
An O(n2) algorithm for the minimal interval
completion problem

Christophe Crespelle1 and Ioan Todinca2

1 LIP6, Université Paris 6
christophe.crespelle@lip6.fr

2 LIFO, Université d’Orleans, BP 6759, F-45067 Orleans Cedex 2, France
ioan.todinca@univ-orleans.fr

Abstract. The minimal interval completion problem consists in adding edges to
an arbitrary graph so that the resulting graph is an interval graph; the objective is
to add an inclusion minimal set of edges, which means that no proper subset of
the added edges can result in an interval graph when added to the original graph.
We give an O(n2) time algorithm to obtain a minimal interval completion of an
arbitrary graph.

1 Introduction

Arbitrary graphs are complex combinatorial objects, thus it is very common to tempt
to ”simplify” them using few transformations. Classically, we want to know if an in-
put graph can be modified into a graph with a special property (e. g. into a planar or
chordal graph) using only a few operations like edge and/or vertex additions or dele-
tions. Several important graph parameters like treewidth, pathwidth or bandwidth can
be defined in terms of graph completion problems. In graph completions we are only
allowed to add edges to the input graph G = (V,E), in order to obtain a new graph
H = (V,E ∪ F ) with the required property. For example the treewidth problem con-
sists in computing a chordal completion H – also known as triangulation – of the input
graph G, such that the maximum cliquesize of H is as small as possible. Recall that a
graph is chordal if it has no induced cycle with four or more vertices, thus a chordal
completion of G = (V,E) is any chordal supergraph H = (V,E ∪ F ). Similarly, the
pathwidth (resp. bandwidth) problem consists in computing an interval (resp. proper
interval) completion H of the input graph G, and again the goal is to minimize the
largest cliquesize of H . A graph is an interval graph if its vertices can be put into a one-
to-one correspondence with a family of intervals of the real line such that two vertices
are adjacent in the graph if and only if the corresponding intervals intersect.

Computing any of the parameters cited above, as well as many other parameters
related to graph completions (minimum fill-in, profile...) is NP-hard. Therefore re-
searchers turned their attention toward a heuristic approach, which consists in com-
puting minimal completions of the input graph. We say that H = (V,E ∪ F ) is a
minimal triangulation (minimal interval completion) if no proper subgraph of H is a
triangulation (interval completion) of G.



Related work. The minimal triangulation problem has been intensively studied and
the algorithms are used as heuristics for treewidth and minimum fill-in (see [5] for a
survey). The first algorithm solving this problem in polynomial time is due to Rose,
Tarjan and Leuker [14], with anO(nm) time complexity. As usual, n denotes the num-
ber of vertices and m denotes the number of edges of the input. Several authors gave
different approaches with the same running time, but it took almost 30 years to im-
prove the O(n3) worst-case complexity. Using the algorithm of Heggernes, Telle and
Villanger [9], one can compute a minimal triangulation in O(nα log n) time, where
O(nα) is the time required for the multiplication of two n× n matrices.

The first polynomial time algorithm for the minimal interval completion problem
was given by Ohtsuki et al. [12], running in O(nm′) time; here m′ denotes the number
of edges of the resulting minimal interval completion. A similar approach has been
rediscovered in [8]. Using a completely different technique, Suchan and Todinca gave
an O(nm) algorithm in [15]. Note that several recent articles consider different types
of minimal completion problems, e.g. into split graphs [6], comparability graphs [7] or
proper interval graphs [13].

Our result. The aim of this paper is to show the following theorem.

Theorem 1. There is an O(n2) algorithm computing a minimal interval completion of
an arbitrary graph.

Note that our approach is faster than the previous O(nm′) algorithm of [12] and
the O(nm) algorithm of [15]. It is also faster than the best algorithms for the minimal
triangulation problem – which is somehow natural if we consider that interval graphs
are ”simpler” than chordal graphs. Like in [12], our algorithm is incremental in the
sense that we add the vertices ofG one by one, and each time a new vertex vi+1 arrives,
the new minimal interval completion is computed from the one obtained at step i by
only adding edges incident of vi+1. The second common feature is that we use PQ-
trees in order to capture all interval representations of the interval completion computed
so far. But our procedure for choosing the set F of fill edges is completely different
from [12], and we rely on the results of [2] for efficiently updating, at each step, the
PQ-tree of the new completion.

After giving, in next sections, some basic definitions and preliminary results, we
present in Section 4 our main combinatorial tool for the minimal interval completion,
while the algorithmic details and data-structures are described in Section 5.

2 Preliminaries

We consider simple and connected input graphs. A graph is denoted by G = (V,E),
with n = |V |, andm = |E|. For a set U ⊆ V ,G[U ] denotes the subgraph ofG induced
by the vertices in U . Set U of vertices is called a clique if G[U ] is complete. For a
vertex v ∈ V or a subset U ⊆ V , we will informally use G − v and G − U to denote
the graphs G[V \ {v}] and G[V \U ], respectively. A path is a sequence [v1, v2, . . . , vp]
of vertices such that vi is adjacent to vi+1, for all 1 ≤ i < p − 1. A cycle is a path
such that the first and last vertices are adjacent. The neighborhood of a vertex v in G

2



is NG(v) = {u | uv ∈ E}. Similarly, for a set U ⊆ V , NG(U) =
⋃
v∈U NG(v) \ U .

