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Abstract

Slowly but surely, industry is discovering the need for programming languages,
runtime environments and methodologies adapted to collaborative and dis-
tributed computing platforms. However, current distributed platforms, whether
industrial or academic, are generally fragile with respect to resource exhaustion,
and can provide, at best, ad hoc solutions to counter accidents or Denial of Ser-
vice attacks. In this paper, we examine the problem of resource management in
Erlang, that is providing services for distant use, while ensuring that untrusted
third-parties using the services may not cause the exhaustion of memory, file
handles or other limited resources. For this, we provide a formal semantics for
a subset of Core Erlang, as well as a model of its library, and we provide a
type system for formally proving robustness of services with respect to Denial
of Service attacks.
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Chapter 1

Introduction

In the course of the last decades, the landscape of computing has seen a grad-
ual change from purely hierarchical organisations to distributed teams, or even
distributed groups of agents, cooperating through decentralised applications,
information repositories, online services and now web applications. All these
forms of collaborative computing offer numerous opportunities and require new
tools and new manners of thinking. In turn, the new tools open the doors to nu-
merous new weaknesses with respect to security and robustness. Indeed, even
clean languages designed for distribution, such as Erlang [2] or the strongly-
typed JoCaml [7] or Nomadic Pict [21], have little in the manner of protection
against malicious or ill-programmed agents.

Of concern, for instance, are Denial-of-Service attacks: can an attacker cause
a service to expend all its memory, to open more files than the operating sys-
tem can handle or to use up all the paper available for its printers ? While
dynamic techniques exist – and are included in most modern operating systems
and virtual machines – to watch the consumption of resources and terminate
ill-behaved processes, they are typically not defined formally, apply to only a
specific set of resources, and may only detect these resource-exhausting pro-
cesses when it is too late, especially when the resources under attack are limited
and cannot be deallocated. The alternative is to analyse agents at compile-time
or launch-time and execute only that do not exhaust resources.

This work presents a step in the development of a resource-safe Erlang, in
which both results would be achievable. Erlang is a concurrent, dynamically
typed, distributed, purely functional programming language, widely used in the
world of telecommunications. While Erlang is not an implementation of for-
mal semantics, several attempts have been made at formalising the semantics of
Erlang, either directly[8] or by translating it into π-calculus[15]. We use and ex-
tend this last work to offer a denotational semantics of Core Erlang in Teπc[19],
a targettable/extendable π-calculus. In addition to capturing the computational
behaviour of Erlang, this encoding allows us to observe the resource usage of
a program, hence to define a dynamic notion of resource exhaustion and po-
tentially to detect Denial-of-Service attacks. For instance, let us consider the
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following Erlang extract:

l o g f r a g i l e ( Item ) −>
let F i l e = open (” log ”) in

wr i t e ( F i l e , Item ) ,
c l o s e ( F i l e ) .

The program defines a service log fragile, for use by any agent over the
network, whose role it is to write items in a file. The opening of this file is an
action which may require resources, such as some space in the file allocation table
or some reading privileges. If it is executed, statement write(file, item) will
run in an environment where these resources are referenced by file. Eventually,
once the item has been written to the file, that file is closed. Finally, depending
on the resources involved, this closing may allow the system to recover some or
all of the resources – resources such as memory may be fully recovered while
credentials or access logs are more complex.

As it turns out, if the number of files opened at any given time is a critical
resource, then this service happens to be fragile: since there is no synchronisa-
tion between instances of the service, a malicious agent only has to fork and call
log fragile often enough to eventually reach such a state in which resource
“file handler” is exhausted.

In Teπc, one could model the opening of this file as a transition i −→∗

(νfile = File())j, where i is the body of log fragile and j is the remainder
of the operations after the opening, that is writing and closing. This transi-
tion marks the fact that, while i is executed in an empty environment, j runs
with a reference file to some resource File. Conversely, closing the file is
marked by a transition such as (νfile = File())k −→∗ l. In particular, the
resource usage of these processes differs. If the system is only able to maintain
n open files at any given time, a process such as (νfile1 = File())j1 | (νfile2 =
File())j2 | · · · |(νfilen+1 = File())jn+1 is exhausting the system’s resources
and should be stopped.

By opposition, the following listing presents a trivial robust manager for the
service, which can be called any number of times and will never use more than
one file1:

let A = new lock ( ) in
letrec l o g r obu s t = fun ( Item ) −>

a cqu i r e l o c k (A) ,
l o g f r a g i l e ( Item ) ,
r e l e a s e l o c k (A)

in l o g r obu s t .

The objective of this work is to formalise the difference between the manners
of managing resources used in log fragile and log robust, to model resource
exhaustion and to provide formally proved tools for guaranteeing a service with

1Note that the syntax of Core Erlang is somewhat different from that of Erlang/OTP. This
extract complies with the former. A close approximation of this source code in Erlang/OTP
is presented in appendix A
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respect to Denial of Service attacks. In Section 2, we present Teπc, which we
use in Section 3 as the domain of a denotational semantics of a subset of Core
Erlang. In Section 4, we make use of this encoding to provide a static type
system to guarantee the robustness of a program. We then conclude by an
overview of related works and future developments.
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Chapter 2

Teπc

Teπc, the targettable/extendable π-calculus, is an extension of the controlled
π-calculus[18], itself a variant of the π-calculus[14], a formal language designed
for modelling and studying concurrent and distributed systems with dynamic
reconfigurations. To this base, the controlled π-calculus adds a notion of re-
sources and resource limitations. In turn, Teπc introduces notions of foreign
operations and foreign values, used to model underlying virtual machine or op-
erating system calls. Numerous aspects of Teπc are left parametric, so as to
allow targetting Teπc for the modelling of specific systems.

