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Abstract Branching for Quantified Formulas
Abstract

Quantified languages such as Quantified Boolean Formulas
have plenty of potential applications. Unfortunately, such ap-
plications generate instances that are surprisingly difficult to
solve by classical search-based decision procedures.
Alternative “space-intensive” approaches are emerging. They
exhibit promising average results, but have unaffordable
memory requirements on many families.
In this paper we introduce Abstract Branching, a search-
based decision procedure for QBFs based on a novel search
policy. As a prominent feature, it escapes the burdensome
need for branching on both children of every universal node in
the search tree. Running examples and a formalization of the
new procedure are presented. Experimental improvements
over the state of the art are reported.

Introduction
The language of Quantified Boolean Formulas (QBFs) al-
lows us to wonder about the validity of statements like

∃a∀b∃c.(a ∨ b ∨ c) ∧ (b ∨ ¬c) ∧ (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b)

where we ask if a truth value (TRUE or FALSE) exists for a
such that for both truth values of b a truth value for c exists
such that the given conjunction of constraints (or clauses)
is invariably satisfied. Despite its appearent simplicity, this
problem spans the whole polynomial hierarchy once we ad-
mit any (finite) number of quantifier alternations.

Every problem that can be stated as a two-player finite
game can be modeled in QBF. The QBF validity problem is
itself a game between the ∃ player, who tries to satisfy every
constraint, and the ∀ player, doing his best to contradict at
least one clause. Many applications exist, like unbounded
model checking for finite-state systems (Rintanen 2001) and
conformant planning (Rintanen 1999), just to mention two.

QBF instances from applications come out to be unex-
pectedly difficult to solve (the surprise being engendered
by the comparatively large success of SAT solvers in re-
lated applications). Such difficulties led some to suggest
the presence of inherent deficiencies in the language (An-
sótegui, Gomes, & Selman 2005), and others to develop
solving paradigms alternative to the classical one.

Classical decision procedures for QBF (briefly described
in the next section) are based on searching the AND/OR se-
mantic evaluation tree of the formula, looking for the exis-
tence of a suited sub-tree, called model or strategy. Alter-
native paradigms replace this search effort with a solution
process based on quantified resolution or some special kind
of skolemization (see the “Related Work” section).

Such alternatives have been quite successfull. However,
by giving up search in favour of inference they switch from
time-intensive to memory-intensive computations. Families
of instances exist in which even small elements systemati-
cally generate out-of-memory conditions. This has renewed

the interest in search methods, which guarantee to work in
polynomial space (once learning is properly restricted).

In spite of the many improvements to search-based QBF
decision procedures published over the years, all them share
the same basic scheme, first proposed in (Cadoli, Giova-
nardi, & Schaerf 1998). Specifically, no one escapes the
need for searching separately both branches of every node
of the search tree associated to a universal quantifier.

In this paper, we present a novel search-based QBF de-
cision procedure, called Abstract Branching (AB). As a key
feature, it eludes the need for branching over universal vari-
ables by abstracting over their existence: AB searches at
once in the widest possible set of branches (all of them, if
possible). Ex-post, it expunges just those for which the cur-
rent solution is guaranteed not to work. As the search goes
on, a set of partial solutions is grown to satisfy more and
more branches. If (and only if) all of them happen to be
covered after an exhaustive search, the formula is TRUE.

The next section is devoted to a thorough presentation of
this idea. Then, we discuss previous work, give details on
our implementation, and comment on preliminary experi-
mental results. Some final remarks close the paper.
Notation. We consider QBFs in prenex conjunctive nor-
mal form (CNF), consisting in a prefix with alternations
of quantifiers, followed by a matrix, i.e. a conjunction of
clauses (a clause set). Given a QBF F on variables var(F ),
we denote by F̃ its matrix, and by var∃(F ) (var∀(F )) the
set of existentially (universally) quantified variables in F .
Given a clause set G and an assignment ∆ to (some of) the
variables in G, we denote by G ∗ ∆ the CNF obtained by
assigning ∆, i.e. by removing from G each literal which
is false in ∆ and each clause containing some literal true
in ∆. An empty clause (contradiction) may result, written
� ∈ G∗∆. Or, an empty formula can be obtained, in which
case ∆ is a model for G. ByM(G) we mean the set of all
the models of G. A set A ∈ 2var(F ) represent the assign-
ment where v=T if v ∈ A, and v=F otherwise.