When graph G is clear from the context, we will omit subscript G.
A graphH is an interval graph if continuous intervals can be assigned to each vertex

ofH such that two vertices are neighbors if and only if their intervals intersect. A graph
H = (V,E∪F ) is called an interval completion of an arbitrary graph G = (V,E) if H
is an interval graph. If no proper subgraph of H is an interval completion of G, we say
that H is a minimal interval completion of G. An edge that is added to the input graph
G is called a fill edge, and the process of adding edges between a fixed vertex x and a
set U of vertices is called filling U .

Theorem 2 ([3]). A graph G is interval if and only if there is a path CPG whose vertex
set is the set of all maximal cliques of G, such that the subgraph of CPG induced by the
maximal cliques of G containing vertex v forms a connected subpath, for each vertex v
of G. Such a path will be called a clique path of G.

Let the maximal cliques of an interval graph G be labeled 1, 2, ..., k, according
to the order in which they appear in a clique path of G. Then, as a consequence of
Theorem 2, an interval representation of G can be obtained by assigning to each vertex
v the closed interval that consists of the labels of the maximal cliques containing v. In
this way, every clique path of G is equivalent to an interval representation of G.

A vertex set S ⊆ V is a minimal separator of G if there exist two vertices u and
v such that S separates them (i.e. u and v are in different connected components of
G− S) and S is inclusion-minimal among the sets of vertices separating u and v.

Lemma 1 (see e.g. [4]). Let G be an interval graph and let CPG be any clique path of
G. A set of vertices S is a minimal separator of G if and only if S is the intersection
of two maximal cliques of G that are neighbors in CPG. In particular, all minimal
separators of G are cliques.

It is shown in [1] that all clique paths of an interval graph G can be represented by
a structure called PQ-tree. The PQ-tree of G, denoted T in the rest of the paper, is a
rooted tree whose leaves are the maximal cliques of G. Its internal nodes are labeled
P (degenerate nodes) or Q (prime nodes). Any Q-node q is assigned two linear order-
ings, denoted σq and σ̄q , on the set of its children, σ̄q being the reverse order of σq . A
solidification of a PQ-tree T , is an assignation, to each node u of T , of a valid linear
ordering on its children, that is: any linear ordering if u is a P -node, σu or σ̄u if u is a
Q-node. Choosing a solidification of the PQ-tree, we obtain an order on the leaves by
reading them from left to right. The main property of the PQ-tree of G is that the set
of orders obtained this way is precisely the set of clique paths of G.

In this document, the subtree of T rooted at node u will be denoted by Tu. The set
of children of u will be denoted by C(u) and its parent by parent(u).

3 The vertex incremental approach

Let us observe that a minimal interval completion can be obtained incrementally. This
result is due to [12].

3



Lemma 2 ([12]). Let H be a minimal interval completion of an arbitrary graph G. Let
G′ be a graph obtained from G by adding a new vertex x, with neighborhood NG′(x).
There is a minimal interval completion H ′ of G′ such that H ′ − x = H .

Hence, for computing a minimal interval completion ofG, we introduce the vertices
ofG one by one in the order x1, x2, . . . , xn. Given a minimal interval completionHi of
Gi = G[{x1, . . . , xi}], we compute an interval completion Hi+1 of Gi+1 by adding to
Hi vertex x together with the edges between x and NGi+1(x), plus a well chosen set of
additional edges incident to xi+1. Thus, for proving Theorem 1, it is sufficient to solve
the following problem in O(n) time.

The new problem. From now we consider as input an interval graph G = (V,E). A
new vertex x is added toG, together with a set of edges incident to x. For the rest of this
document, let G′ denote the graph G+ x, that is, the graph G augmented with vertex x
and the edges defining its neighborhood. The neighborhood of x inG′ is simply denoted
N(x). We want to compute a minimal interval completion H of G′, obtained by adding
edges incident to x only. (Actually, the graph G will be given together with its PQ-tree,
and we will also compute the PQ-tree of H .)

Take any clique path CPH ofH . By property of clique paths, the cliques containing
x form a subpath Px of CPH . Now, let us get back to G. Delete x from every bag
(clique) in CPH , and possibly remove the bags that do not correspond to maximal
cliques of G. This yields a clique path CPG of G, which is said to be obtained by
pruning vertex x from CPH .

Clearly the maximal cliques that come from Px still form a subpath of CPG. Our
aim is to do the converse: to find a clique path CPG of G and a subpath of CPG in
which, by adding vertex x to every bag and possibly transforming the bordering sepa-
rators into new bags of H (with x contained), we obtain a minimal interval completion
of G′.

Definition 1. A clique path CPG is called nice if there exists a minimal interval com-
pletion H such that CPG is obtained by pruning x from some clique path of H . In this
case, we say that H respects CPG.

For obtaining a nice clique path we have to distinguish between two cases. For lack
of space, we do not detail the particular case where the neighborhood of x in G′ is a
clique, which is treated in Appendix A. From now on, we rather concentrate on the
more general case where the neighborhood of x is not a clique.

4 When the neighborhood of x is not a clique

This is the main and most difficult case of our algorithm, in which we have to compute
a nice clique path. We show later how to do so using the PQ-tree. But for now, let us
first note that, as stated in [8], any clique path of G naturally gives a minimal interval
completion respecting it (Lemma 3 below). We will need the following definition.