We first introduce the syntax and semantics of the core language before
completing this definition to take into account constraints on resource usage. A
more detailed presentation of this calculus may be found in a (work-in-progress)
report on this subject [19] .

2.1 Resource-unaware semantics

The main concepts of Teπc are names (references to foreign values and to com-
munication channels), processes (the state of a system or subsystem), instruc-
tions (the code for a system or subsystem), foreign operations (calls to primitives
of the operating system/virtual machine), foreign values (results of foreign oper-
ations, e.g. file handlers), resources (e.g. amounts of memory) and deallocation
of names.

The syntax of Teπc is presented on figure 2.1. Weak references are either
variables (x, y . . . ), references to either channels or values (a, b . . . ), or the
dangling reference (}, or “null”). Note that there is no difference between
references and communication channels: any communication channel is also a
reference to some (possibly useless) value, while any non-} reference may be
used as a communication channel.

Processes represent the current state of a system being executed. A process
may be an instruction i, the composition P |Q of two processes running concur-
rently, the choice i + j between two instructions or (νa = v)P , a process P in
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which name a is a reference to foreign value v.
Instructions represent code and may state either nothing (“do nothing”),

spawn i and j (“execute concurrently i and j”), foreign u = e in i (“execute
foreign operation e, calling the result u”), either i or j (“execute either i
or j, whichever is ready first”), or communications. Instruction m n sends
one message n on channel m. A messages emitted on channel m will remain
available without time limitation, until either it has been received or channel
m has been destroyed. Note that messages are names themselves, and may
serve to reference channels as well as foreign values. Instruction once m x do i
defines a continuation, in other words, expects exactly one message on channel
m and, once this message has been received, binds it to x and execute i. This
instruction will keep listening for a message on channel m until it receives one
such message or until channel m is destroyed. Conversely, on m x do i defines
a service, in other words, no matter how many messages are sent on channel
m, bind each of these messages to x and execute i. This instruction will keep
listening until channel m is destroyed. If two processes send messages along the
same channel at the same time or if two processes are listening on the same
channel at the same time, the language specifies only that the distribution of
messages will involve only one emitter and one receiver at a time.

Finally, both foreign operations and foreign values are built from weak ref-
erences and a parametric vocabulary of constructors E1, E2 . . .

We do not detail the notions of free names, free variables or free strong
references, which are natural extensions of the corresponding notions in the π-
calculus. In the rest of this report, we will assume Barendregt-style convention
on references.

Weak References m, n ∈Weak ::= u | }
Strong References u, v ∈ Strong ::= a | x
Names a, b ∈ N
Variables x, y ∈ V
Processes P, Q ∈ Proc ::= (νa = v)P | P |Q | i + j | i
Instructions i, j ∈ Code ::= nothing | foreign u = e in i |

spawn i and j | once m x do i |
on m x do i | m n | either i or j

Foreign values v, w ∈ Value ::= E(
−→
v′ )

v′ ::= a | } | v
Foreign operations e, f ∈ Op ::= m | E(−→e )
Process contexts C[·] ::= (νa = v)C[·] | C[·]|P | P |C[·] | ·
Value context V [·] ::= v, V [·] | V [·], v | F (V [·]) | ·
Operation context I[·] ::= e, I[·] | I[·], e | E(I[·]) | ·

Figure 2.1: Syntax of Teπc.

The resource-unaware semantics of Teπc essentially extends that of the π-
calculus. The main differences lie in the invocation of foreign operations and
the destruction of names, both of which are presented presented on figure 2.2.
Evaluation of an foreign operation is handled by rules R-Evaluate, to initiate
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R-Evaluate foreign u = e in i
e f−→pre foreign u = f in i

R-Fetch
P

e f−→pre P ′

(νa = v)P
τ−→pre (νa = v)P ′ a = v 
 e f fv(e) = fv(f) = ∅

R-Deref
foreign x = e in i

τ−→pre i{x← b}
e( b fv(e) = ∅

R-Store
foreign a = e in i

τ−→pre (νa = v)i
e( v fv(e) = ∅

R-Deallocate
(νa = v)P

τ−→pre P{a← }}
a = v � P

Figure 2.2: Allocation and deallocation of resources in Teπc.

possible transitions, and R-Fetch, to fetch the value of references which may be
required for the evaluation. Once the evaluation is complete, it may yield either
a reference, which is then dereferenced by R-Deref, or a foreign value, which
is stored in the environment by R-Store. These rules depend on parametric
relations on a parametric relations a = v 
 e e′ (“assuming that a references
valule v, a foreign operation in state e will progress and reach state e′”) and
e ( v (“a foreign operation in state e is complete and yields a result v”),
respecting the following criteria:

• if a = v 
 e e′ then fv(e) = ∅ and fn(e′) ⊆ fn(e) ∪ fn(v) ∪ {}}

• if e( v then fv(e) = ∅ and fn(v) ⊆ fn(e) ∪ {}}

• if e( m and fn(e) ⊆ {m} ∪ {}} .