Abstract Branching
We introduce abstract branching for contrast and compar-
ison with the search procedure used in DPLL-like QBF
solvers. So, let us start by recalling briefly how they work.

We concentrate on ∀∃-formulas exhibiting one single
quantifier alternation (this restriction will be removed soon):

∀U∃E. eF (U, E) (1)

At the request of deciding the validity of (1), search-based
solvers select some assignment ∆ to the universal variables
U , then look for a model of F̃ ∗∆ (the co-factored matrix,
which only contains existential variables). The latter step is
equivalent to solve a SAT problem. If no such model exists,
the formula is declared to be FALSE. Otherwise, some other
universal assignment is considered. The formula is claimed
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Figure 1: How to decide the QBF (2) according to a clas-
sical DPLL search. Dotted paths have to be visited yet.

Figure 2: Abstract Branching’s key idea: First propose existential assignments,
then reason on universals. Solid paths represent neutralized scenarios.

to be TRUE when all the universal assignments have been
considered without ever failing to satisfy the matrix1.

Such procedure descends from the definition of validity of
a ∀∃ formula. By using the term scenario (after Chen 2004)
to mean any total assignment to the universal variables it is

Proposition 1 A formula ∀U∃E.F̃ is TRUE iff for every
scenario ∆ over U , the formula F̃ ∗∆ is satisfiable.

By choosing any arbitrary order for the universal variables,
the space of universal scenarios fits into a complete binary
tree with |U | levels and 2|U | branches, where each branch
identifies a single scenario. DPLL-like solvers visit this tree
in a depth-first manner, trying to label each leaf with the
proper satisfying assignment, so to obtain a model (some-
times also called strategy or certificate) for the formula. The
necessary and sufficient condition for the labeled tree to be
a model is that the assignment/scenario along each branch,
joined with the assignment inside the label reached via that
branch, is invariably a model for the matrix.
As an example, let us consider the following TRUE formula.

∀a∀b∀c∃d∃e.(a ∨ ¬d ∨ e) ∧ (b ∨ c ∨ e) ∧ (¬b ∨ c ∨ ¬d)∧
(a ∨ c ∨ ¬d ∨ ¬e) ∧ (¬a ∨ ¬c ∨ ¬e) ∧ (¬a ∨ b ∨ d)∧
(¬c ∨ d ∨ ¬e) ∧ (¬b ∨ d ∨ e) ∧ (a ∨ ¬c ∨ d ∨ e)

(2)
The initial situation is depicted in the leftmost picture in

Figure 1, where the existential assignments we are looking
for are represented as empty labels to be filled in. Sup-
pose the scenario we visit is {a=T, b=T, c=T} (uppermost
branch). The leaf we reach corresponds to the formula

F ∗ {a=T, b=T, c=T} = (¬e) ∧ (d ∨ ¬e) ∧ (d ∨ e)

which is satisfied by the posing {d=T, e=F}: We label
the first leaf by this assignment. We happen to succeed in
repeating this process for every branch, so that in the end
(rightmost picture in Figure 1) we know that (2) is TRUE.

Abstract Branching: The intuition
Abstract branching entirely reverses the classical search per-
spective, in favor of this one: First, guess some (total) as-
signment Γ to the existential variables. Then, ask: Which
scenarios this existential assignment is “good” for? I.e.: to
which leaves in the tree we can safely attach the label Γ?

1This worst-case behaviour is alleviated by look-back tech-
niques (e.g. conflict-directed backjumping, model caching) that
re-use information gathered from searching in previous branches.