Definition 2. Fix a clique path CPG of G. In the case where N(x) is not a clique, we
denote by KL (resp. KR) the leftmost (resp. rightmost) clique of CPG such that x has
a neighbor in KL \KL+1 (resp. KR \KR−1), in graph G′.

4



Lemma 3 ([8]). For any clique path CPG of G, there is a unique interval completion
H respecting CPG which is inclusion-minimal among such completions. Moreover the
neighborhood of x in H is formed exactly by N(x) augmented with the vertices of the
cliques strictly between KL and KR in CPG, if there are some, or augmented with the
vertices of the minimal separator KL ∩KR otherwise.

Note that if CPG is a nice clique path, then H is necessarily a minimal interval
completion of G′, but it may not be otherwise. Also note that any clique path obtained
from a nice one CPG by rearranging the maximal cliques of G in an order such that
the cliques of the interval JKL,KRK of CPG still form an interval whose endpoints are
KL and KR (not necessarily in this order) is a nice clique path.

Before proving our main theorem (Theorem 3) which gives a way to obtain a nice
clique path thanks to the PQ-tree, we need to introduce some definitions and notations.

For any node u of the PQ-tree of G, we denote by B[u] the set of vertices of G
contained in the cliques of the subtree rooted in u. We call this set a block. The border of
B[u] is the set of vertices of the block having neighbors outside the block. The interior
of B[u] is formed by the vertices of the block that are not in the border. We say that
B[u] is hit if, in the graph G′, x has a neighbor in the interior of the block. Otherwise,
the block is called clean. If all vertices in the interior of the block are neighbors of x
in G′ then the block is called full. By extension, we also say that a node of the PQ-
tree is hit, full or clean according to the state of its corresponding block. We point out
that for all internal nodes u, the block B[u] has a non-empty interior (see Remark 1 in
Appendix B).

In the sequel, we denote by r the lowest node of the PQ-tree such thatN(x) ⊆ B[r].
Since N(x) is not a clique, node r is uniquely defined and is such that the interior of
B[r] contains at least two non-adjacent vertices both linked to x.

Notation 1 Consider a node u of the PQ-tree and a valid order σ of its children. We
denote by Lσ(u):

– either the leftmost child v of u such that the corresponding block B[v] contains a
neighbor of x in G′, and this neighbor is not in B[v′], where v′ is the right-hand
brother of v in σ,

– or the last element of σ if there is no such vertex v.

Rσ(u) is defined symmetrically.

By definition of node r, and since N(x) is not a clique, for all valid orders σ of the
children of r, Lσ(r) <σ Rσ(r).

Definition 3. LetG be an interval graph and x be a vertex to be inserted inG. Let π be
a solidification of T . Denote by π(u) the ordering defined by this solidification on the
children of node u. The left branch LB(π) of π is the set of nodes defined recursively
as follows :

– Lπ(r)(r) is in the left branch.
– For any u in the left branch, Lπ(u)(u) is also in the left branch.

The right branch RB(π) of π is defined symmetrically.

5



The left and the right branch of π isolate a subpart of the solidified PQ-tree. Let
CPG be the clique path corresponding to this solidification π. Let H be the unique in-
terval completion respecting CPG that is inclusion-minimal (see Lemma 3). Observe
that, by the definition of the left and right branch, the bottom of these branches corre-
spond to KL and KR respectively (see Definition 2). By Lemma 3, all maximal cliques
strictly in between KL and KR become filled in H . All cliques strictly outside this in-
terval remain clean. An important consequence is that, for any node of the PQ-tree not
belonging to one of the two branches and different from r, we can change the permuta-
tion of its children and the new solidification will yield the same interval completion.

We define a class of nodes u, that we call forced, which have the property that their
corresponding block becomes filled in any interval completion of G.

Definition 4. A forced node is defined inductively by: a node u of the PQ-tree is forced
iff:

– u is full, or
– u is a degenerate node and every child v of u is forced.
– u is a prime node and the first and the last child of σu are forced.

Lemma 4 (forced blocks). Let u be an internal forced node of the PQ-tree of G. The
block B[u] is filled in every interval completion of G.

Proof. Consider any interval completion of G, it respects some clique path CPG of
G. Let π be the corresponding solidification. Since, from Lemma 3, there is a unique
interval completion H respecting CPG which is minimal for inclusion, it is enough to
show that the block B[u] of any internal forced node is filled in H . The proof is by
induction from the leaves to the root. Let v and w be respectively the leftmost and the
rightmost child of u in this ordering. Since u is forced, B[v] and B[w] are both forced
– in particular they are hit. This implies that for all children ũ of u different from v and
w, the cliques corresponding to the leaves of Tũ are strictly between KL and KR (see
Definition 2) in the clique path given by π. Thus, Lemma 3 gives that the corresponding
blocks B[ũ] are filled in H . We show that B[v] and B[w] are also filled. If v is internal,
B[v] is filled by the induction hypothesis. The other possibility is that v is a leaf and
B[v] is full (this also settles the base case of our induction). By definition of a PQ-
tree, the border of B[v] is precisely the minimal separator B[v] ∩ B[v′], where v′ is
the brother of v immediately following it in solidification π. By Lemma 3, this border
becomes filled in H , and therefore the whole block B[v] is filled. By symmetry, B[w]
is also filled, hence so is the block B[u]. ut

We now define a set of nice orderings on the children of a node u, such that, using
these orderings, the corresponding solidification yields a nice clique path.