Conversely, destruction of a name is handled by a parametric relation by
a parametric relation a = v � P (“in process P , binding a = v should be
destroyed”) through rule R-Deallocate. Substitution and elimination of dead
instructions – two aspects critical to Teπc but not the focus of the present
document – are briefly presented in appendix B.1. Appendix B.2 recapitulates
the full labelled transition system.

The memory model (and more generally, the resource model) implied by
Teπc is that of a direct acyclic graph of references with static single assign-
ment and garbage-collection, in which cycles may, if necessary, be provided by
processes.

In particular, note that, as in the π-calculus, every branching, flow control
structure or function call is modelled as a sequence of messages along commu-
nication channels, possibly accompanied by foreign operations.

The extracts of figure 2.3 demonstrate the definition and usage of a service
if then else in Teπc. Equations 2.1, 2.2 and 2.3 specify the behaviour of a
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Specification of foreign operations

IfThenElse(True, a, b)( a (2.1)
IfThenElse(False, a, b)( b (2.2)

a = v 
 e f

a = v 
 IfThenElse(e, b, c) IfThenElse(f, b, c)
(2.3)

Defining and using if then else

on i f t h e n e l s e e a b do
foreign go = IfThenElse ( e , a , b ) in
go

foreign t rue = True
foreign f a l s e = False
−−
spawn once a do . . .
and once b do . . .
and i f t h e n e l s e t rue a b

Figure 2.3: Defining and using “if. . . then. . . else” in Teπc

foreign operation IfThenElse inside the virtual machine: if e is a foreign value
and a and b are two names, after one or more steps of reduction, foreign oper-
ation IfThenElsee, a, b will produce either foreign value a or foreign value b,
depending on the result of the evaluation of e. Teπc code on if then else e
a b do ... defines a service, listening for requests on channel if then else.
When invoked, this service calls foreign operation IfThenElse, binds the re-
sult to name go and sends a message along this channel go. Conversely, Teπc
code spawn ... spawns three processes: once a do ... is a continuation
on a, expecting a message along channel a before proceeding, once b do is a
continuation on b, expecting a message along channel b before proceeding and
if then else true a b invokes service if then else, hence eventually caus-
ing the emission of an empty message on channel a, hence the release on the
continuation on a.

2.2 Resources

In addition, the semantics of Teπc is parametrised by resource specifications,
determining the nature of resources being modelled, the reserve of resources
available to the system and exactly what kind of resource is occupied by each
foreign value. Note that only foreign values occupy resources – as we will see
later, this is not a limitation of the system.
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Definition 1 (Nature of a resource)
The set of resource natures (or “specifications”) (S,⊕,�,⊥,>) is a parameter
of the language, such that (S,⊕) is a monoid, � is a partial order on S, with a
minimal element ⊥ and a maximal element > and ⊕ is monotonic with respect
to � (i.e. ∀a, b, c, if a � b then a⊕ c � b⊕ c).

From �, we derive relations ≺, �, �.
The resource-contrained semantics of Teπc is parametrised by

• the nature of resources being manipulated S, as defined above,

• a reserve of resources reserve, element of S,

• a resource signature res, function from Value to S, stable by garbage-
collection of references – that is, if res(v) = r then res(v{a← }}) = r –
and by α-conversion – that is, if res(v) = r then res(v{a← b}) = r

We extend this definition of res to processes, by

res(i) = ⊥
res(i + j) = ⊥
res(P |Q) = res(P )⊕ res(Q)
res((νa = v)P ) = res(P )⊕ res(v)

Definition 2 (Resource-aware semantics) The resource-aware semantics of
Teπc is defined by

P
l−→pre Q res(Q) � r

P
l;r7−→ Q

P
τ ;reserve7−→ Q

P −→reserve Q

Definition 3 (Exhaustion) A transition P
l−→pre Q is said to exhaust the

system iff res(Q) � reserve. A process P is non-exhausting if res(P ) �
reserve and for any P ′ such that P

τ−→pre P ′, P ′ is a non-exhausting pro-
cess.

Definition 4 (Client process) An process P is client (or unpriviledged) if
res(P ) = ⊥ and for any P ′ such that P

l−→pre P ′ then P ′ is a client process.

Informally, a client process is a process which cannot directly allocate re-
sources inside the system, although it may possibly cause a privileged process
to do so. Typically, processes which are not part of the implementation of
the operating system/virtual machine are unprivileged, as they need to request
the operating system to allocate resources for them. For instance, assuming
for a second that foreign operation IfThenElse uses resources, process on
if then else e a b do ... is privileged, while process if then else true
a b is not. In particular, we will consider that all potential Denial-of-Service
attackers are client processes, as they may not allocate resources of the system
directly.
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Definition 5 (Robustness) A process P is robust with respect to denials of
service attacks if, for any client process Q, P |Q is a non-exhausting process.
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Chapter 3

From Erlang to Teπc

In this section, we introduce Teπc-Erlang, the encoding of a subset of Core
Erlang [4] by translation to Teπc. This encoding is a vastly enriched superset
of π-Erlang [15], and the core model we use in this work as a definition of the
semantics of Erlang1 As space constraints do not permit it, we cannot present
Erlang itself in this document. Rather, the bibliography suggests further read-
ings [4] on the subject for the interested reader.

As any language definition in Teπc, the specification of Teπc-Erlang involves
the following steps: defining the vocabulary of foreign values and foreign oper-
ations, the semantics of foreign operations, the semantics of garbage-collection
and – at last – the encoding of Erlang expressions in Teπc. To this, we add
a model of a few functions/services of Erlang’s standard library, including rep-
resentation of primitive values, process spawning, some aspects of exceptions,
mutexes, some file management, etc. In order to ensure some clarity of the
coding, we make sure that these services are the only privileged processes on
the system. In addition, so as to permit controlling the number of processes
being spawned, we make sure that each process holds a reference to a foreign
value, which we will take into account during the analysis of resource usage, in
Section 4.

