
LABORATOIRE
D'INFORMATIQUE

FONDAMENTALE
D'ORLEANS

Rapport de Recherche
http://www.univ-orleans.fr/lifo

4 rue Léonard de Vinci
BP 6759

F-45067 Orléans Cedex 2
FRANCE

Performance Prediction
for Distributed Virtual

Reality Application
Mappings on PC Clusters

Sylvain Jubertie, Emmanuel Melin
Université d’Orléans, LIFO

Rapport No 2007-03
05/01/2007



Performance Prediction for Distributed Virtual
Reality Application Mappings on PC Clusters

Sylvain Jubertie, Emmanuel Melin

Université d’Orléans — LIFO
BP 6759 — F-45067 Orléans cedex 2

{sylvain.jubertie | emmanuel.melin}@univ-orleans.fr

Abstract. Large and distributed Virtual Reality applications are often
built from heterogeneous parallel codes. FlowVR offers a design model to
easily compose a loosely coupled VR distributed application. FlowVR highly
facilitates the development of this kind of applications making possible the
description of their coupling and their mapping on the cluster nodes in-
dependently of their codes. Nevertheless, the choice of a good mapping is
leaved to the developer skill. In an other hand, VR applications may include
lots of different components and clusters may also be composed of numerous
and heterogeneous nodes and networks. In this case it seems very difficult
to map efficiently a distributed VR application onto a large cluster without
tools to help the programmer to analyse his choices. The FlowVR design
particularly does not propose any kind of performance model. In this pa-
per we present an approach to determine performances of VR applications
from a FlowVR network and from characteristics of a cluster. We also give
some advices to the developer to design efficient FlowVR mappings. Since
FlowVR model is very closed to underlying models of lots of VR codes, our
approach can be useful for all designers of such applications.

1 Introduction

Today clusters are theoretically able to reach the performances needed by VR ap-
plications because they are extensible. This is the most interesting property because
it doesn’t limit the simulation complexity nor the number of data to consider. But
clusters come with new programming problems : it is more complex to produce
efficient applications on distributed memory architectures than on shared memory
ones. Several communication libraries like MPI and PVM provide facilities, like
point-to-point communications and synchronisations, to program this architectures
efficiently. VR platforms were also ported to clusters to exploit their performances.
For example the NetJuggler [9] environment permits to drive VR applications with
parallel simulations and a distributed rendering. These approaches are very interest-
ing but are limited to simple applications assumed to run on homogeneous clusters.
The model behind NetJuggler is also too synchronous because the rendering rate is
too dependant of the simulation rate [3].

Consequently we should add more asynchronism between the different applica-
tion parts. For example the interaction codes and the simulations codes should be
connected together but they should not be synchronized if we want the application
to keep an interactive behaviour because the simulations have often lower frequen-
cies than haptic devices. In this case we want the simulation to receive interaction
data asynchronously even if some of them are lost. In the same way, we need asyn-
chronism with the visualization. When the user wants to change its point of view,
the visualization should change it interactively without waiting for the simulation.
In both cases the application parts are able to communicate without waiting for the
other. We say that they are linked with greedy communications.



Once we have described how to synchronize the different parts of the application
then we could map these parts on the cluster processors. A lot of choices are possible
depending of the underlying nature of the cluster which may be composed of het-
erogeneous nodes, peripherals and networks. This mapping is not straightforward
and may have consequences on the application performance. For example mapping
several parts on the same node may decrease latency between them by avoiding
network communications but it introduces concurrency which could reduce com-
putation times. In the case of a distributed simulation, increasing the number of
processor used may decrease the computation time but it may increase the net-
work load. Consequently we need a framework that eases mapping operations by
catching the parameters of each application part and abstracting the architecture.
This framework should also be associated to a performance model to tune efficient
mappings on distributed architectures.

The FlowVR library[2][4] was created to ease the development of VR applica-
tions and permit greedy communications. The main idea is to abstract the applica-
tion from a specific communication and synchronisation scheme. Consequently the
FlowVR framework enables also the building of VR applications independently of
the underlying architecture.

But this framework doesn’t give a way to obtain the best application mapping on
a given cluster nor any kind of performance information. Without such informations
the developer should use its experiment and test several configurations to find a
good mapping. But this task may become too complex for applications with lots of
modules on heterogeneous cluster like for example the application presented in [4]
which integrates 5000 different objects.

In this paper we propose several technics that could help the developer in his
mapping choices. The first goal is to associate performance informations to a specific
mapping. Then we will be able to compare several compatible mappings and to
give the best one. We also need to warn the developer when he makes choices
incompatible with the application requirements, for example associating a module to
a node with insufficient memory, or a visualization module to a node not connected
to the right display.

2 Performance models for parallel programming

We study the existing parallel models associated with cost models.

2.1 PRAM : Parallel Random Access Machine

The PRAM model defines a synchronous multi-processor machine accessing a shared
memory. Each step in the computation is made synchronously by each processor
which reads or writes data in the shared memory. A communication or computation
step is assumed to take unit time.

On distributed memory architectures, such as clusters, this model is unrealistic
because it assumes that all processors work synchronously and it doesn’t take care
of the communication cost, which is not negligible compared to the computation
cost. Moreover, for distributed Virtual Reality applications we need heterogeneous
and asynchronous computations on the different nodes of the cluster and the PRAM
is not well adapted for it.