Definition 5. For each node u in the subtree rooted at r we define the set Πnice
u of nice

orders of the children of u as follows :

1. if u is degenerate, then Πnice
u is the set of orders σ such that the hit children of

u form an interval I = JLσ(u), Rσ(u)K such that Rσ(u) is the last element of σ
and such that Lσ(u) is forced only if all the elements of I are forced, and Rσ(r) is
forced only if the elements strictly between Lσ(r) and Rσ(r) are forced.

6



2. if u is prime, then Πnice
u is the set of valid orders σ ∈ {σu, σ̄u} such that the first

element of σ is forced only if the last one is forced too, and the first element v of σ
is such that (N(x) ∩B[u]) \B[v] 6= ∅.

Every node of the subtree rooted at r admits at least one nice ordering of its children.

Definition 6. A nice solidification π is a solidification such that π(r) is a nice order,
for every node u ∈ LB(π), π(u) is a nice order, and for every node v ∈ RB(π), π̄(u)
is a nice order.

The following theorem is our main combinatorial tool toward computing a nice
clique path.

Theorem 3. A clique path corresponding to a nice solidification of the PQ-tree is a
nice clique path.

Proof. Fix a nice solidification π of the PQ-tree and let CPG be the corresponding
clique path. Denote by H the interval completion respecting CPG, minimal for this
property (recall that it is unique, by Lemma 3).

Claim. Let u be an internal node such that u = r or u is on the left branch or on the
right branch of the nice solidification. If u is not forced, then B[u] is not filled. More
precisely there is a vertex y in the interior of B[u], such that xy is not an edge of the
completion H .

The proof of the claim is very similar to the proof of Lemma 4. We proceed by induction
from bottom to top. Assume w.l.o.g. that u = r or u is in the left-branch, the other
case can be treated symmetrically. Let v be the leftmost child of u in π(u). If v is not
Lπ(u)(u), then all maximal cliques in the subtree of v are outside the JKL,KRK interval
(see Definition 2) and the conclusion follows. Otherwise, if v = Lπ(u)(u), then v is also
on the left branch. First consider the case where v is a leaf of the PQ-tree, then B[v] is a
clique of G. If v is full, by definition, it is also forced. It follows from the definition of a
nice order that the last element of π(u) is forced, and so is u. Since u is not forced, then
v is necessarily not full. From Lemma 3, the only edges that have been added between
x and B[v] = KL are in the minimal separator between B[v] and the clique right to
it in the clique path induced by π. In particular, there are no fill edges between x and
the interior of B[v]. Since B[v] is not full, its interior contains a vertex y as required.
Finally, in the case where v is not a leaf of the PQ-tree, again v is not forced, otherwise
u would be forced too, by the definition of a nice order. Then, the conclusion follows
from the induction hypothesis. This achieves the proof of the claim.

Assume by contradiction that H is not a minimal interval completion of G, thus
there exists a minimal interval completion H ′ strictly contained in H . H ′ respects the
clique path of some solidification π′ of the PQ-tree of G. Choose this solidification
π′ as similar as possible to π, in the following sense : (1) the minimum depth d of a
node u such that π(u) 6= π′(u) is as large as possible (by depth we mean the distance
from u to the root of the PQ-tree) and (2) subject to the first condition, the number of
nodes of depth d such that the two solidifications differ on these nodes is as small as
possible. Let u be a node of minimum depth, with π(u) 6= π′(u). We prove that, in the
solidification π′, we can replace the solidification of the subtree rooted in u such that

7



π′(u) becomes π(u), and the clique path defined by this new solidification gives rise
to the same interval completion H ′. From the remarks following Definition 3, our node
u is necessarily in the set {r} ∪ LB(π) ∪ RB(π). Moreover, observe that the left and
the right branch of the two solidifications π and π′ are the same from the root of the
PQ-tree down to level d. Thus, u is also in {r} ∪ LB(π′) ∪RB(π′).

Consider the case u = r. If r is a prime node then π′(r) = π̄(r). We reverse, in
solidification π′, the whole subtree rooted in r. That is, π′(r) is replaced by π(r), and
the solidification of each descendant of r is also reversed. Thus, in the new clique path
the JKL,KRK interval is preserved (although reversed), so by Lemma 3 the new clique
path is also a clique path respected by H ′, contradicting our choice of π′. Assume now
that r is a degenerate node. We claim that the nodes of the interval I ′ between Lπ′(u)

and Rπ′(u) are the same as the nodes of the interval I , defined similarly on π. Clearly
each node v of I ′ is also a node of I , otherwise H ′ contains a fill edge from x to a
private vertex of B[v], while this edge does not appear in H . Conversely, by definition
of the set Πnice

r , I is formed exactly by the hit children of u, and I ′ also contains all
the hit children, so the two intervals I and I ′ contain the same nodes. The children of u
which are not in I ′ can be put, in π′, in the same order as in π, to the left of I ′; the new
solidification still induces the same minimal completion H ′, by Lemma 3, .