3.1 Foreign values and operations

In our translation of Erlang, we will make use of the following constructors:

arity 0 Channel (regular communication channels), File (files), Lock (mu-
texes), Nil (empty list), True, False (booleans), Numbern (constant

1To the best of our knowledge Erlang has already three different – and contradictory –
formal semantics, including π-Erlang. None of these semantics seems to prove any meaningful
abstraction result, nor to clarify to which version of Erlang – themselves incompatible – it
is related. We decided to use this enriched π-Erlang as it forms the semantics to which our
theories apply best.
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numbers), Charc (constant characters), Strings (constant strings), Process
(Erlang processes)

arity 1 Finalise, Free and Terminate (used to communicate with the garbage-
collector), Head and Tail (list operations), Nthn (nth element in a tuple)

arity 2 Cons (list concatenation), Same (name equality predicate)

arity n Tuplen (tuple constructor)

With the exclusion of Channel, these foreign values are manipulated exclu-
sively by the library. The semantics of all the corresponding foreign operations
is detailed in appendix C.1.

3.2 Encoding

In this section, we introduce informally various aspects of Teπc-Erlang. The
encoding itself – essentially source code – is available in the appendices.

For the sake of readability, we extend the syntax of Teπc to allow polyadic
communications, n-ary name creation, as well as n-ary parallel composition
spawn · · · and · · · and · · · and choice either · · · or · · · or · · · and a special
variable (or “don’t care”), which is supposed to never appear free in any term.
We will also use notation new a in · · · for foreign a = Channel() in · · · .

The denotational semantics of modules is a function M J·K, while that of
functions is F J·K, both to the domain of Teπc instructions. The encoding of
expressions with a return channel res and being evaluated with a process with
pid self is a function E J·Kres,self , also to the domain of Teπc instructions. These
functions, detailed in appendix C.2, are defined much as in π-Erlang, with the
following differences:

• names are kept private to their module unless specifically exported

• primitive values are encoded rather than marked as unknown

• arguments of function calls are evaluated

• message reception does not differentiate between finite and infinite time-
outs

• message reception is defined from pattern-matching

• Teπc-Erlang supports definition of local functions

• the translation of case involves actual pattern-matching rather than pure
non-determinism.

As in π-Erlang, we do not model Erlang’s primop (i.e. calls to implementation-
dependent primitives which may depend on the whole state of the system and/or
have side effects), links (i.e. process failures), module attributes, or module
importation. As in π-Erlang we ignore the order of clauses in a case statement.
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The encoding of expressions relies on the translation of pattern-matching,
as detailed in appendix C.3. This translation is more complex than that of
π-Erlang, and takes the form of a function C J·Kr,s,i,o,g, the encoding of a clause
with return channel r, being evaluated within a process with pid s, to match
a value received on channel i, returning the substitution on channel o for man-
agement by the case statement itself, and expecting a message on g to actually
proceed with the evaluation. In turn, this function uses P J·Kin,out, the encoding
of a pattern matching value in and returning a substitution on channel out, and
V J·K, the vector of free variables in a pattern.

3.3 Library

A specification of Erlang is incomplete without a model or encoding of the
library. Although a full model is beyond the scope of this paper, we have
studied a few key functions to represent primitive values, process spawning, some
aspects of exceptions, etc. These entries in the library are defined directly as
Teπc instructions, with the same calling conventions as Teπc-Erlang functions.
The model is detailed in appendix C.4. Both message emission and process
identification are essentially identical to their π-Erlang counterparts. Process
spawning creates a depositary Process, which may be used later, if necessary, to
control the number of processes running. Process suicide or termination, which
doesn’t appear in π-Erlang, is invoked respectively by channels erlang : exit3

and erlang : exit4. The encoding then contains a place-holder to check whether
the target process traps exits. In this version of the encoding, it is impossible
to trap exits and the request for termination is forwarded to some predefined
channel terminate. File opening and closing, as well as waitlines, have been
simplified for the sake of examples. File closing sends a message to the garbage-
collector on some predefined channel free, then waits for garbage-collection to
take place before returning true. Although the specifications of the garbage-
collector are far from complete – and well beyond the scope of this paper –
we specify that both terminate and free trigger destruction, respectively of
process identifiers and of files.

3.4 Notes

As in π-Erlang, we do not model Erlang’s primop (i.e. calls to implementation-
dependent primitives which may depend on the whole state of the system and/or
have side effects), links (i.e. process failures), module attributes, or module
importation. Also, as in π-Erlang we ignore the order of clauses in a case
statement.

From this encoding, we define a notion of executable system and a notion of
robustness.

Informal definition 1 (Executable) If LIB is the model of Erlang’s stan-
dard library, if e is an Erlang program in which names a1, a2 . . . an denote ser-
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vices accessible to the public, and if ie is the result of the encoding of e in
Teπc-Erlang, the executable process for e in LIB is defined as the Teπc pro-
cess offering LIB and ie aa

and if ie is the instruction E JeKres,self , the executable process for e in LIB

is defined as new
−−−−−−−−−→
b ∈ fn(ie)\−→a in (LIB | ie).