2.2 BSP : Bulk Synchronous Parallel

In the BSP model [13] a computation is defined by a sequence of supersteps :
asynchronous computation followed by a global communication step and a syn-
chronisation barrier. The cost of a BSP algorithm is defined by the input size and



several architectural parameters. This model has interesting properties : it is ar-
chitecture independent and the performance of a BSP program is predictable on a
given architecture.

But this model imposes to write programs following a particular scheme : su-
persteps, which does not fit the heterogeneous nature of VR applications. All the
supertsteps must wait for the longest one to complete before entering the global
barrier. This leads to inefficiency for applications with not well balanced supersteps
and more specifically for the VR applications.

The BSPWB model[12], a BSP Without Barrier, proposes a generalisation of
the superstep to a Message step (M-step) : a local computation followed by a data
emission and reception. Global barriers are removed because processors may be in
different M-steps at the same time. But two M-steps could only communicate if they
are adjacent which limits the possible asynchronism between M-steps. Moreover
greedy communications are not possible in this model.

2.3 LogP

The logP model [6] was developed specifically for distributed memory architectures
with point-to-point connections. The goal is to obtain a more realistic cost than
the PRAM model by taking into account the communication cost. This model is
asynchronous to reflect the intrinsic nature of distributed memory architectures and
to obtain better performances than the BSP model without the need of expensive
global synchronizations.

The LogP model uses four parameters to catch the main characteristics of dis-
tributed memory architectures : the communication delay (L), the communication
overhead for the management of the network interface (o), the communication band-
width (g) and the number of processors (P ).

A distributed computation is represented in LogP by a directed acyclic graph,
each node represents a local computation on a processor and each edge a point-to-
point communication. Two local computations are asynchronous if there is no path
between them. The execution follows the communication scheme of the dependency
graph. Performances are obtained by computing the longest path in the graph.

This model permits to obtain optimal algorithms for simple problems [6] but
is not well adapted to more complex applications [10]. VR applications need also
asynchronism even if a dependency (a path in the LogP graph) exists between two
computations. For example even if a simulation provides data at a low frequency, the
rendering operations should not be tightly synchronized to it. In this case we need a
greedy communication which is not available in LogP. This model also assumes that
the cluster nodes are identical and doesn’t take care of heterogeneous configurations.

2.4 Athapascan

Athapascan [5] is a C++ library designed for explicit parallel programming using
threads. The parallelism is expressed in the code by explicit remote procedure calls
to threads which are synchronized and communicate through a shared memory. The
dependencies between threads are expressed by a graph which is built by following
the sequentially structure of the code. Each node represent a different task to execute
and each path a data dependency between two tasks. When a task creation is called
then a node is added to the graph. If this task contains a reference to a variable
shared by a previous task in the graph then it is linked to this task. Like in the
LogP model, the cost of an execution is defined by the length of the longest path
in the dependency graph.

In the general case, the graph is built at the beginning of the execution. But
for VR applications which include infinite loops the graph has an infinite size and



cannot be built. In this case it is possible to limit the graph construction at a certain
size. For example [7] present a cloth simulation using the Athapscan library where
each simulation step is associated to a new graph. The tasks are then spawn on the
different processors by a scheduler following a mapping policy based on heuristics.

This model doesn’t allow asynchronous communications between two threads
because they are executed following the sequential structure of the code and syn-
chronized by their access to a shared variable. If we consider the heterogeneous
nature of a VR application and of the architecture then it seems difficult to find an
efficient mapping policy.

2.5 Performance model for the SCP language

SCP [11] is a SPMD language based on structured dependencies directed by the
syntax order. A SCP program could be viewed as a directed acyclic graph built
by following the sequential instructions order. Each path in the graph represents a
possible execution of the program. The cost of a SCP program corresponds to the
longest path in the graph depending of an initial context.

In this model the syntax gives the synchronization scheme and the order be-
tween the different application parts while in VR applications we want to define the
synchronization scheme independently of the syntax. Moreover a SCP application
is seen as a single code while a VR application is built from heterogeneous codes.

3 The FlowVR model/design

FlowVR is an open source middleware dedicated to distributed interactive applica-
tions and currently ported on Linux and Mac OS X for the IA32, IA64, Opteron,
and Power-PC platforms. The FlowVR library is written in C++ and provides tools
to build and deploy distributed applications over a cluster. We turn now to present
its main features. More details can be found in [2].

A FlowVR application is composed of two main parts, a set of modules and a
data-flow network ensuring data exchange between modules. The user has to create
modules, compose a network and map modules on clusters hosts.

Data exchange Each message sent on the FlowVR network is associated with a
list of stamps. Stamps are lightweight data that identify the message. Some stamps
are automatically set by FlowVR, others can be defined by users. Basic stamps are
a simple ordering number or the module id of the message source. Stamps makes
possible to perform computations or routing on messages without having to read
the message content nor transmit it to avoid useless data transfers on the network.

Modules Modules encapsulate tasks and define a list of input and output ports. A
module is an endless iteration reading input data from its input ports and writing
new results on its output ports. A module uses three main methods:

– The wait function defines the beginning of a new iteration. It is a blocking call
ensuring that each connected input port holds a new message.

– The get function obtains the message available on a port. This is a non-blocking
call since the wait function guarantees that a new message is available on each
module ports.

– The put function writes a message on an output port. Only one new message
can be written per port and iteration. This is a non-blocking call, thus allowing
to overlap computations and communications.