It remains to show that we can change π′(u) to make it coincide with π(u) on
interval I , without changing the minimal completion H ′ induced by π′. Let us first
show that we can manage so that I and I ′ have the same endpoints. Let v be a non-
forced endpoint of I ′. Assume for contradiction that v is not an endpoint of I , it implies
that the two endpoints vL and vR of I are non-forced, by definition of a nice ordering
on the children of u. By the claim above,B[vL] andB[vR] are not filled inH , therefore
they cannot be filled in H ′. This contradicts the fact that at least one of vL, vR are not
endpoints of I ′. Thus v is an endpoint of I . Conversely, since, by the claim above, the
block of a non forced endpoint w of I is not filled in H , and consequently is not filled
in H ′, then w is an endpoint of I ′. It follows that I and I ′ have the same non-forced
endpoints. Up to reversing interval I ′ in π′, we can make the non-forced endpoints of I
and I ′ coincide in π and π′. If we have to reverse I ′ in order to do so, we also reverse
the entire subtree of each of its non-forced endpoint (as explained previously), so that
the minimal interval completion defined by the new solidification remains H ′.

Now, if I (or equivalently I ′) has a forced endpoint, then all the children of u in
the interior of interval I (or equivalently I ′) are forced. Then, we can reorder, in π′,
the forced nodes of I ′ so that π′(u) coincide with π(u) on I . Since these nodes are
forced, reordering them does not change the minimal completion H ′ defined by the
solidification. In the case where I has no forced endpoint, then the nodes in the interiors
of I and I ′ are the same and we can rearrange the order in π′(u) of the nodes in the
interior of I ′ to make it coincide with their order in π(u). Since at the end of these
transformations, we have π′(u) = π(u) and we did not change the completion H ′

defined by π′, we get a contradiction with our choice of solidification π′.

Now we consider the case when u 6= r. Recall that u must be on one of the left or
right branches. Assume w.l.o.g. that u is in the left-branch of the two solidifications.
Again we distinguish the case when u is degenerate from the case when it is prime.

8



In the case when u is degenerate, we can apply exactly the same arguments as for
the case ”u = r and u is degenerate” in order to prove that we can replace, in π′, the
ordering π′(u) by the ordering π(u).

It remains to treat the case when u is prime. Then π′(u) = π̄(u). Let v be the
leftmost child of u in π(u). We show that B[v] is filled in H . By the definition of a nice
ordering on the children of u, there is another child v′ of u such that N(x) ∩ B[v′] is
not contained in N(x) ∩B[v]. Consequently, since u is on the left branch of π′ and, in
π′(u), the child v′ of u is to the left of v (recall that π′(u) = π̄(u)), the block B[v] is
filled in H ′, and so is filled in H too.

This implies that v = Lπ(u)(u), otherwise v would be clean, and then not filled.
Then, since v is on the left branch of π and is filled in H , from the claim above, v is
forced. It follows, by construction of nice orderings on prime nodes, that the rightmost
child of u in π(u) is also forced, and so is u. By Lemma 4, B[u] is filled in H ′. Then,
in π′, we can reverse π′(u) without changing the corresponding interval completion,
which is a contradiction with our choice of π′.

This achieves the proof of our theorem. ut

5 The algorithm

This section describes our O(n) time incremental algorithm for computing a minimal
interval completion of G+ x.

5.1 Data-structure: PQ-representation

In the classic PQ-tree, the maximal cliques of G, which correspond to the leaves of T ,
are stored in extension, that is, using the list of their vertices. Consequently, the size of
the structure is O(n + m), while the number of nodes in the PQ-tree is only O(n). In
the PQ-representation, the vertices of G are stored in the internal nodes of T (thanks
to the pointers defined below) instead of being stored in its leaves. This results in an
O(n) space representation having deeper structural properties. The PQ-representation
is essentially the same structure as the MPQ-tree introduced in [10]. However, we
formalize it in a different way that fits better our purposes.

Recall that T is the PQ-tree of G. We denote ex for the least common ancestor of
the leaves of T corresponding to a maximal clique of G containing x.

Lemma 5 ([11]). For any vertex x of an interval graph G, at least one of the two
following conditions holds:

1. the maximal cliques ofG containing x are exactly those corresponding to the leaves
of Tex

, or
2. ex is a prime node and there exist two distinct children e1x, e

2
x of ex such that the

maximal cliques of G containing x are exactly those corresponding to the union of
the leaves of Tu for any child u of ex between e1x and e2x in σex .

The PQ-representation of an interval graph G, denoted PQ(G), is made of T and
the set of vertices of G, where each vertex x stores a primary pointer toward ex, and
two secondary pointers toward resp. e1x and e2x when x does not satisfy Condition 1 of
Lemma 5 (but Condition 2). These pointers encode which maximal cliques of G (i.e.
the leaves of T ) contain x.

9



Notation 2 For each node u of T , we define the following sets:
Xu = {y ∈ V | ey = u and y has no secondary pointers}
Yu = {y ∈ V | ey = u and y has secondary pointers toward the children of u}

Note that, by definition, if u is degenerate then Yu = ∅.
In addition to the pointers from the vertices of G toward the nodes of T , in order to

achieve the desired complexity, we also store for each node u ∈ T the list of vertices
in Xu, the list of vertices in Yu, and, if parent(u) is prime, the list of vertices y ∈
Yparent(u) such that e1y = u and the list of vertices z ∈ Yparent(u) such that e2z = u.

Since the number of nodes in T is O(n) and since each vertex of G stores at most
three pointers and is stored in at most four lists associated to some nodes of T , it follows
that the total size of the PQ-representation is O(n).

