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Combinatorial results

Theorem 1
If G is coverable by k shortest paths then, for any vertex a and fixed distance D,
the number of vertices at distance exactly D from a is upper bounded by some
function g(k).

• Edge-coverable : g(k) = O(3k).
• Vertex-coverable : g(k) = O(k · 3k).

Corollary 1
G is of treewidth at most 2 · g(k)− 1.
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Treewidth

• Tree decomposition :
• Each vertex and each edge is in at least on bag
• The bags containing a vertex v induce a connected subtree
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• Width of a decomposition : size of the biggest bag −1
• Treewidth : smallest width among all tree decomposition
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Tree decomposition :

• Do a a breadth-first search (BFS)
from a vertex a.

• Each bag : two consecutive layers.
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Graphs edge-coverable by k shortest paths



Base paths colouring

Base paths : k shortest paths µ1, . . . , µk that cover the graph
To each base path µc we give :

• A colour c, 1 ≤ c ≤ k,
• An arbitrary direction.

µc1

µc2

µc3

µc6µc5µc4

For an edge e of the graph : colours(e) = {i | e ∈ µi}.
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Colouring of a path

Colouring col of P : ∀e ∈ E(P), col(e) ∈ colours(e)
Coloured path : (P, col) Àµ) .

• Une couleur c, 1 ≤ c ≤ k,

µc1

µc2

µc3

µc6µc5µc4

a

b

Each edge of the graph receives a set of colours colours(e) ⊆ {1, . . . , k}
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Colours-signs word

For a coloured path (P, col) :
• divide it in monochromatic subpath of colour ci ,
• each subpath induce a “+” sign or a “−” sign w.r.t. the direction of µci .

µc1

µc2

µc3

µc6µc5µc4

a

b

ω = ((c3,+), (c5,−), (c1,+))
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Good colouring of a path

Well-coloured : the edges using a colour c form a connected subpath of P.

A path well-coloured :

A path not well-coloured :
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Good colouring of a path

Good colouring Lemma
For every pair of vertices a, b, there exists a shortest well-coloured a-b path.

If a a-b shortest path (P, col) isn’t well-coloured :

µc

a bx y

|µc[x, y]| ≤ |P [x, y]|

⇒ Replace P[x , y ] by µc [x , y ].
The constructed path is still a shortest path (|µc [x , y ]| ≤ |P[x , y ]|).

The number of colours-signs words possible on every well-coloured paths is upper
bounded by

∑k
l=1 2l k!

(k−l)!
= O(kk).
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A first bound

Multiple shortest paths of same length may have the same colours-signs word :

a

Colours-signs word Lemma
The shortest paths starting at a vertex a, of length D and colours-signs word ω all
ends at the same vertex b.

(weak) Theorem 1

For any vertex a and any fixed distance D, the number of vertices at distance
exactly D from a is upper bounded by O(kk) (number of colours-signs words).
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Proof of the Colours-signs word Lemma

Let b and c be vertices at same distance from a vertex a of G .
Let (P, col), (P ′, col′) be a well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs word.
If ℓ = 1 >

P
P ′

a b

c

dist(a, b) = dist(a, c) thus b = c.
regardez ping pong the animation)
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Proof by induction on the number of letters ℓ of the colours-signs word.
If ℓ > 1

P
P ′

a x

x′
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c

Take P the path with the longest subpath of the colour c1.
regardez ping pong the animation)
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Proof of the Colours-signs word Lemma

Let b and c be vertices at same distance from a vertex a of G .
Let (P, col), (P ′, col′) be a well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs word.
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P
P ′

a x′
x b

c

The vertex x ′ is in the path µc1 [a, x ], thus in the path P
regardez ping pong the animation)
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Proof of the Colours-signs word Lemma

Let b and c be vertices at same distance from a vertex a of G .
Let (P, col), (P ′, col′) be a well-coloured shortest a-b and a-c paths.

Claim : If they have the same colours-signs word, then b = c.

Proof by induction on the number of letters ℓ of the colours-signs word.
If ℓ > 1

P
P ′

a x′
x b

c

Replace P[x ′, x ] by µc2 [x
′, x ].

P[x ′, b] and P ′[x ′, c] have ℓ− 1 colours, by the induction hypothesis, b = c.
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A better bound ?
We shown an the upper bound : O(kk)

Lower bound : O(2k)
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Goal : Single exponential bound.

Observation : two colours-signs word may define the same vertex.
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x
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Branched colouring

Idea : Generalize the previous observation recursively.

Take a set of paths from a to the vertices at distance D from a.

P3

a

P2

P1 b1

b2

b3

P4 b4

x

The colours red, blue and green does not appear in the dotted subpaths.