Note that a module does not explicitly address any other FlowVR component.
The only way to gain an access to other modules are ports. This feature enforces
possibility to reuse modules in other contexts since their execution does not induce
side-effect. An exception is made for parallel modules (like MPI executables) which
are deployed via duplicated modules. They exchange data outside FlowVR ports,
for example via MPI message passing but they can be apprehended as one single
logical module. Therefore parallel modules do not break the FlowVR model.

The FlowVR Network The FlowVR network is a data flow graph which specifies
connections between modules ports. A connection is a FIFO channel with one source
and one destination. This synchronous coupling scheme may introduce latency due
to message bufferization between modules. This may induce buffer overflows. To
prevent this behavior, VR applications classically use a ”greedy” pattern where the
consumer uses the most recent data produced, all older data being discarded. This
is relevant for example when a program just needs to know the most recent mouse
position. In this case older positions are usefullness and processing them just induces
extra-latency. FlowVR enables to implement such complex message handling tasks
without having to recompile modules. To perform these tasks FlowVR introduces a
new network component called filter. Filters are placed between modules onto con-
nection and has an entire access to incoming messages. They have the freedom to
select, combine or discard messages. They can also create new messages. Although
FlowVR model does not enforce the semantics of filters, the major pattern in VR
applications is the ”greedy” filter. loaded by FlowVR daemons. The goal is to favor
the performance by limiting the required number of context switches. As a conce-
quence the CPU load gererated by greedy filters can be considered as negligible in
front of module load.

A special class of filters, called synchronizers, implements coupling policies. They
only receive/handle/send stamps from other filters or modules to take a decision
that will be executed by other filters. This detached components makes possible a
centralised decision to be broadcasted to several filters with the aim to synchronize
their policies. For example, a greedy filter is connected to a synchronizer which
selects in its incoming buffer the newest stamp available and sends it to the greedy
filter. This filter then forwards the message associated with this stamp to the down-
stream module.

The FlowVR network is implemented by a daemon running on each host. A
module sends a message on the FlowVR network by allocating a buffer in a shared
memory segment managed by the local daemon. If the message has to be forwarded
to a module running on the same host, the daemon only forwards a pointer on the
message to the destination module that can directly read the message. If the message
has to be forwarded to a module running on a distant host, the daemon sends it
to the daemon of the distant host. Using a shared memory enables to reduce data
copies for improved performances. Moreover a filter does not run in its own process.
It is a plugin loaded by FlowVR daemons. The goal is to favor the performance
by limiting the required number of context switches. As a concequence the CPU
load gererated by the FlowVR network management can be considered as negligible
compared to module load.

FlowVR does not include performance informations to help the modules place-
ment. This tasks is leaved to the developer.

4 Predicting/Determining performances

In this section we present our approach to determine performance of an application
mapping on a given cluster. Our main goal is to provide an algorithm which takes as



parameter a FlowVR network and the cluster caracteristics and return performance
informations on the modules. This way we will be able to predict performance of
different mappings without deploying the application on the cluster. We also want
to warn the developer if its mapping is not compatible with the FlowVR model.

Before dealing with application performances we must answer the following ques-
tions : What means the “best mapping” for a VR application ? Is it the one which
gives the best performances for all the application’s modules ? What are the criteria
to optimize ? In fact it is really difficult to answer this questions because optimizing
part of an application may have unexpected consequences on the other parts. Some
modules are more critical than others in the application. For example a visualiza-
tion module should have a framerate around 20-30 fps to ensure interactivity, if
it is lower then even if the other modules perform well the user will not have an
interactive feeling. On the other side, if the framerate is too high some frames are
not viewed by the user. In this case too much resources are provided to the module
which may be usefull to other modules. Consequently, we cannot determine an ab-
solute global performance for an application. But the user could specify his needs
and his requirements on some modules. Thus we propose in our approach to give
the user the means to choose if a mapping is compatible with its expectations.

To compute performances of a mapping we need the following informations for
each module m :

– its nature : CPU or I/O-bound. The developer should identify his modules. If
the modules is performing lots of I/O operations, like an interaction module,
then it is I/O-bound else it is CPU-bound when it performs computations, like
a simulation module. This helps to determine the scheduler policy in the case
of concurrent modules.

– its computation time Tcomp(m) on the host processor. It is the time a module
needs to perform its computation when there is no concurrent modules on the
processor.

– its processor load LD(m) on the host processor. It corresponds to the percentage
of the computation time used for the computation and not for waiting I/O
operations.

4.1 Computing iteration times

The iteration time Tit of a module is defined by the time between two consecutive
calls to the wait function. This includes the computation time Tcomp and the time
Twait the module is locked in the wait function.

When several modules are mapped on the same processor then their respective
executions could be interleaved by the scheduler. Then a module could have a
greater computation time. We called it the concurrent computation time Tcc. It is
determined from the scheduler policy.

The developer can specify its own policy according to the behaviour of his op-
erating system scheduler. In this paper we choose to modelize a Linux scheduler
policy [1] which gives priority to modules depending of the time they wait for I/O
operations. For the sake of clarity we restrict our model to single processor com-
puters. We distinguish two cases depending of the concurrent module loads sum
:

– if it is lower than 100% then the scheduler gives the same priority to each
module. In this case the processor is able to handle the computation of each
modules without interleaving their executions and for each module m we have :

Tcc(m) = Tcomp(m) (1)



Note that if there is only one module mapped on a processor then its concurrent
computation time is also equal to its computation time.