5.2 Computing a nice solidification of the PQ-tree

We first collect some information about the nodes of T . For each node, we determine
whether it is hit or clean by a bottom-up marking process of the tree in which each
node forwards its type to its parent which is then able to determine its own type. In the
same way, we can determine whether the nodes are forced or not. Both routines run in
O(n) time. Before computing a nice solidification, we need to check whether N(x) is
a clique, and in the negative, we need to identify node r.

These goals are achieved by the following routine, named BranchTree. Start with
the root as current node. At each step, if the current node has a unique hit child, then
make it become the new current node, otherwise stop the process. The node u on which
the routine stops may either has at least two hit children, or no hit children. In the former
case, N(x) is not a clique, that is we are in the general case. In the latter case, if u is
prime, we compute Lσu

(u) = miny∈N(x)∩Yu
e2y and Rσu

(u) = maxy∈N(x)∩Yu
e1y . If

Lσu
(u) <σu

Rσu
(u), then N(x) is not a clique and we are again in the general case.

In all the other cases, N(x) is a clique and it is shown in Appendix A how to treat this
particular case. Let us now concentrate on the general case. Note that in that case, the
node u on which Routine BranchTree stops is nothing but node r.

Let us now consider the general case, where N(x) is not a clique. For sake of
clearness, we describe the computation of a nice solidification in two steps, but they
can be merged into a single top-down search from r to the leaves of T .

First step: computing nice orderings. Thanks to the information computed initially
about the nodes of T , we compute, during an arbitrary traversal of Tr, a nice ordering
πu for every node u ∈ Tr. Note that we compute a nice ordering for all the nodes of
Tr and not only for those that will belong to {r} ∪ LB(π) ∪ RB(π), where π is the
nice solidification we intend to build. Of course, no special ordering is necessary for
the other nodes but it will be convenient for us not to particularize their treatment. We
have to distinguish two cases depending on the label of u:

1. u is degenerate; all the clean children of u are placed at the beginning of πu, and if
u has at least one non-forced hit child then we place it right after the clean nodes
in πu, and if u has another non-forced hit child, we place it at the end of πu.

10



2. u is prime; if the first child uf of u in σu is forced or is such that B[u] ∩N(x) ⊆
B[uf ], then we set πu = σ̄u, otherwise we set πu = σu.

A degenerate node u can be treated in O(|C(u)|) time – recall that C(u) denotes
the set of children of u. In the treatment of a prime node u, the difficult part is to test
whether B[u] ∩ N(x) ⊆ B[uf ]. To that purpose, we have to check whether all the
children of u different from uf are clean and whether all the vertices of Yu ∩N(x) are
such that e1y = uf . This can be done in O(|C(u)| + |Yu|) time. Thus the total running
time of the first step is O(n).

Second step: computing a nice solidification. The only thing left to do in order to
obtain a nice solidification π is to identify the nodes of the right branch RB(π) and
to reverse the nice ordering computed for them in the previous step. We achieve this
goal by following the path defined by RB(π), from r to the leaf corresponding to KR,
while, at the same time, we modify π along this path.

We start with the current node being r: we do not modify πr and we change the
current node for its child Rπr

(r). Then, at each step of the routine, we first reverse
the order πu affected to the current node u in the first step, and then we make Rπu(u)
become the current node. We stop when the current node is a leaf. As noted previously,
this leaf lR is nothing else but the one corresponding to KR in the clique path defined
by the solidification π we computed during the present step. Remark that, by a similar
routine, we can also identify the leaf lL corresponding to KL in the clique path defined
by the solidification π, the difference being that we don’t need to change solidification
π during this routine.

For a node u, computing Rπu
(u) can be done by a simple parse of its children and

a parse of the vertices of Yu. This takes O(|C(u)| + |Yu|) time, and the total running
time of the second step is O(

∑
v∈RB(π) |C(v)|+ |Yv|) = O(n) time.

Finally, the time needed to compute a nice solidification π of the PQ-tree is O(n),
and we can identify KL and KR in the clique path defined by π within the same com-
plexity.

5.3 Overview of the algorithm

From Lemma 2, we can compute a minimal interval completion of graph G incremen-
tally. We start from the empty graph, and we add the vertices of G one by one. At each
step, when a new vertex x is added, we compute a minimal interval completion of the
augmented graph by adding only edges incident to x.

We proceed by computing a nice solidification of the PQ-tree thanks to the PQ-
representation, as shown in Section 5. This takesO(n) time. Moreover, within the same
complexity we can get the cliques KL and KR in the corresponding clique path CPG
which is, from Theorem 3, a nice clique path. Then, we compute the set F of nodes that
has to be filled according to Lemma 3. We proceed as follows.

First, from the PQ-representation solidified by π, we compute the interval model
of G based on the clique path corresponding to π, that is, the order σ on the maximal
cliques of G corresponding to π and, for each vertex y of G, two pointers from y to the
first and the last maximal clique of G containing y, in σ, denoted respectively K1

y and

11



K2
y . This can be done in O(n) time, as shown in Appendix B. Thanks to this interval

model, we can compute the minimal interval completion H described in Lemma 3: we
must fill the set of vertices F = {y ∈ V | K1

y <σ KR and KL <σ K
2
y}. Set F can be

easily computed thanks to a scan of the vertices of G that takes O(n) time.
Thus, the only thing left to do is to update the PQ-representation in order to per-

form the next incremental step. This is done by inserting x in G along with the edges
between x and N(x) ∪ F . Thanks to the algorithm of [2], we obtain the updated PQ-
representation of H in O(n) time. Since an incremental completion step can be per-
formed in O(n) time, including the update cost of the data-structure, the total running
time of our completion algorithm is O(n2), as stated by Theorem 1.