Informal definition 2 (Robust) An Erlang program e is robust with respect
to Denial of Service if its executable process is robust with respect to Denial of
Service.

Note that this notion of robustness is compatible with distributed applica-
tions: as long as the communications between the nodes are kept private by
new · in ·, ie may well be distributed between nodes.

3.5 Examples

From this definition of Teπc-Erlang, we may encode the example log fragile
as:

on l o g f r a g i l e item r e s s e l f do
new res ’ in
spawn new r e s 1 in
spawn s t r i n g ” log ” r e s 1 s e l f
and once r e s 1 x do open x res ’ s e l f

and once res ’ x do new res ’ ’ in
new r e s 1 , r e s 2 in
spawn r e s 1 x
and r e s 2 item
and once r e s 1 x 1 do once r e s 2 x 2 do

wr i t e x 1 x 2 res ’ ’ s e l f
and once res ’ ’ do
new r e s 3 in
spawn r e s 3 x
and once r e s 3 x 3 do

c l o s e x3 r e s s e l f

Conversely, the encoding of log robust yields

new res ’ in
spawn new r e s 1 in
spawn new lock r e s 1 s e l f in
and once r e s 1 x do
new l o g r obu s t in

spawn on l o g r obu s t item r e s s e l f do
new res ’ in
spawn new r e s 2 in
spawn r e s 2 x
and once r e s 2 x do a cqu i r e l o c k x res ’ s e l f
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and once res ’ x do new res ’ ’ in
new r e s 3 in
spawn r e s 3 item
and once r e s 3 x 3 do

l o g f r a g i l e x3 res ’ ’ s e l f
and once res ’ ’ do
new r e s 3 in
spawn r e s 3 x
and once r e s 3 x 3 do

r e l e a s e l o c k x3 r e s s e l f
and r e s l o g r obu s t

3.6 Resources

Note that we have not yet specified the nature of resources. Indeed, while
guaranteeing that an Erlang service is robust with respect to Denial-of-Service
requires a precise definition of which resources are critical and what operations
require such resources, neither the specifications of Erlang nor the translation
to Teπc define resource constraints. For instance, it is imaginable that an im-
plementation of Erlang for Linux-based embedded systems could use one Linux
kernel thread for each Erlang thread. This implementation would be limited
to the simultaneous execution of a few hundred threads, by opposition to the
nearly-limitless concurrency of the standard distribution of Erlang/OTP. Sim-
ilarly, an Erlang program running on sensor networks will be faced with the
problems of managing energy reserves, whereas the critical resources for an ap-
plication server would presumably be memory or bandwidth.

In order to obtain a set of resources measuring opened files and file opening
rights, let us first define the nature of opened files (SF ,⊕F ,�F ,⊥F ,>F ) as

• SF , {Files(n), n ∈ N ∪ {∞}}

• ∀Files(m), F iles(n) ∈ SF , F iles(m)⊕F Files(n) , Files(m + n)

• ∀Files(m), F iles(n) ∈ SF , F iles(m) �F Files(n) ⇐⇒ m ≤ n

• ⊥F = Files(0), >F = Files(∞).

Let us now define the nature of file opening rights (SR,⊕R,�R,⊥R,>R) as

• SR , Rights(B)

• ∀Rights(m), Rights(n) ∈ SR, Rights(m)⊕R Rights(n) , Rights(m ∨ n)

• ∀Rights(m), Rights(n) ∈ SR, Rights(m) �R Rights(n) ⇐⇒ m⇒ n

• ⊥R = Rights(ff), >R = Rights(tt).

From these, we derive the definition of set S, the nature of resources for our
example, or (S,⊕,�,⊥,>), as
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• S , SF × SR

• ∀r = (rF , rR), s = (sF , sR) ∈ Sr ⊕ s , (rF ⊕ sF , rR ⊕ sR)

• ∀r = (rF , rR), s = (sF , sR) ∈ Sr � s ⇐⇒ rF � sF and rR � sR

• ⊥ = (⊥F ,⊥R), > = (>F ,>R).

To this set, we associate a bound reserve , 1, tt (i.e. only one file may be
opened at any time). We complete this definition by the following resource
signature res:

res(File) = 1, tt (3.1)
res(any other foreign value) = ⊥ (3.2)

Informally, our Erlang program will therefore be robust to Denial-of-Service
if no external manipulation may cause the opening of more than one file.

In our example, both services log fragile and log robust, once encoded,
define non-exhausting processes. By examining the encoding of log fragile
and log robust, however, we may notice, again, that it is easy to trick log fragile
into opening any number of files, hence making it non-robust, while log robust
may only open one file at any time. We will now formalise and mechanise this
reasoning and introduce a proof system to prove stronger properties.
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Chapter 4

Proving resource-safety

In this section, we introduce a type system designed to produce proofs of ro-
bustness of Erlang programs compiled in Teπc. As the encoding itself, this type
system is parametrised by the set of resources.

4.1 Resource usage patterns

This type system is designed to recognise a number of orthogonal patterns: re-
source allocation, concurrent composition, exclusive choice, resource finalisation,
resource transmission and loss of control.