– if it is greater than 100% then the priority is given to I/O-bound modules
depending of the time they wait for I/O. In this case the execution of the CPU-
bound modules are interleaved. First we compute the time TI/O each module
waits for I/O according to their respective loads and we also add the time Twait

it blocks in the wait function :

TI/O(m) = Tcomp(m)× (1− LD(m)) + Twait (2)

We order the modules by the time they are waiting. We give the module m1
which waits the most a processor load CPULD equals to its load : CPULD(m1) =
LD(m1). Then for the second module m2 we give it a processor load equals to
CPULD(m2) = (1−CPULD(m1))× (LD(m2)). We repeat this process for all
the I/O modules according to the following equation :

CPULD(m) = (1−
∑

TI/O(mi)>TI/O(m)

CPULD(mi))× LD(m) (3)

Then the rest of the processor load is shared by the n concurrent modules with
TI/O = 0 :

CPULD(m) =
1−

∑
nature(mi)=I/O CPULD(mi)

n
(4)

According to the processor load of each module we could now compute their
concurrent computation times :

Tcc(m) = Tcomp(m)× LD(m)
CPULD(m)

(5)

The iteration time depends also of synchronizations between the module and
modules connected to its input ports. For each module m we need to define its input
modules list IM(m) as the set of modules connected to its input ports. We distin-
guish two subsets of IM(m) : IMs(m) and IMa(m), which contain respectively the
modules connected to m synchronously with FIFO connections and asynchronously
with greedy filters. If we consider a module m with IMs(m) 6= ∅ then this module
should wait until all the modules in IMs(m) have sent their messages. This means
that it must wait for the slowest module in IMs(m) but only if it is slower than it.
Consequently the iteration time Tit of a module m is given by the following formula
:

Tit(m) = max(Tcc(m),max(Tit(min)|min ∈ IMsm)) (6)

If the module m has no connected input ports (IM(m) = ∅) or if it has only
asynchronous inputs (IMs(m) = ∅) then there is no constraint on the iteration time
and we could simplify the formula 6. In this case the iteration time Tit is equal to
the concurrent computation time :

Tit(m) = Tcc(m) (7)

Else if IMs(m) 6= ∅ and IMa(m) 6= ∅ then asynchronous communications have
no effect on the module iteration time and we could apply the equation 6. Conse-
quently in the general case where IMs(m) 6= ∅ if the receiver has a lower iteration
time than the emitter then its iteration time is aligned on the emitter’s one. Note
that if Tcc(m) > max(Tit(min)|min ∈ IMsm) then m is slower than at least one of
its input modules. In this case messages sent by these modules are accumulated in



the daemon shared memory until it is full, leading to a buffer overflow. Our analysis
allow to detect such cases.

The formula 7 shows that the iteration time of modules without synchronous
communications on their input ports do not depend of the previous modules. Con-
sequently we could remove greedy communications from the application graph to
study the effect of synchronizations on modules iteration times. The resulting graph
may stay connected or may not be a connected anymore. In this last case we obtain
several set of modules called components.

The next step of our approach is to consider each component without taking care
of the concurrency with modules from other components. Then we try to determine
the iteration and computation times of each module in a given component . Finally
we study the consequence of concurrency between each component.

The starting points of our study of each component are greedy modules and
modules sending a first message before calling the wait function. This last case is
necessary to start an application with a module in a cycle. We called this kind of
modules cycle starting modules.

Greedy modules may have different iteration times. If we have several greedy
modules in the same component then it means that it exists a module in the compo-
nent which as more than one greedy module as a predecessor. This module should
have the iteration time of the slowest greedy module. Because we could not guaran-
tee that it greedy predecessors have the same iteration time, the module may accu-
mulate messages from the fastest one, leading to a buffer overflow. Consequently we
should recommend to only construct FlowVR applications with one greedy module
by component.

Following the same way, if we consider a greedy module and a cycle starting
module in the same component then we also have the same problem. Consequently
the cycle must have the greedy module as predecessor.

Moreover if the component contains only cycle starting modules, only cycle of
them should be the common predecessor of the others. So we could consider it as
the only starting module because it imposes its iteration time to all modules.

Consequently for each component we must have only one starting point as pre-
decessor of all modules : a greedy or a module within a cycle. If there is other
cycle starting modules then we could ignore them because the iteration time of all
modules in the component shoud be equal to the greedy module iteration time.

The iteration time is common to all the modules in a component and is equal
to the iteration time of the starting module. We compute the iteration time of the
starting module ms according to its nature and to the nature of its concurrent
modules. If ms has no concurrent modules then its iteration time is equal to its
computation time according to equation 7. If all its concurrent modules are in the
same component then Tcc(ms) may increase. It involves that the iteration time of
each concurrent module should also increased by the same amount. In this case
the computation of iteration times for each modules is interdependent. We could
compute the new Tcc(ms) from equation 5 with the current iteration time of the
other modules. This means that we are giving less priority to ms and we obtain the
maximum Tcc(ms) which is equal to the maximum Tit. Then we apply the equation
again but with the new Tit. In this case we have the lowest value for Tcc(ms). We
could continue to perform this operation but it is not guarantee to converge. If
ms is CPU-bound then it always have the lowest priority and we could apply the
preceeding process until convergence. Otherwise if ms is a I/O-bound module its
Tcc may oscillate because its priority could change in comparison with the other
modules priority. Consequently we could have a variable iteration time of a starting
point and all the modules in the same component. This could affect the interactivity
of the application so we recommend the developer to avoid this configuration in its
mappings.