The answer is: to all the leaves reached by universal as-
signments (scenarios) ∆ such that F ∗ ∆ is satisfied by Γ,
i.e. all the branches associated to models of F ∗ Γ. This
solution strategy descends from a definition of validity alter-
native (but equivalent) to the one given in Proposition 1.

Proposition 2 A formula ∀U∃E.F̃ is TRUE iff a set A of
assignments to the existential variables E exists such that
∪α∈AM(F̃ ∗ α) contains every scenario over U .
Let us consider again the QBF (2). This time, we ignore
universal variables and pick some assignment to var∃(F ) =
{d, e}, for example Γ = {d=F, e=T}. How do we decide
where to attach this label? We observe that the formula
F ∗ {d=F, e=T} = (a ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬a ∨ b) ∧ (¬c) (3)

by construction only mentions universal variables, so that
each time we assign a, b, and c to satisfy (3) we identify
some scenario where Γ is the (or at least is one) right label.

In our example, the models of (3) are {a=F, b=T, c=F},
{a=F, b=F, c=F} and {a=F, b=F, c=T}. This information
allows us to move the first step in Figure 2.

Let us call neutralized those scenarios for which we have
a valid label (solid lines in Figure 2). Once recognized, neu-
tralized scenarios need no further consideration in our at-
tempt to discover a model, as by construction assignments
along neutralized paths cannot lead to a contradiction.

Suppose the next existential assignment we pick is Γ′ =
{d=T, e=T}. This time we ask: Which paths among the
not-yet-neutralized ones Γ′ is good for? The answer is com-
puted as before. It is depicted in Figure 2 (second step).

The set of neutralized scenarios keeps on enlarging mono-
tonically. By using any systematic procedure for generating
existential candidates we are guaranteed to encounter only
one out of two possible outcomes: Either each scenario is
eventually neutralized (the formula is TRUE by Proposition
2), or we run out of existential candidates before such con-
dition is met (the formula is FALSE by Proposition 2). In
our working example, it suffices to consider one more ex-
istential candidate, namely {d=T, e=F} to neutralize every
scenario: The formula is TRUE (last step in Figure 2).

Some details need to be filled out before any realistic al-
gorithm grows out of the search strategy just sketched. We
go through all such details in the following sections. Let us
just briefly outline the plan of exposition.
Backtrack search. DPLL-like algorithms grows total as-

signments out of partial ones, within a backtrack-based



search procedure. Also, they don’t wait for assignments
to be total before reasoning about them. Key properties—
such as being sufficient to satisfy the matrix, or to contra-
dict some clause—are checked on the partially specified
candidate. Does this apply to abstract branching?
The answer—made formal in the next section—comes
from the following analysis. We cannot tell paths neutral-
ized by some candidate Γ from non-neutralized ones until
F ∗Γ “looses” every existential variable, which might not
happen until Γ is total. Still, if we build Γ step by step
we can realize that some scenarios will never be neutral-
ized by any extension of the current partial candidate. Let
us consider again the QBF (2). We start with the partial
assignment Γ = {d=F}, so to obtain F ∗ Γ = F ′, with
F ′ = (b∨c∨e)∧(¬a∨¬c∨¬e)∧(¬a∨b)∧(¬c∨¬e)∧(¬b∨¬e)

We isolate the maximal subset F ′
∀ ⊆ F ′ in which exis-

tential variables are no longer mentioned. In our case, it
is F ′

∀ = (¬a ∨ b). This set has two essential properties:
1. It excludes the possibility to neutralize every scenario

inconsistent with F ′
∀ itself. No superset of Γ can be

used to label branches identified by non-models of F ′
∀.

2. F ′
∀ is contained not only in F ′, but in any co-factored

matrix F ∗ Γ′ we obtain by extending Γ to Γ′ ⊇ Γ.
So, whatever the presence of F ′

∀ is excluding, it stays
excluded from every candidate specializing Γ.