The first pattern is resource allocation. An instruction foreign a = E() in i
requires more resources to be execute than i, as it needs to store the result of
foreign operation E() – regardless of whether these resources are eventually
deallocated. The second pattern is concurrent composition. If two processes P
and Q must be executed purely concurrently (i.e. without synchronisations),
the system must have enough resources to permit any scheduling of P and
Q. By opposition, if only one of two processes P and Q is to be executed,
the system only needs enough resources to execute this process. Finalisation
of resources permits safely reusing deallocated resources: in a process such as
P , foreign a = Finalize(b) in i | foreign a′ = Finalize(b) in j, both i
and j are triggered only after the deallocation of resources allocated to b. The
resources allocated to a must, however, be shared between i and j. Another
pattern is that of runtime resource transmission: the amount of resources re-
quired for the execution of a service depends on what happens whenever the
service is invoked, as well as on how many times the service is indeed invoked.
In our analysis, this translates to a static cost in resources, charged to callers
whenever they invoke the service. Finally, loss of control permits interaction
with untyped processes. Informally, if a channel a may be used to communi-
cate with the outside world, the typed process shouldn’t expect any resource
transfer on a, shouldn’t make any assumption about references received from a,
and shouldn’t expect that references sent on a will be properly used. In other
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words, a should be considered “untrusted”.
By searching for these patterns, the type system extracts a set of linear

inequations upon the set of resources being manipulated.

4.2 Type judgements

Type judgements are expressed with the following grammar:

T ::= Bound(r, λ) r ∈ S, λ : Weak −→ S
N ::= Name(C, r) r ∈ S
C ::= Chan(N, g, d) g, d ∈ S

| Finalizer | Ssh | Unknown
A ::= Allocation(r)

Judgement Γ ` P : Bound(r, λ) states that, in environment Γ, P can be
evaluated as a process which may be executed without starvation using only
resources included in r and may have reused resources of external entities as
specified by λ. Judgement Γ ` a : Name(C, r) states that, according to Γ, a is
the name of an entity using resource r, with role C. If C is Chan(N, g, d), a is a
communication channel, which can be used to communicate names of type N , to
transfer resource g from the sender to the receiver, d of which can be reused by
the receiver after deallocation. Conversely, if C is Finalizer, a has been declared
as foreign a = Finalize(b) in i and should not be used for communication, if
C is Unknown, a is untrusted and may serve to communicate with the untyped
world, and if C is Ssh, a may not be used to communicate at all. Finally,
Γ ` e : Allocation(r) states that, according to Γ, e is a foreign expression, and,
assuming that the evaluation succeeds, the result of the evaluation of e will
require at most r resources.

The set of rules defining the type system is presented in appendix D.2.
While this type system we present deals only with monadic Teπc and does

not take into account n-ary operators, it may easily be extended to do so, at
the expense of readability. In the rest of this document, we assume such an
extension.

4.3 Results

Lemma 1 (Embedded Subject Reduction)
If Γ ` e : Allocation(re) and if for some a and v, we have a = v 
 e f then
Γ ` f : Allocation(rf ) and rf � re. If Γ ` e : Allocation(re) and e ( v then
res(v) � re.

With the definition of relations · 
 ·  · and ·( · used in our encoding, this
lemma is trivial. It is, of course, possible to find other relations which make this
lemma false.
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Lemma 2 (Weakening)
If Γ ` P : Bound(t, λ) and if (t′, λ′) � (t, λ) then Γ ` P : Bound(t′, λ′).

The lemma is standard and uses standard proofs.

Definition 6 (Isolation) An environment Γ is said to isolate Q if and only if
for any name a in fn(Q), Γ(a) = Name(Unknown, ).

In other words, Q is isolated if the hypothesis used by the type system
correctly labels any communication with Q world as untrusted.

Informal theorem 1 (Subject Reduction under attack) If P is a process,
Q a client Γ an environment isolating Q and such that Γ ` P : Bound(r, λ), if
there is some R such that P |Q −→ R then we may find two processes P ′ and
Q′ and a set of names, types and values a1 : N1 = v1, . . . , an : Nn, vn such that

• R ≡ (ν−−−→a = v)(P ′ | Q′)

• Γ,
−−−→
a : N ` P ′ : Bound(t′, λ′)

• Γ,
−−−→
a : N isolates Q′

• Σb∈Nλ′(b) � Σb∈Nλ(b)

• t′ ⊕ Σb∈Nλ′(b) � t⊕ Σb∈Nλ(b)

• ∀i ∈ 1..n, if Ni = Name( , ri) then λ′(ai) � ri

• Q′ is a client

In particular, if Q = nothing, it is possible to find P ′ such that
−−−−−−→
a : N = v =

∅ and Q′ = nothing. (Subject Reduction without attack). If λ = ⊥N , we always
have λ′ = ⊥N and t′ � t (Closed Subject Reduction).

We prove this theorem by examining transitions internal to P , transitions inter-
nal to Q and communications between P and Q, taking advantage of existing
type information

−−−−−−→
a : N = v to provide a new type derivation.

Informal theorem 2 (Well-typed terms behave)
If Γ ` P : Bound(reserve,⊥N ) then P is non-exhausting.

Informal theorem 3 (Well-typed programs are robust)
Let us consider an Erlang program e and exee its executable. If Γ isolates exee

and Γ ` exee : Bound(reserve,⊥N ), then e is robust.

Both theorems are corollaries of theorem 1. Note that the compositionality
of this type system makes it possible to type separately the library and the
encoding of e. However, the absence of polymorphism limits the usability of
this compositionality.
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Informal theorem 4 (Inference)
For any set of resources such that (constructive) satisfiability of sets of linear
inequations is decidable, type inference is decidable.