In the general case starting points may have concurrent modules from other
components. Then we need to compute the iteration time of starting points of
the other components. This process may also be interdependent for example if we
have two components with starting points mapped on the same processor that
modules from the other component. To detect interdependencies we add edges from
modules to starting modules mapped on the same processor. We called this graph
the interdependency graph. If we have cycles in the resulting graph then we have
interdependencies. Then we could also apply the process described above with the
same consequences. If there is no cycles in the interdependency graph then we have
at least one starting module which does not depend of the other components.

For the other non-starting modules of each component we could compute now
their concurrent computation time with the equation 5. Once we have this infor-
mation we could determine for each module m if Tcc > Tit. In this case we could
detect a buffer overflow.

The study of this interdependency graph may help the developer to avoid prob-
lematical mappings. It also shows the consequences of concurrency in the whole
application. For example if we want to improve performances of a particular com-
ponent then we should avoid to map its starting module with modules from other
components.

At this step we have the iteration times of all the modules in the application.
This is important because the developer is able to see if the mapping corresponds to
the performances he expected. For example he knows if a simulation module could
run at the desired frequency because the module frequency F (m) is equals to the
inverse of the iteration time Tit(m) :

F (m) =
1

Tit(m)
(8)

If this is not the case then he should consider another mapping. Else we should
continue to study this mapping and consider communications between modules over
the network.

4.2 Communications

We now study the communications defined by an application mapping between the
different FlowVR objects.

We assume that synchronizer communications are negligible compared to the
other communications. Indeed even if synchronizations occured at the frequency of
the fastest module involved in the synchronizations, they required only few stamps
informations compared to the message size sent by this module. We also assume
that communications between objects mapped on the same processor are free. In
this case the messages are stored in the shared memory and a pointer to the message
is given to the receiving object.

Computing requested bandwidths We begin our study with a traversal of the appli-
cation graph to determine for each filter f its frequency F (f) and the volume of
data on its output ports. We start our traversal with starting modules and follow
the message flow in the graph. When we consider a filter f then we assign it a fre-
quency F (f) according to its behaviour. For example a greedy filter fgreedy sends
a message only when the receiving module mdest asks it for a new data. Thus we
have F (fgreedy) = F (mdest). A broadcast filter fbroadcast processes messages at the
same frequency of its input module msrc. In this case we have Fbroadcast = Fmsrc .
For each filter we also compute the size of messages on its output port. For example
a binary scatter filter takes as input a message of size s and splits it into two output
messages of size s

2 on each output port.



We assume a cluster network with point-to-point connections in full duplex
mode, with a bandwith B and a latency L. Communications are handled by a
dedicated network controller without CPU overload.

The application graph G is defined by a set of vertices V for each FlowVR objects
and a set of directed edges E representing communications between objects output
ports and input ports. Then we add additional edges to modelize communications
out of the FlowVR communication scheme, for example communications between
several instances of a MPI module. For each instance we add output edges and input
edges respectively to and from other MPI instances. We define for each edge e :

– a source object src(e) which is the FlowVR object sending a message through
e.

– a destination object dest(e) which is the FlowVR object receiving message from
src(e).

– a volume V (e) of data sent through it. It is equal to the size of the message sent
by src(e).

We provide a function node(o) which returns the node hosting a given FlowVR
object o.

Then we are able to compute the bandwidth BWs needed by a cluster node n
to send its data :

BWs(n) =
node(src(e)) 6=node(dest(e))∑

node(src(e))=n

V (e)× F (src(e)) (9)

We could also determine the bandwidth BWr needed by a cluster node n to
receive its data :

BWr(n) =
node(src(e)) 6=node(dest(e))∑

node(dest(e))=n

V (e)× F (src(e)) (10)

If for a node n BWs(n) > B then messages are accumulated in the shared
memory because the deamon is not able to send them all. Consequently we could
detect a buffer overflow. If BWr(n) > B then there is too much data sent to the
same node, leading to contention.

These informations give the developer the ability to detect network bottlenecks
in its mappings. Then he could solve them for example by reducing the number of
modules on the same node and changing the communication scheme.

Computing latencies The latency is defined between two FlowVR objects. It rep-
resents the time needed by a message to be propagated from an object to another
throught the communication network. In VR applications the latency is critical be-
tween interaction and visualization modules : the consequence of a user input should
be visualize within the shortest possible delay to keep an interactive feeling.

We determine the latency between two objects o1 and o2 from the path P be-
tween them. A path contains a set of FlowVR objects and edges between them. The
latency is obtained by adding the iteration time Tit(m) of each module m in the
path to communication time needed for each edge in the path :

L(m1,m2, P ) =
∑
m∈P

Tit(m) +
∑

src(e) 6=dest(e)

V (e)
B

+ L (11)

With this information the user is able to detect if the latency of a path is
low enough for interactivity. If the latency is too high then the developer should
minimize it by increasing frequencies of modules in the path or by mapping several
modules on the same node to decrease communications latencies.



4.3 Test Application

Our test application is based on a generic parameterizable FlowVR module which
could simulate lots of different kinds of modules.