This observation leads us to design a least-commitment
optimistic search procedure. It starts by considering every
scenario as neutralizable, so long as no evidence exists of
the contrary. As existential candidates grow, they shrink
clauses and consequently cut away some scenarios from
the set of those we can neutralize. If the neutralizable set
becomes empty, the current existential candidate has no
extension leading to a valid label. Hence, we backtrack.
Otherwise, we obtain the empty matrix, and accumulate
the neutralized scenarios in a monotonically enlarging set.

Multiple alternations. The abstract branching technique is
quite intuitive for the simple ∀∃ case. It scales up nicely
to solve general QBFs with (known but) arbitrary number
of quantifier alternations. Before we address the problem
in the full generality, we need to develop some formal
notions. This will be done in the Section “Formalization”.

Forward Inferences. QBF and SAT solvers need to carry
out fast forward inferences. Essentially, they perform
unit clause propagation after each branching step. The
abstract-branching framework preserves the power of for-
ward reasoning, as we show in the homonymous section.

Data Structures. Solvers for (quantified) formulas rely on
tailored and well-engineered data structures to manipulate
clause sets. The objects we manipulate blend clause sets
with sets of scenarios (i.e. subsets of a powerset). We sort
out an appropriate solution from the relevant literature as
discussed in the “Data Structures” section.

Formalization
Definition 1 (Quantification Structure) Given a finite set
of propositional symbols V , a quantification structure (QS)
over V is a quadruple 〈V∃, V∀, δ, dom〉 where V∃ and V∀

are a partition of V (V∃ ∪ V∀ = V and V∃ ∩ V∀ = ∅),
δ : V∃ → [0, 1, . . . , |V∀|] and dom : V∃ → 2V∀ are two
functions such that δ(x) ≤ δ(y) =⇒ dom(x) ⊆ dom(y).

A quantification structure is used to capture all the relevant
information about how universal and existential variables re-
late to one another in a closed quantified formula. The in-
tuition is that a variable e ∈ V∃ is at depth δ(e) when it
is dominated by δ(e) different universal scopes, which to-
gether define a dom-inating subset dom(e) for e (we may
also think of this subset as giving the dom-ain of the skolem
function we would use to outer-skolemize e).

The functions δ(·) and dom(·) in a quantification struc-
ture 〈V∃, V∀, δ, dom〉 are extended to any clause set G with
var(G) ⊆ V∃ ∪ V∀, as δ(G) .= minv∈var(G)∩V∃ δ(v) and
dom(G) .= dom(δ(G)) respectively. The intuition is that
formulas are treated as if they were the shallowest existen-
tial variable they mention.

Definition 2 (Abstract Formula) An abstract formula (AF)
defined over the QS 〈V∃, V∀, δ, dom〉 is a couple 〈U , F 〉
where F is a clause set, var(F )⊆ V∃∪V∀, and U ⊆ 2dom(F ).

Abstract formulas can be seen as a generalization of
QBFs. The validity of a QBF requires the existence of a
tree of satisfying assignments shaped after the prefix. Con-
versely, in the AF 〈U , F 〉 we are only interested in the va-
lidity of the set of QBFs with matrixes {F ∗ ∆,∆ ∈ U}
where U represents some subset of all the possible truth as-
signments to the variables in dom(F ).

Definition 3 (Association to QBFs) The quantification
structure associated to a QBF F = Q0V0 . . . QnVn.F̃ is
defined by V∃ = var∃(F ) , V∀ = var∀(F ), δ(v) = bi/2c if
v ∈ Vi ∩ V∃, and dom(v) = {w ∈ Vi|Qi = ∀, v ∈ Vj , 0 ≤
i < j}. The AF associated to the QBF F is defined over the
quantification structure associated to F as 〈2dom( eF ), F̃ 〉 .

For example, the QS associated to ∀a∀b∃c∀d∃e∃f.