This may be proved by induction on the structure of a term, by building
a set of systems of linear inequations on resources such that the term may be
typed if and only if one of the systems has a solution. Types of the term may
then be deduced from the solutions of the system.

This theorem states that, for simple sets of resource – including the set used
here as an example and, indeed, all the sets of resources we have used to this
day, including amounts of memory or hard-drive, file handlers, cpus or secrets
– we may derive a an algorithm for automatic analysis from this type system.

Corollaire 1 (Examples) It is easy to prove that the encoding of log fragile
may never be typed in an isolating environment. Informally, an isolating en-
vironment requires that name log fragile may not charge resources to callers –
as these callers are not trusted to deliver the resources – while message open
requires one file handler at each call. As there is no synchronisation between
instances of this service, it is not sure that file handlers may be finalised and
reused between instances.

Conversely, typing the encoding of log robust is possible in an isolating
environment and yields a proof that the service will use at most one file handler,
no matter how many instances are being executed. Informally, these instances
synchronise through the shared lock and may therefore finalise and reuse one
common file handler.

Note that it is easy to write more complex type-checked resource-bounded
loops, for more complex sets of resources. For instance, it is quite possible
to have several services share resources, as long as they have some manner of
synchronising upon their common heap of resources. For more examples, see
[18].
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Chapter 5

Conclusions

5.1 Bottom line

This work is part of an ongoing work on the application of process calculi to
operating system-level problems. Using Teπc, we have formalised the semantics
of a large fragment of Core Erlang, as well as the usage of resources by an Er-
lang program, a notion of resource exhaustion and of robustness with respect
to Denial-of-Service attacks. We have then produced a proof technique to guar-
antee that an Erlang program and run-time environment is robust, and applied
this technique to a few simple examples.

Our encoding of Core Erlang is not complete, in particular with respect to
error-handling, physical locations or migrations. In particular, the examples
used throughout this document made use of a simplified version of some library
functions, so as to avoid error management. Similarly, it is difficult to impose
a static type system to a dynamically typed (indeed, in some circumstances,
sometimes weakly typed) programming language. Our type system is itself
therefore limited, in particular with respect to polymorphism, pattern-matching
or process-to-process communication. However, we believe that our work is
promising, and that it should be possible to extend it to a useful subset of
Erlang – or other languages for concurrency and distribution. Indeed, we are
currently working on a more generic type system for Teπc, with polymorphism
and dependent types, which we hope will be able to remove most of the current
restrictions and to extend the degree of control to other aspects of resource-
management, and on the integration of real-time constraints in Teπc, which we
hope will be applicable to Erlang programs.

5.2 Related works

Teπc-Erlang is directly related to π-Erlang [15], which it extends. Other at-
tempts have been made to formalise Erlang, using operational semantics rather
than encoding [8, 5]. While these last works are more complete, they are also
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more self-contained and harder to extend in a convincing manner to model re-
source usage or non-well-behaved agents. Other type systems have also been
offered for Erlang [12, 13, 16] but with objectives distant from resource man-
agement and have, to the best of our knowledge, no proof of subject reduction.

A few languages and models have been designed to permit control of re-
sources. Camelot [9] is a variant of ML with safe explicit deallocation of mem-
ory, in which the type system is able to infer bounds on memory usage. While
this type system may express more precise bounds than ours, it is limited to
memory and the language is strictly non-concurrent. Similarly, the Ulm model
[3] permits the description of systems from the point of view of their resource
consumption, but in a strongly synchronous model, which prevents modelling
any form of multitasking and without any management of resource dealloca-
tion. Finally, some works on process algebras [1][20][10]or on the λ-calculus
[11] attempt to provide a formalisation of resource control, but either require
much more abstract settings or fail to take into account concurrency or deallo-
cation of resources. In particular, none of these languages or models provides a
formalisation of Denial of Service attacks or a notion of resisting to such attacks.

Teπc itself is also related to the Applied π-calculus [6]. While both formalism
is intended for proofs of protocols, its design makes it more adapted to the
examination of cryptography and less to the examination of resource-related
properties, in particular resource limitations, which are at the core of our work.

5.3 Future works

Teπc is a work in progress. In addition to completing the encoding of Teπc-
Erlang and to improving the type system and adding real-time constraints, we
intend to work on the extraction of Teπc into Erlang, with guarantees of preser-
vation of the semantics and types of programs. We also intend to merge our
work on resources, foreign operations and foreign values to the ongoing devel-
opment of the Kell platform [17], a process algebra/language/virtual machine
designed for the construction of component-based distributed applications.
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Appendix A

Notes to the introduction

In Erlang/OTP, the definigion of log robust could be approximated by the
following extract :

l o g r obu s t ( Lock , Item ) −>
l o c k a c qu i r e ( Lock ) ,
l o g f r a g i l e ( Item ) ,
l o c k r e l e a s e ( Lock ) .

s t a r t ( ) −>
Lock = new lock ( ) ,
fun ( Item ) −> l o g r obu s t ( Lock , Item ) end .
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Appendix B

Language

B.1 Substitution and elimination of dead instruc-
tions

The substitution relation of the traditional π-calculus is extended to support
elimination of dead instructions. Intuitively, an instruction is considered dead
if it has the form } u (sending a message on }), on } x do i or once } x do i
(receiving a message on }).