We first verify that our scheduler policy is realistic. Tests are run on a Pentium
IV Xeon 2.66Ghz with Linux as operating system. We use the revision 2.6.12 of the
Linux kernel. We run three modules on the same processor and we compare their
measured computation times with their concurrent computation times predicted
with the equation 5. For each module we define its computation time Tcomp and its
waiting time TI/O. Modules are not synchronized (Twait = 0) so we could compute
their loads by inverting the equation 2 :

LD(m) =
Tcomp(m)− TI/O(m)

Tcomp(m)
(12)

Results presented in figure 1 show for the three modules their respectives computa-
tion times Tcomp, waiting times TI/O, predicted concurrent computation times Tcc

and their real computation times Treal.
In the first test we consider 3 I/O-bound modules. Then we compute their

respective loads with equation 12. We predict 17% for module 1, 20% for module 2
and 25% for module3. The total load is equal to 62% and is lower than 100% so for
each module we have Tcc = Tcomp. For the other tests we have at least one CPU-
bound module so the total load is higher than 100%. We order IO-bound modules
according to the time TI/O from the module which wait the most to the module
which wait the less. We compute their respectives concurrent loads and we split
the remaining processor load available between the CPU-bound modules. Then we
apply equation 5. Results show that our policy is correct so we could now apply our
approach on a real application.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Module1 Module2 Module3

tim
e

3 I/O-bound modules with a total load < 100%

Tcomp
Ti/o
Tcc

Treal

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Module1 Module2 Module3

tim
e

2 I/O-bound modules + 1 CPU-bound module

Tcomp
Ti/o
Tcc

Treal

 0

 10

 20

 30

 40

 50

 60

 70

Module1 Module2 Module3

tim
e

1 I/O-bound module + 2 CPU-bound modules

Tcomp
Ti/o
Tcc

Treal

 0

 10

 20

 30

 40

 50

 60

 70

Module1 Module2 Module3

tim
e

3 CPU-bound modules

Tcomp
Ti/o
Tcc

Treal

Fig. 1. Concurrent computation time predictions



4.4 Fluid-Particle Simulation

In this section we apply our approach on a mapping of a real FlowVR application
on a cluster.

The FluidParticle application consists of a flow simulation giving a velocity field
to a set of particles. Each particle’s new position is then computed by adding the
correspondent velocity vector in the field to its current position. The particles are
then rendered on the screen using a point-sprite representation. The dataflow of the
application is presented in figure 2. The visual result (figure 4) is a set of particles
initially mapped regularly in a fluid which are then pushed by two flows. We could
observe typical fluid phenomena like vortices.

Fig. 2. Dataflow of the FluidParticle application

The cluster is composed of eight single processor nodes connected with a gigabit
network.

Now we present each module of our application :

– the fluid simulation : this is a parallel version of the Stam’s fluid simulation [14]
based on the MPI library [8]. This module is CPU-bound and has a load of
97%. In our test we consider a global grid of 400x400 cells splitted in four
200x200 local grids across the nodes. For each module instance mi

sim we have
Tcomp(mi

sim) = 200ms. During each iteration each module send seven times its
border with its neighboors.

– the particle system : this a parallel module. Each instance stores a set of parti-
cles and moves them according to forces provided by the fluid simulation. The
particle set is then sent on the output port. This module is CPU-bound, has a
load of 97%. We consider a gloabl set of 640.000 particles splitted up into two



local sets (one by module instance). For each module instances mi
part we have

Tcomp(mi
part) = 20ms.

– the viewer : it converts the particles positions received on its input port into
graphical data which are then sent through its scene output port. It is a CPU-
bound module with a load of 97%. It takes Tcomp(mview) = 28ms to computes
the 640.000 particles from the particle system.

– the renderer : it displays informations provided by the viewer modules. There
is one renderer per screen. We want to visualize the particles on a display wall
of four projectors connected to nodes 1, 2, 3 and 4. Renderer modules are
synchronized together with a swaplock to provide a coherent result on the
display. Each renderer module is CPU-bound with a load of 97%. It takes
Tcomp(mrend) = 57ms to display 640.000 particles.

– the joypad : it is the interaction module which allow the user to interact with
the fluid by adding forces. It is mapped on node 6 where the joypad device is
connected. This module is I/O-bound, has a load under 1% and a computation
time Tcomp < 1ms. Consequently according to our model it should not involve
performance penalties on the other modules.

The figure 5 shows the mapping we have chosen. The fluid simulation is dis-
tributed on the four last nodes (5, 6, 7, 8) and receives interaction from the joypad
module through a greedy communication. The result of the simulation is gathered
using binary gather filters then it is broadcasted to the two particles modules on
nodes 3 and 4. Then we have one viewer module on node 2 which transform the
particle positions gathered with a gather filter into visual informations. Finally the
visual informations are broadcasted to renderer modules mapped. Each renderer
module displays a quarter of the full scene on a display wall.

We map the renderer modules on the nodes 1, 2, 3, 4 because We want to
visualize the result of the application on the display wall connected on theses nodes.
The joypad is connected to the node 6 so we must map the interaction module on
this node. Then we are free to map the other modules on the cluster. We have
choosen this mapping to avoid concurrency between the simulation and the other
modules because we want to have the maximum frequency for the simulation. So
the particles and the viewer modules should be placed on nodes 5, 6, 7 or 8.

We start to calculate iteration times of each modules. For the simulation mod-
ules we have IMs(mi

sim) = ∅ and they are not in concurrency with other modules
so we have for each instance Tit(mi

sim) = Tcc(mi
sim) = Tcomp(mi

sim) = 200ms.
The particles modules are synchronized with the simulation consequently we have :
Tit(mi

part) = Tit(mi
sim) = 200ms. Moreover renderer modules 3 and 4 are mapped

on the same processors and run asynchronously because IMs(mi
render) = ∅. In this

case the priority is given to the particles modules which wait the most and we could
compute their concurrent computation time : Tcc(mi

part) = Tcomp(mi
part) = 20ms.