M̃(a, b, c, d, e, f) is defined by V∃ = {c, e, f}, V∀ =
{a, b, d}, δ(c) = 1, δ(e) = δ(f) = 2, dom(c) = {a, b},
and dom(e) = dom(f) = {a, b, d}. The AF for the same
QBF is 〈{∅, {a}, {b}, {ab}}, M̃(a, b, c, d, e)〉.

Given a QS 〈V∃, V∀, δ, dom〉 and a clause set G with
var(G) ⊆ V∃ ∪ V∀, we denote by G∀ ⊆ G the maximal
subset of G such that var(G∀) ⊆ V∀, and by G∀∃ its com-
plement to G. Essentially, G∀∪G∀∃ is a partition of G which
separates clauses only mentioning universal variables (G∀)
from those also mentioning existential variables (G∀∃).

Definition 4 (Abstract Star Operator) Given an abstract
formula 〈U , F 〉 and a literal l with δ(l) = δ(F ), we define
〈U , F 〉 ∗ l

.= 〈U ′, F ′〉 where F ′ = (F ∗ l)∀∃ and U ′ = {u ∈
2dom(F ′) such that u ∩ dom(F ) ∈ U , and � /∈ (F ∗ l)∀}
The intuition is that the abstract star operator assigns a truth
value to some variable e in the “outermost” existential scope
of an AF (by the condition δ(l) = δ(F )) abstracting over the
existence of unassigned universal variables to the left of e.
As a result, it produces a simpler abstract formula 〈U ′, F ′〉
that no longer mentions the variable e in F ′, and whose set of
universal scenarios U ′ has been properly shrunk to exclude



cases inconsistent with the assignment over e. Also, U ′ is
extended to belong to a wider space than U’s one, if δ(F ′) >

δ(F ). Indeed, U ′ ⊆ 2dom(F ′) and dom(F ) ⊆ dom(F ′).
Let us indicate by N↓∀A the universal projection of N ⊆

2B over A ⊆ B, defined as N ↓∀ A = {x ∈ 2A|∀y ∈
2B\A.x ∪ y ∈ N}. The set x ∈ 2A belongs to N↓∀A only
if we find in N every set obtained by extending x with zero
or more elements from B \A. We give semantics to abstract
formulas through the concept of neutralized scenarios.

Definition 5 (Neutralized Set) The neutralized set associ-
ated to the AF 〈U , F 〉, written NEUTR(〈U , F 〉), is a subset
of U inductively defined as follows:

1. if � ∈ F , then NEUTR(〈U , F 〉) = ∅
2. if F = ∅, then NEUTR(〈U , F 〉) = U
3. otherwise, NEUTR(〈U , F 〉) = N ↓∀dom(F ), where N =

NEUTR(〈U , F 〉 ∗ v) ∪ NEUTR(〈U , F 〉 ∗ ¬v), and v ∈ V∃
is any variable such that δ(v) = δ(F ).

We call fully neutralized any AF with NEUTR(〈U , F 〉) = U .

Notice that all the definitions posed so far are for general
QBFs (not just ∀∃ alternation), and that the universal pro-
jection operator takes care of multiple alternations. It plays
no role in ∀∃ formulas (where the dom(.) function by defi-
nition always evaluates to the same powerset), but is the key
to joining neutralized sets from higher universal depths. In-
deed, suppose that a subset U+ ⊆ U of F = 〈U , F 〉 is neu-
tralized in F+ = 〈U , F 〉∗e, while U− ⊆ U is neutralized in
F− = 〈U , F 〉∗¬e. So long as δ(F) = δ(F+) = δ(F−) we
simply join these two sets: They complement each other in
their ability to neturalize scenarios. But, if δ(F) < δ(F+)
and/or δ(F) < δ(F−) (i.e. we have assigned the last ex-
istential variable in the present scope so the next one lay at
a higher alternation depth), we can accept the joint neutral-
ization effort of the two sub-instances with respect to those
cases only that are completely neutralized in dom(F ). This
amounts to cut away via the projection operators all the sce-
narios that have been only partially (or not at all) neutralized.

Theorem 1 The QBF F is TRUE iff the abstract formula
associated to F is fully neutralized.