Acknowledgment. We would like to thank Karol Suchan and Christophe Paul for use-
ful discussions on the subject.

References

1. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335–379, 1976.

2. C. Crespelle. Dynamic representations of interval graphs. In WG, LNCS, 2009. To appear.
http://www-npa.lip6.fr/∼crespell/publications/DynInt.pdf.

3. P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and of interval
graphs. Canadian J. Math., 16:539–548, 1964.

4. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57 of Annals of
Discrete Mathematics. Elsevier, second edition, 2004.

5. P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Math., 306(3):297–317,
2006.

6. P. Heggernes and F. Mancini. Minimal split completions. Discrete Applied Mathematics,
157(12):2659–2669, 2009.

7. P. Heggernes, F. Mancini, and C. Papadopoulos. Minimal comparability completions of
arbitrary graphs. Discrete Applied Mathematics, 156(5):705–718, 2008.

8. P. Heggernes, K. Suchan, I. Todinca, and Y. Villanger. Minimal interval completions. In
ESA, number 3669 in LNCS, pages 403–414. Springer Verlag, 2005. Extended version:
http://www.univ-orleans.fr/lifo/prodsci/rapports/RR/RR2005/RR-2005-04.ps.gz.

9. P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal triangulations in time
o(nα logn) = o(n2.376). SIAM J. Discrete Math., 19(4):900–913, 2005.

10. N. Korte and R. H. Möhring. Transitive orientation of graphs with side constraints. In WG,
pages 143–160, 1985.

11. N. Korte and R. H. Möhring. An incremental linear-time algorithm for recognizing interval
graphs. SIAM J. Comput., 18:68–81, 1989.

12. T. Ohtsuki, H. Mori, T. Kashiwabara, and T. Fujisawa. On minimal augmentation of a graph
to obtain an interval graph. Journal of Computer and System Sciences, 22(1):60–97, 1981.

13. I. Rapaport, K. Suchan, and I. Todinca. Minimal proper interval completions. Information
Processing Letters, 5:195–202, 2008.

14. D. Rose, R. E. Tarjan, and G.Lueker. Algorithmic aspects of vertex elimination on graphs.
SIAM J. Comput., 5:146–160, 1976.

15. K. Suchan and I. Todinca. Minimal interval completion through graph exploration. Theoret-
ical Computer Science, 410(1):35–43, 2009.

12



A The case where N(x) is a clique

In this case, if G′ is not already an interval graph (which will be tested in O(n) time
using the algorithm of [2]), is it sufficient to add edges from x to a well chosen minimal
separator of G:

Lemma 6. Assume thatN(x) is a clique andG′ is not an interval graph. Let (K1,K2)
be a couple of maximal cliques of G such that N(x) ⊆ K1 and K2 neighbors K1 in
some clique path CPG of G, and (K1 ∩K2) \N(x) is inclusion-minimal among such
couples. The graph H obtained by filling the minimal separator K1 ∩K2 is a minimal
interval completion of G′.

Proof. First note that, since N(x) is a clique, it is included in at least one maximal
clique of G. Therefore, there is always at least one couple (K1,K2) satisfying the
conditions of the lemma.

Adding a clique (K1∩K2)∪N(x)∪{x} betweenK1 andK2 in CPG, and deleting
the possible non-maximal cliques of H , clearly results in a clique path of H . Thus H is
an interval completion of G′.

Now, suppose for contradiction that there exists an interval completionH ′ such that
E(H ′) ( E(H), that is NH′(x) ( NH(x). Let CPH′ be a clique path of H ′. Clique
NH′(x) ∪ {x} is clearly maximal in H ′ and cannot be at the extremity of CPH′ since
in that case, in this extremal clique of the clique path, we could delete the vertices of
NH′(x) \ N(x) to obtain a clique path of G′, which would then be an interval graph.
Thus, NH′(x)∪{x} is surrounded by two maximal cliques K ′1 and K ′2 of G′ in CPH′ .
Since some maximal clique ofG′ containsN(x), at least one ofK ′1 andK ′2 must do, let
sayK ′1 without loss of generality. SinceNH′(x) ( NH(x) andNH′(x) = (K ′1∩K ′2)∪
N(x) and NH(x) = (K1 ∩K2) ∪ N(x), necessarily, we have (K ′1 ∩K ′2) \ N(x) (
(K1∩K2)\N(x). This is a contradiction with the minimality of (K1∩K2)\N(x). ut

Algorithm for the case where N(x) is a clique. Let u be the final node of Rou-
tine BranchTree, described in Section 5.2. N(x) is a clique iff u has no hit children
and

1. u is a leaf, or
2. u is a degenerate node, or
3. u is prime and Rσu

(u) <σu
Lσu

(u).