Then we repeat the same process for the viewer module and we obtain Tcc(mview) =
Tcomp(mview) = 28ms. Finally we consider the renderer modules which are synchro-
nized together with a swaplock and are distributed on four nodes so the global iter-
ation time is given by the highest iteration time each module could have on the four
processors. We compute the concurrent computation time for each module instance
: on node 1 and 2 the particle module takes a CPULD(m1,2

part) = 0.10 so we have
CPULD(m1,2

rend) = 0.90 then Tcc(m
1,2
part) = 20ms and Tcc(m

1,2
rend) = Tcomp(m

1,2
rend)×

1.10 = 63ms. Following the same method on node 3 with the viewer module we
obtain : Tcc(m1

view) = 28ms and Tcc(m3
rend) = Tcomp(m3

rend) × 1.14 = 66ms. Con-
sequently we have Tit(mi

rend) = Tcc(m
1,2
rend). Results are shown in figure 3 and we

could compare the concurrent computation time predicted to the one we measured.
We notice that our prediction is similar to the real result for all the modules.



Then we study the application network to determine possible bottlenecks. For
each filter we compute its frequency and the volume of data on its output ports.
Then we apply the formula 9 and 10. The MPI simulation module is mapped on
nodes 5, 6, 7 and 8. Each instance of this module sends its border to his neighboors
seven times per iteration for a total of 22.4kB per iteration. So we add edges in the
communication graph according to this MPI communication scheme. We show that
the fluid simulation produces 6.4MB/s which are then broadcasted to the particles
modules. The broadcast filter on node 3 needs to send a total of 12.8MB/s. The
particle modules send 25.6MB/s from node 1 to the viewer module on node 2. Then
the same amount of data is sent to each renderer module through a broadcast tree.
The viewer should only send 76.8MB/s to the renderer modules on nodes 1, 3 and 4
because we have the viewer module and one renderer module on the same node. In
all the previous cases the gigabit network is able to handle this communications. We
should not overload the network. Therefor we are also able to predict the behaviour
of each application module and to determine possible network contentions.

We have studied different mappings of this application. For example we have
tried to map the viewer module on node 3 with a particle module instance and a
renderer module instance. According to our prediction, we observe in this case a
decrease of the renderer modules frequency from 15 to 9fps. In this case the viewer
module has a higher concurrent computation time but its frequency stays at 5Hz
due to the constant iteration time. With this mapping we keep the same interactive
feeling because the renderer modules frequency is higher than the viewer module
frequency. We could also predict that 50% of the processor load is not used on node
2, 3, and 4. This information might be usefull if we plan to add other modules to
the application. We have also considered only two instances of the renderer module
on nodes 1 and 2, and the particles and viewer modules on node 3 and 4. In this
case we have predicted a network overload because the viewer is not able to send
more than 100MB/s through the network to the renderer modules. We have tried
this mapping and we have obtained a buffer overflow on the emitter node. Note
that our analysis permits to detect buffer overflows related to network overloads as
well as related to differences of frequency between synchronous modules.

We could map the viewer module on node 1 to solve this problem. Another
solution is to instanciate one more viewer module on node 4 to split the particles
set in two. Then we connect each particles module instance to the viewer module
on the same processor.

 0

 50

 100

 150

 200

Simulation Particles Viewer Renderer

tim
e 

(m
s)

Prediction for the FluidParticle application

Tcc predicted
Ti/o predicted

Tcc real
Ti/o real

Fig. 3. Performance prediction on the FluidParticle application



Fig. 4. Visualization of particles

5 Conclusion

We have shown that our approach can predict performances of applications from
their mappings. We are able to determine the frequencies of each module by taking
care of synchronizations and concurrency between modules. Moreover we could also
detect network bottlenecks and mappings not compatible with the user expecta-
tions. We also provide advices for the developer to build a correct mapping and
avoid lots of issues.

This method also brings to the FlowVR model a mean to abstract the perfor-
mance prediction from the code. The developer needs only sufficient informations on
modules he wants to integrate in his application to be able to predict performances.
Moreover it enforces the possibility to reuse modules on other applications. For
example a developer could replace his simulation and adapt his mapping without
having a deep knowledge of implementation details.

This approach is limited for the moment to homogenous single processor clusters
connected with a single network. We plan to extend it to consider heterogeneous
clusters, concurrency on SMP nodes, and multiple networks. The next step is to
study assisted or automatic optimizations of mappings to help the developer. We
plan to define constraint systems on a VR application and to process them using a
solver.

References

1. J. Aas. Understanding the linux 2.6.8.1 cpu scheduler. 2005.



scene dt keysmouse head beginIt

Visu/render/0
(node1)

frustum proj outdt outkeysmouse image texture endIt

_c50_c54

scene dt keysmouse head beginIt

Visu/render/1
(node2)

frustum proj outdt outkeysmouse image texture endIt

_c51 _c55

scene dt keysmouse head beginIt

Visu/render/2
(node3)

frustum proj outdt outkeysmouse image texture endIt

_c52 _c56

scene dt keysmouse head beginIt

Visu/render/3
(node4)

frustum proj outdt outkeysmouse image texture endIt

_c53 _c57

Greedy/Render/Viewer/sync/0
(node1)

_c90

beginIt

Visu/swaplock/0
(node1)

endIt

SwapLock/And
(node1)

