals (IPC-WT)

Input :A graph *G*, and *k* pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$, the **terminals**. **Question** : Does there exists a set of *k* shortest paths of *G*, the *i*th path being an s_i - t_i shortest path, such that each vertex of *G* belongs to at least one of the shortest paths ?

Context

What is known?

• IPC is NP-Complete even on chordal graphs

[Chakraborty, Dailly, Das, Foucaud, Gahlawat, and Ghosh, 2022]

IPC is polynomial on block graphs

[Pan and Chang, 2005]

• IPC is approximable by a factor log(d) on graphs of diameter d

[Thiessen and Gaertner, 2021]

Context

What is known?

• IPC is NP-Complete even on chordal graphs

[Chakraborty, Dailly, Das, Foucaud, Gahlawat, and Ghosh, 2022]

- IPC is polynomial on block graphs
- IPC is approximable by a factor log(d) on graphs of diameter d

[Thiessen and Gaertner, 2021]

[Pan and Chang, 2005]

We have shown that IPC-WT is NP-Complete

Context

What is known?

• IPC is NP-Complete even on chordal graphs

[Chakraborty, Dailly, Das, Foucaud, Gahlawat, and Ghosh, 2022]

- IPC is polynomial on block graphs
- IPC is approximable by a factor log(d) on graphs of diameter d

[Thiessen and Gaertner, 2021]

[Pan and Chang, 2005]

We have shown that IPC-WT is NP-Complete

Question

Are problems IPC and IPC-WT FPT? Or at least XP?

FPT : running time $f(k) \cdot n^{O(1)}$ **XP** : running time $n^{f(k)}$ Theorem 2

Problem IPC-WT is **FPT**, with running time $O(f(k) \cdot n)$.

Algorithmic consequences

Theorem 2

Problem IPC-WT is **FPT**, with running time $O(f(k) \cdot n)$.

- Yes-instances have bounded treewidth by Corollary 1,
- Courcelle's theorem to solve this problem on bounded treewidth graphs.

Algorithmic consequences

Theorem 2

Problem IPC-WT is **FPT**, with running time $O(f(k) \cdot n)$.

- Yes-instances have bounded treewidth by Corollary 1,
- Courcelle's theorem to solve this problem on bounded treewidth graphs.

Corollary 2

Problem IPC is **XP** for parameter k.

• Brute force : try all possible pairs of k terminals + FPT algorithm

Courcelle's Theorem

Theorem [Courcelle. 1990]

Every problem expressible in **monadic second order logic** (MSO₂) can be solved in $f(w) \cdot n$ time on graphs of treewidth at most w.

Courcelle's Theorem

Theorem [Courcelle. 1990]

Every problem expressible in **monadic second order logic** (MSO₂) can be solved in $f(w) \cdot n$ time on graphs of treewidth at most w.

Extended MSO_2 problem :

- MSO₂ formula $\varphi(X_1, \ldots, X_l)$ and an linear function $g(|X_1|, \ldots, |X_l|)$
- Find an assignation of X_1, \ldots, X_l that satisfies $\varphi(X_1, \ldots, X_l)$ and maximize/minimize $g(|X_1|, \ldots, |X_l|)$

Theorem [Arnborg, Lagergren, Seese. 1991]

Every problem expressible as an EMSO₂ problem can be solved in $f(w) \cdot n$ time on graphs of treewidth at most w.

Corollary 1

Graphs coverable with k shortest paths have treewidth bounded by 2g(k).

Corollary 1

Graphs coverable with k shortest paths have treewidth bounded by 2g(k).

FPT algortihm :

1. Compute a tree decomposition by BFS. If width > 2g(k) return false.

Corollary 1

Graphs coverable with k shortest paths have treewidth bounded by 2g(k).

FPT algortihm :

- 1. Compute a tree decomposition by BFS. If width > 2g(k) return false.
- 2. Find E_1, \ldots, E_k minimizing $|E_1| + \cdots + |E_k|$ and satisfying the MSO₂ formula :

$$\varphi(E_1,\ldots,E_k) = \exists V_1,\ldots,V_k, \operatorname{Cover}(V_1,\ldots,V_k) \bigwedge_{1 \le i \le k} \operatorname{Path}(V_i,E_i,s_i,t_i)$$

Corollary 1

Graphs coverable with k shortest paths have treewidth bounded by 2g(k).

FPT algortihm :

- 1. Compute a tree decomposition by BFS. If width > 2g(k) return false.
- 2. Find E_1, \ldots, E_k minimizing $|E_1| + \cdots + |E_k|$ and satisfying the MSO₂ formula :

$$\varphi(E_1,\ldots,E_k) = \exists V_1,\ldots,V_k, \operatorname{Cover}(V_1,\ldots,V_k) \bigwedge_{1 \le i \le k} \operatorname{Path}(V_i,E_i,s_i,t_i)$$

3. If $\forall i, |E_i| = dist(s_i, t_i)$ then answer true, else answer false.

Corollary 1

Graphs coverable with k shortest paths have treewidth bounded by 2g(k).

FPT algortihm :

- 1. Compute a tree decomposition by BFS. If width > 2g(k) return false.
- 2. Find E_1, \ldots, E_k minimizing $|E_1| + \cdots + |E_k|$ and satisfying the MSO₂ formula :

$$\varphi(E_1,\ldots,E_k) = \exists V_1,\ldots,V_k, \operatorname{Cover}(V_1,\ldots,V_k) \bigwedge_{1 \le i \le k} \operatorname{Path}(V_i,E_i,s_i,t_i)$$

3. If $\forall i, |E_i| = dist(s_i, t_i)$ then answer true, else answer false.

 \Rightarrow Can be easily generalized to edge covering & edge/vertex partitioning.

Conclusion

Conclusion

- In graphs vertex/edge-coverable by k shortest paths, the number of vertices at same distance of a source is upper bounded by g(k) = O*(3^k).
- Implies a $O^*(3^k)$ upper bound on treewidth.
- Problem IPC-WT is FPT.
- Problem IPC is XP.

Questions

- Polynomial bound on the treewidth/pathwidth?
- Is IPC (without terminals) FPT ? W-hard ?