From Lemma 6, when Yu ∩ N(x) = ∅ and parent(u) is degenerate, we fill the
border of B[u], that is the set of vertices y such that ey is an ancestor of u and either (i)
y has no secondary pointers, or (ii) y has secondary pointers and there is an ancestor of
u in the interval Je1y, e2yK of the children of ey . This is done by scanning the sets Xv and
Yv for each node v on the path from u to the root of T . It takes O(n) time.

If Yu ∩ N(x) = ∅ and w = parent(u) is prime, then we denote S− for the set
of vertices in Yw that belong both to the block of u and to the block of its predecessor
in σw, if it has one. Symmetrically, we denote S+ for the set of vertices in Yw that
belong both to the block of u and to the block of its successor in σw, if it has one. More
formally, S− = {y ∈ Yw | e1y <σw

u and u ≤σw
e2y} and S+ = {y ∈ Yw | e1y ≤σw

u and u <σw e2y}. We get a minimal interval completion by filling the border of B[u],

13



Xu and an inclusion-minimal set among S− and S+. Set S− and S+ can be computed
by a simple scan of Yw. Thus, the filling operation can be done in O(n) time.

If Yu ∩ N(x) 6= ∅, we denote v1, . . . , vk with k ∈ N for the interval of children
of u between Rσu

(u) = v1 and Lσu
(u) = vk. From Lemma 6, when v1 is the first

element of σu or vk is the last element of σu, then we simply fill the border of B[u] and
Xu. Otherwise, we denote v0 and vk+1 for respectively the predecessor of v1 and the
successor of vk in σu. For i ∈ J1, k+ 1K, we denote Si for the set of vertices of Yu that
belong to both B[vi−1] and B[vi], that is Si = {y ∈ Yu | e1y ≤σu

vi−1 and vi ≤σu
e2y}.

According to Lemma 6, we have to find a i such that Si \ N(x) is inclusion-minimal.
To that purpose we use Routine IncMinSep, see Figure 1.

IncMinSep(u, v1, k)
1. Smin← S1

2. D ← ∅
3. For i from 1 to k do
4. D ← (D \ {y ∈ Yu \N(x) | e2

y = vi}) ∪ {z ∈ Yu \N(x) | e1
z = vi}

5. If D = ∅ Then Smin← Si+1

6. End for
7. Return Smin

Fig. 1. Routine IncMinSep.

In Routine IncMinSep, Smin stores a minimal separator such that Smin \N(x)
is inclusion-minimal among the separators S1, . . . Si considered so far (before loop
number i). D stores the difference (Si \ N(x)) \ (Smin \ N(x)). During iteration
number i of the loop, D is updated by removing the vertices that are in Si \ N(x) but
not in Si+1 \N(x) and by adding those that are in Si+1 \N(x) but not in Si \N(x).
Thus, the test of Line 5 determines whether Si+1 \ N(x) ⊆ Smin \ N(x). In the
positive, Smin is set to Si+1. This implies that Smin \N(x) is included in Sj \N(x)
for every separator Sj which is before Smin in σu. Then, the routine goes on looking
for some separator Sj which is after Smin in σu and such that Sj \N(x) is included in
Smin \N(x). If no such separator is found, then Smin \N(x) is inclusion-minimal;
otherwise, Smin is replaced and the search continues.

Clearly, each of the k iterations of the loop in routine IncMinSep takes O(|Yu|)
time. Thus, the total running time of the routine is O(k+ |Yu|) = O(n). Once we iden-
tified the desired Si, we fill the border of B[u], Xu and Si. Again, the filling operation
can be performed in O(n) time. Therefore, this is also the complexity of the whole
treatment of the particular case where N(x) is a clique.

B Supplementary technical material

Remark 1. We point out that, for any internal node u of the PQ-tree, its interior is not
empty. Indeed, consider any solidification of the PQ-tree, let CP be the corresponding

14



clique path and KLu be the clique corresponding to the leftmost leaf of the subtree
rooted in u. Since KLu is not included in its successor in CP , there exists a vertex
y ∈ KLu which does not appear to the right of KLu in CP. y cannot appear to the left
of KLu either because, by reversing the order of all cliques in the subtree rooted in u,
we also get a clique path, in which the cliques containing y must be consecutive. Thus
y is involved in a unique maximal clique and therefore is in the interior of B[u].

Computing the interval model corresponding to a given solidification of the PQ-
tree. In other words, we aim at computing the order σ on the maximal cliques of G
corresponding to the given solidification π and, for each vertex y of G, two pointers
from y to the first and the last maximal clique of G containing y, in σ, denoted respec-
tively K1

y and K2
y .

A simple depth-first search of the solidified PQ-tree gives σ. In order to assign their
pointers to the vertices of G, we first assign to each node u of T two pointers toward
respectively the first and the last element in σ that corresponds to a leaf of Tu. This can
be easily done by a bottom-up process :

– any leaf of T is assigned two pointers toward its corresponding maximal clique,
and

– any internal node u of T is assigned a first pointer which is the first pointer of its
first child in π(u) and a second pointer which is the second pointer of its last child
in π(u).

Then, for each vertex y of G that has no secondary pointers toward T in the PQ-
representation, we assign to y the same pointers as ey toward σ. If y has secondary
pointers, it is assigned the first pointer of minπ(u){e1y, e2y} and the second pointer of
maxπ(u){e1y, e2y}. The whole process cost is that of two searches of the tree and one
search of the vertices of the graph, that is O(n) time.

15