_c58

Greedy/Render/Viewer/sync/1
(node2)

_c91

beginIt

Visu/swaplock/1
(node2)

endIt

_c59

Greedy/Render/Viewer/sync/2
(node3)

_c92

beginIt

Visu/swaplock/2
(node3)

endIt

_c60

Greedy/Render/Viewer/sync/3
(node4)

_c93

beginIt

Visu/swaplock/3
(node4)

endIt

_c61

positionx positiony beginIt

Simulation/0
(node5)

velocity pointer endIt

Greedy1/in/0
(node5)

_c30

f0/1
(node5)

_c36

GreedyX/sync/0
(node5)

_c6

GreedyY/sync/0
(node5)

_c21

positionx positiony beginIt

Simulation/1
(node6)

velocity pointer endIt

_c37

GreedyX/sync/1
(node6)

_c7

GreedyY/sync/1
(node6)

_c22

positionx positiony beginIt

Simulation/2
(node7)

velocity pointer endIt

f0/2
(node7)

_c38

GreedyX/sync/2
(node7)

_c8

GreedyY/sync/2
(node7)

_c23

positionx positiony beginIt

Simulation/3
(node8)

velocity pointer endIt

_c39

GreedyX/sync/3
(node8)

_c9

GreedyY/sync/3
(node8)

_c24

velocity pointer beginIt

Particles/0
(node3)

positions endIt

f2/1
(node2)

_c46

velocity pointer beginIt

Particles/1
(node4)

positions endIt

_c47

beginIt positions pointer

Viewer
(node2)

scene endIt

Greedy1/sync/0
(node2)

_c33

MaxFrequencySynchronizor/Viewer
(node2)

_c102

node2

_c77

beginIt

Joypad
(node6)

axe0 axe1 endIt

GreedyX/in/0
(node6)

_c0

GreedyY/in/0
(node6)

_c15

GreedyX/filter/0
(node6)

_c2

_c3

_c4 _c5

_c1

_c10

_c11

_c12

_c13
GreedyY/filter/0

(node6)

_c17

_c18

_c19 _c20

_c16

_c25

_c26

_c27

_c28

Greedy1/filter/0
(node5)

_c32

_c31

_c34

f0/3
(node3)

_c40 _c41

node3

_c42

node2

_c48

SwapLock/Pre
(node1)

_c62

_c63

_c64 _c65 _c66

FMerge/0
(node1)

_c67

FMerge/1
(node2)

_c68

FMerge/2
(node3)

_c69

FMerge/3
(node4)

_c70

Greedy/Render/Viewer/filter/0
(node1)

_c86

Greedy/Render/Viewer/filter/1
(node2)

_c87

Greedy/Render/Viewer/filter/2
(node3)

_c88

Greedy/Render/Viewer/filter/3
(node4)

_c89

Greedy/Render/Viewer/in/0
(node1)

_c82

_c94

Greedy/Render/Viewer/in/1
(node2)

_c83

_c95

Greedy/Render/Viewer/in/2
(node3)

_c84

_c96

Greedy/Render/Viewer/in/3
(node4)

_c85

_c97

_c14

_c29

_c35

_c98

_c99 _c100 _c101

_c103

node3

_c45

_c43_c44

_c49

node1

_c78

node2

_c79

node3

_c80

node4

_c81

node2

_c71 _c72

node3

_c73 _c74

_c75 _c76

Fig. 5. The FluidParticle application graph

2. J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin, and S. Robert.
Flowvr: a middleware for large scale virtual reality applications. In Proceedings of
Euro-par 2004, Pisa, Italia, August 2004.

3. J. Allard, V. Gouranton, E. Melin, and B. Raffin. Parallelizing pre-rendering compu-
tations on a net juggler pc cluster. In Proceedings of the IPT 2002, Orlando, Florida,
USA, March 2002.

4. J. Allard, C. Mnier, E. Boyer, and B. Raffin. Running large vr applications on a pc
cluster: the flowvr experience. In Proceedings of EGVE/IPT 05, Denmark, October
2005.

5. G. Cavalheiro, F. Galilee, and J.-L. Roch. Athapascan-1: Parallel programming with
asynchronous tasks. In Proceedings of the Yale Multithreaded Programming Workshop,
Yale, June 1998.

6. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicker. Logp: Towards a realistic model of parallel computation.

7. J.M.Vincent F. Zara, F. Faure. Physical cloth simulation on a pc cluster. In Euro-
graphics Workshop on Parallel Graphics and Visualization, 2002.



8. R. Gaugne, S. Jubertie, and S. Robert. Distributed multigrid algorithms for interactive
scientific simulations on clusters. In ICAT, 2003.

9. E. Melin J. Allard, V. Gouranton and B. Raffin. Parallelizing pre-rendering computa-
tions on a net juggler pc cluster. In IPTS 2002, 2005.

10. G. Loh. A critical assesment of logp: Towards a realistic model of parallel computation.
11. X. Rebeuf. Un modle de cot symbolique pour les programmes parallles asynchrones

dpendances structures. PhD thesis, Universit d’Orlans, 2000.
12. J. L. Roda, C. Rodriguez, D. G. Morales, and F. Almeida. Concurrency: Practice en

Experience, chapter Predicting the execution time of message passing models. 1999.
13. D.B. Skillicorn. Predictable parallel performance: The bsp model.
14. J. Stam. Real-time fluid dynamics for games. In Proceedings of the Game Developer

Conference, March 2003.