⇒ Apply recursively this process on each subset of paths independently.
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Branched colouring

Structure of the paths at the end of the recursive process :

+

+

+

+ −

−

−

− + −

− ++
−

+ +
−

+ + −

No :
blue -
red

purple

• k colours, 2 signs ⇒ O(4k) leaves (O(3k) with a more precise analysis)
• bijection between leaves and vertices at distance D

• Theorem 1 : O(3k) vertices at a given distance of an arbitrary vertex
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Graphs vertex-coverable by k shortest paths



Colouring of a path

A colour and a direction given to each base path.

µc1

µc2

µc3

µc4

Colouring col of P : ∀v ∈ V (P), col(v) ∈ colours(v)

Colours-signs words are defined the same way as in the edge case.
Here : ω = ((c1,+), (c2,+), (c3,+), (c4,−), )
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Bound for the vertex case

• Good colouring Lemma works the same way.

Colours-signs word Lemma
The shortest paths starting in a vertex a, of length D and colours-signs word ω all
ends in the same vertex b.

⇒ FALSE in the vertex case

a

b c

P

P ′

+

+

+

+ −

−

−

− + −

− ++
−

+ +
−

+ + −

• Branched colouring can be adapted to
the vertex case, but ��HH1 O(k) paths
may share the same colours-signs
word.

• There is at most g(k) = O(k · 3k)
vertices at a given distance of a.
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Algorithmic Consequences



Problems

Isometric Path Cover (IPC) g

Input : A graph G and an integer k.
Question : Does there exists a set of k shortest paths of G , such that each vertex
of G belongs to at least one of the shortest paths ?

shortest paths ?
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with terminals

Isometric Path Cover with Terminals (IPC-WT)

Input :A graph G , and k pairs of vertices (s1, t1), . . . , (sk , tk), the terminals.
Question : Does there exists a set of k shortest paths of G , the ith path being an
si -ti shortest path, such that each vertex of G belongs to at least one of the
shortest paths ?
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Context

What is known ?
• IPC is NP-Complete even on chordal graphs

[Chakraborty, Dailly, Das, Foucaud, Gahlawat, and Ghosh, 2022]

• IPC is polynomial on block graphs [Pan and Chang, 2005]

• IPC is approximable by a factor log(d) on graphs of diameter d
[Thiessen and Gaertner, 2021]

We have shown that IPC-WT is NP-Complete

Question
Are problems IPC and IPC-WT FPT ? Or at least XP ?

FPT : running time f (k) · nO(1)

XP : running time nf (k)
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Algorithmic consequences

Theorem 2
Problem IPC-WT is FPT, with running time O(f (k) · n).

• Yes-instances have bounded treewidth by Corollary 1,
• Courcelle’s theorem to solve this problem on bounded treewidth graphs.

Corollary 2
Problem IPC is XP for parameter k.

• Brute force : try all possible pairs of k terminals + FPT algorithm
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Courcelle’s Theorem

Theorem [Courcelle. 1990]

Every problem expressible in monadic second order logic (MSO2 ) can be solved in
f (w) · n time on graphs of treewidth at most w .

Extended MSO2 problem :
• MSO2 formula φ(X1, . . . ,Xl) and an linear function g(|X1|, . . . , |Xl |)
• Find an assignation of X1, . . . ,Xl that satisfies φ(X1, . . . ,Xl) and

maximize/minimize g(|X1|, . . . , |Xl |)

Theorem [Arnborg, Lagergren, Seese. 1991]

Every problem expressible as an EMSO2 problem can be solved in f (w) · n time on
graphs of treewidth at most w .
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IPC-WT is FPT

Corollary 1
Graphs coverable with k shortest paths have treewidth bounded by 2g(k).

FPT algortihm :
1. Compute a tree decomposition by BFS. If width > 2g(k) return false.

2. Find E1, . . . ,Ek minimizing |E1|+ · · ·+ |Ek | and satisfying the MSO2 formula :

φ(E1, . . . ,Ek) = ∃ V1, . . . ,Vk ,Cover(V1, . . . ,Vk)
∧

1≤i≤k

Path(Vi ,Ei , si , ti )

3. If ∀i , |Ei | = dist(si , ti ) then answer true, else answer false.

⇒ Can be easily generalized to edge covering & edge/vertex partitioning.
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Conclusion



Conclusion

• In graphs vertex/edge-coverable by k shortest paths, the number of vertices at
same distance of a source is upper bounded by g(k) = O∗(3k).

• Implies a O∗(3k) upper bound on treewidth.
• Problem IPC-WT is FPT.
• Problem IPC is XP.

Questions
• Polynomial bound on the treewidth/pathwidth ?
• Is IPC (without terminals) FPT ? W-hard ?
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