A neutralized-set computation procedure built after Defini-
tion 5 is given in Algorithm 1 (the explanation of Line 1 is
deferred until the next section). It can be used as a deci-
sion procedure for the QBF F by calling it on the abstract
formula associated to F by Definition 3. Such invocation
is meant to check whether the input formula is fully neu-
tralized (which happens iff the algorithm returns 2dom( eF )).
By Theorem 1 this answers the validity problem over F in
a sound and complete way (see (Author 2006) for a proof).
Figure 3 illustrates a sample run of the algorithm.

Exploiting forward inferences
Let us call ∃-unit clause a clause mentioning exactly one
existential literal. We may think of a unit clause C = {l} in
some CNF formula F as a clause such that � ∈ F ∗ ¬l (i.e.
a literal whose negation causes an immediate contradiction).
By analogy, we pose the following definition.
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Figure 3: AB solves the QBF (2). The first component of
each AFs is depicted, the second is the original formula in
A, the empty formula in C1−4, the clause set (b ∨ c ∨ e) ∧
(¬a ∨ ¬c ∨ ¬e) ∧ (¬c ∨ ¬e) ∧ (¬b ∨ e) ∧ (a ∨ ¬c ∨ e) in B1,
and (a∨ e)∧ (b∨ c∨ e)∧ (a∨ c∨¬e)∧ (¬a∨¬c∨¬e) in B2.

Definition 6 (Abstract Unit Clause) An ∃-unit clause C ∈
F with existential literal l is a partial unit clause for the ab-
stract formula 〈U , F 〉, U 6= ∅, with 〈U , F 〉 ∗ ¬l = 〈U ′, F ′〉
if U ′ ⊂ U . It is a total unit clause if, in addition, U ′ = ∅.
The algorithmic intuition is that an abstract (partial) unit
clause identifies “bad” branching choices that immediately
contract the neutralizable set. In case we contradict a total
unit, such set becomes suddenly empty, and the procedure
has to backtrack. Like in the standard propositional case,
we don’t need to wait until we encounter the empty set. We
can foresee by forward inference that a total unit clause is a
necessary consequence given the current state of the search,
and just propagate this information.
Definition 7 (Abstract unit clause propagation) The ab-
stract formula F ′ obtained via abstract unit clause propa-
gation (AUCP) from the abstract formula F , written F ′ =
AUCP(F), is defined as AUCP(F) = AUCP(F ∗ l) if l is
the unique existential literal of some total unit clause in F ,



Algorithm 1: absBranching
input : An abstract formula 〈U , F 〉
output: A subset of 2dom(F )

1 〈U , F 〉 ← AUCP (〈U , F 〉);
2 if � ∈ F then

// No hope to neutralize further scenarios
3 return ∅;
4 else if F is empty then

// Fully neutralized subformula
5 return U ;

else
// Inductive case: branch over two sub-problems

6 e← one variable in V∃ with δ(F ) = δ(e);
7 U+ ← absBranching(〈U , F 〉 ∗ {e=T});
8 U− ← absBranching(〈U , F 〉 ∗ {e=F});
9 return (U+ ∪ U−)↓∀dom(F );

and as AUCP(F) = F if no such clause exists or � ∈ F .

Abstract unit propagation prevents us from exploring sub-
spaces where no scenario can be neutralized, so we state

Property 1 For every abstract formula F , AUCP(F) is
fully neutralized iff F is fully neutralized.

This property justifies line 1 in the psudo-code. To recog-
nize total unit clauses it suffices to keep on watching ∃-unit
clauses, and check whether the scenarios they would cut
away if contradicted are covering the whole working neu-
tralizable set. If so, they are total unit by Definition 6 and
can be propagated. For example, after the first step in Fig-
ure 3 has been taken, three ∃-unit clauses on e are present:
¬b∨e, a∨¬c∨e, and b∨c∨e. It is easy to see that—if con-
tradicted on e—these clauses would prune every scenario
where either b=T or a=F, thus cancelling the whole working
set as depicted after Step 1. So, we propagate e=T by AUCP
and jump after Step 3 straightaway.

Data Structures
Algorithm 1 manipulates AFs, i.e. couples made up of a set
of scenarios and of a set of clauses. The former element of
the couple undergoes join, intersection and projection opera-
tions (lines 7-9), the latter is subject to a slight variation over
the subsumption/resolution trasformations associated to an
assignment (lines 7,8). Our options are as follows.
• Sets of scenarios are represented via reduced ordered

binary decision diagrams (Bryant 1986) (ROBDDs, or
just BDDs). Such representation may be exponentially
more succinct than explicit ones, like the trees used
so far (Wegener 2000). The BDD way of representing
subsets of a powerest 2S is to associate an if-then-else
decision variable to each element in S, then to construct
a directed acyclic graph representing the characteristic
function of the subset. A path in the diagram leading
to the sink node "1” represents the subsets containing
(resp. missing) all the elements associated to a then-
decision (resp. else-decision), while the presence of other
elements is not constrained. In our case, decision vari-
ables are associated one-to-one with universal variables.

c

1

a

b

0

For example, the BDD aside represents the
universal scenarios we observe after Step 3 in
Figure 3: Solid (dashed) arrows denote then-
branches (else-branches). The decision order
is c, b, a. BDDs are ideally suited to repre-
senting broad scenarios: The initial one, that
takes into account every assignment, is repre-
sented by a tiny BDD with no decision node
and only one then-arc heading for the 1 sink.

In reduced/ordered diagrams all paths encounter variables
in the same order, and no two nodes represent the same
set (each one has a canonic representation). This allows
for information sharing among abstract formulas at
different stack depths in Algorithm 1. The operations
on sets we need (conjunction, projection, etc.) can be
performed efficiently on the BDDs involved. Finally,
most implementations perform self-reordering: They
adjust dynamically the decision order so to keep the rep-
resentation compact. Noticeably, there is no contradiction
in violating the left-to-right order of the prefix.

• Clause sets are represented by using lazy data struc-
tures (Zhang 1997; Moskewicz et al. 2001). The ad-
vantage is that a fraction of the clause database is tra-
versed during assignments, and that backtracking requires
no work at all. The disadvantage is that we cannot recog-
nize pure literals, nor satisfied formulas (until the assign-
ment is total). QBF-specific versions carrying more ex-
plicit information have been designed (Gent et al. 2004).
We use a variant of the latter which retains most of its
efficiency while addressing two additional issues:
– Clauses with universal literals only have to be immedi-

ately recognized and removed, according to Def. 4.
– Unit clases that are not total have to be taken on a

watched list of partial unit clauses, where they wait to
possibly become total as a side effect of a contraction
of the working scenario, according to Def. 6.

Relation to Previous Work2

Search-based QBF solvers are based on the seminal pa-
per (Cadoli, Giovanardi, & Schaerf 1998). Beyond adapt-
ing DPLL to the quantified case, Cadoli et al. presented
some significant improvements specific to QBF ( trivial
truth/falsity tests, monotone literals and forced assignments
rules). Further enhancements to the basic search scheme
have been (1) learning/caching of (in)validity search out-
comes for sub-formulas (Letz 2002), (2) solution-directed
backjumping and lazy data structures (Giunchiglia, Nariz-
zano, & Tacchella 2001), and (3) partial unfolding and quan-
tifier inversion (Rintanen 2001). Recently, a data-structure
level integration between a search-based QBF procedure and
a SAT solver, called “S-QBF” (aimed at sharing learned
clauses) has been shown to improve the state of the art on
some families (Samulowitz & Bacchus 2005). In another
recent work (Remshagen & Truemper 2005) a specialized
search-based algorithm (only working on the particular “Q-
ALL” class of formulas) has been shown to outperform other

2This section is shortened for lack of space. In case of accep-
tance the final 7-page long version will contain more details.



Instance S-QBF Quaffle QuBE Quantor sKizzo A. B.

game20_20_40_2 440.94 — 98.26 0.08 — 5.97
game20_25_25_1 309.46 — 369.50 — — 0.11
game20_25_25_2 125.29 — 2874.96 — — 0.22
game20_25_25_3 40.06 — 1150.51 — — 0.09
game20_25_25_4 222.13 — 1651.43 — — 42.64
game20_25_50_1 221.74 — 1657.63 — — 42.78
game50_25_25_1 64.22 — 1869.70 — — 0.75
game50_25_25_3 4.13 — — — — 0.09
game50_25_25_4 1.63 — 51.48 — — 0.87
game100_25_25_2 0.73 — — 9.26 0.07 0.03
game100_25_25_3 0.63 4.06 — 0.04 0.02 0.02
game150_25_25_1 0.00 0.00 — 0.01 0.01 0.01
game150_25_25_2 4.22 4.34 — 0.01 0.02 0.01
game150_25_25_4 0.30 208.79 — 0.01 0.01 0.01
robots1_5_2_72.7 221.70 19.64 1385.68 — — 88.38
robots1_5_2_42.7 672.14 288.06 565.01 — — —
robots1_5_2_61.6 268.29 99.34 424.87 — — 35.48

semprop 010604
yquaffle 2006
quantor 20040125
sKizzo 0.8.2

Table 1: Improvements over some difficult instances. All the data but
the last two columns are taken from (Samulowitz & Bacchus 2005),
where they exemplify instances difficult for search-based solvers and
unsolvable by the others. “−” means time/mem-out (5000s/3Gb).

Figure 4: Comparison with available state-of-the-art solvers over
some public-domain families (robots, game, q-shifter: 182 in-
stances in total). The x axis gives runtime for AB, the y axis for
the others. Timeout is 1000s. The legend hides no point.

approaches. Interestingly, both these works focus on the
game and robot families (see the next section). In the 2003
QBF solver evaluation report (Berre, Simon, & Tacchella
2003) all the competitive QBF solvers were search-based.
Things changed with solvers not based on search. We men-
tion Quantor (Biere 2004), QMRES (Pan & Vardi 2004),
and sKizzo (Benedetti 2005). These algorithms are strong
on average but their memory requirements are unaffordable
on some families (Le Berre et al. 2004).

As opposed to all these “alternative” approaches, ours is
still based on searching the space of assignments. However,
unlike standard search-based procedures, we avoid branch-
ing on universal variables: Admissible values for universals
are inferred after some existential candidate is designated.

Implementation and Experimentation2

We produced a preliminary C implementation of AB—
available for download at (Author 2006)—relying on the
CUDD library (Somenzi 1995) for BDD manipulation.

Figure 4 shows experimental results for some3 families on
which the attention has been recently focused to showcase
state-of-the-art improvements (see previous section). Over-
all, AB timed out more often than other solvers (solving 72%
of the instances within 1000s, against an average 82% for the
others). However, AB manages to be the fastest technique
in 40% of the cases (second best is semprop, with 29%),
and the only successful one for 7 problems (against the cu-
mulated 6 cases of all the others together). The favourable
runtime distribution is visible in Figure 4. Table 1 presents
some cases in which the state of the art is improved.

These results are impressive in that obtained with a ba-
sic implementation of Algorithm 1, missing backjumping,
branching heuristics, pure literal detection, caching, learn-
ing. Such techniques are crucial to the performance of ma-
ture QBF solvers, and can be lifted to work within AB.

3Results for all the public-domain QBFs at (Author 2006).

Conclusions and Future Work
We introduced a novel algorithm for deciding QBFs which
radically departs from previous approaches. In a first basic
implementation it is already competitive on some families.

As a future work, we plan to enhance AB with the tech-
niques mentioned at the end of the previous section, and to
elude yet another of QBF solvers’ weaknesses, i.e. the need
for branching according to the left-to-right order of scopes.
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