Note that the substitution of } to a name may cause the elimination of
a dead instruction, while the substitution of } to a variable will generally be
considered unsafe. This is a design choice, as the second kind of substitution
maps to the unsafe passing of null references/pointers in numerous general-
purpose programming languages.
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((νa = v)P ){m← n} = (νa = v{m← n})(P{m← n}) a /∈ {m, n}
(P |Q){m← n} = (P{m← n}) | (Q{m← n})
nothing{m← n} = nothing

(foreign u = e in i){m← n} = foreign u = e{m← n} in (i{m← n}) u /∈ {m, n}
(spawn i and j){m← n} = spawn (i{m← n}) and (j{m← n})
(either i or j){m← n} = either (i{m← n}) or (j{m← n})
(on a x do i){a← }} = nothing

(on m′ x do i){m← n} = on m′{m← n} x do i{m← n} otherwise if x /∈ {m, n}
(once a x do i){a← }} = nothing

(once m′ x do i){m← n} = once m′{m← n} x do i{m← n} otherwise if x /∈ {m, n}
(a n′){a← }} = nothing

(m′ n′){m← n} = (m′{m← n}) (n′{m← n}) otherwise
a{a← b} = b
a{m← n} = a a 6= m
a{a← }} = }
x{m← n} = x x 6= m
x{x← n} = n
}{m← n} = }

E(−→v ){m← n} = E(
−−−−−−−→
v{m← n})

B.2 Labelled Transition Semantics

The semantics of Teπc relies on a structural equivalence, the smallest equivalence
law ≡ such that | and + are commutative and associative, compatible with α
conversion of bound names and variables and with the following rules.

E-Commut (νa = v)(νb = w)P ≡ (νb = w)(νa = v)P a 6= b, a /∈ fn(w), b /∈ fn(v)

E-Scope ((νa = v)P )|Q ≡ (νa = v)(P |Q) a /∈ fr(Q)
E-Par

P ≡ Q

P |R ≡ Q|R

E-New
P ≡ Q

(νa = v)P ≡ (νa = v)Q

While most rules of both structural equivalence and labelled transitions are
essentially identical to those of the original π-calculus, resource management
is more detailed. Indeed, the labelled transition presemantics of Teπc as the
smallest relation ·−→pre compatible with the following rules
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R-Par
P

α−→pre P ′

P |Q α−→pre P ′|Q
R-Choice

P
α−→pre P ′

P + Q
α−→pre P ′

R-Comm
P

a?m−→pre P ′ Q
a!m−→pre Q′

P |Q −→pre P ′|Q′

R-Comm-Close
P

a?b−→pre P ′ Q
νb=v.a!b−→ pre Q′

P |Q −→pre (νb = v)(P ′|Q′)

R-Hide
P

α−→pre P ′

(νa = v)P
α−→pre (νa = v)P ′ a /∈ fr(α)

R-Open
P

b!a−→pre P ′

(νa = v)P
νa=v.b!a−→ pre P ′

b 6= a

R-Equiv
P ≡ P ′ Q′ ≡ Q P ′ α−→pre Q′

P
α−→pre Q

R-Spawn
spawn i and j

τ−→pre i|j

R-Either
either i or j

τ−→pre i + j R-Send a m
a!m−→pre nothing

R-Once once a x do i
a?m−→pre i{x← m}

R-On on a x do i
a?m−→pre i{x← m} | on a x do i

R-Deallocate
(νa = v)P

τ−→pre P{a← }}
a = v � P

R-Evaluate
foreign u = e in i

e f−→pre foreign u = f in i

R-Fetch
P

e f−→pre P ′

(νa = v)P
τ−→pre (νa = v)P ′ a = v 
 e f fv(e) = fv(f) = ∅

R-Deref
foreign x = e in i

τ−→pre i{x← b}
e( b fv(e) = ∅

R-Store
foreign a = e in i

τ−→pre (νa = v)i
e( v fv(e) = ∅
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Appendix C

From Erlang to Teπc

All the extracts involved in this encoding use Haskell/Python-style bi-dimensional
syntax, i.e. tabulations are part of the syntax and influence syntactic priority
of operators, as do parenthesis in most languages.

In the following, we will use v for Erlang variables, f for Erlang function
names, d for Erlang function definitions, z for Erlang numbers, a for Erlang
atoms (i.e. names), c for Erlang characters, s for Erlang strings, e for Erlang
expressions and p for Erlang patterns. Finally, we assume the existence of a
name true referencing depositary True.
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C.1 Semantics of embedded primitives

E()( E() (C.1)
a( a (C.2)
}( } (C.3)

Finalize(})(} (C.4)
Free(})(} (C.5)

Terminate(})(} (C.6)
l = Cons(h, t) 
 Head(l) h (C.7)

l = Cons(h, t) 
 Tail(l) t (C.8)
t = Tuplen(a1, a2, . . . , an) 
 Nthp(t) ap 1 ≤ p ≤ n (C.9)

Same(a, a)( True (C.10)
Same(a, b)( False a 6= b (C.11)
IfThenElse(True, a, b)( a (C.12)
IfThenElse(False, a, b)( b (C.13)

a = v 
 e f

a = v 
 IfThenElse(e, b, c) IfThenElse(f, b, c)
(C.14)

(C.15)

Rule C.4 specifies the behaviour of finalisation: if a is not free in i, foreign a =
Finalise(b) in i will wait until b has been garbage-collected before executing i.
Constructors Free and Terminate have the same definition but will be used in
a different manner later. The other rules model trivial depositaries, usual data
structures (tuples and lists) and simple flow control statements.

C.2 Expressions

This encoding uses reserved names numberz (for any number z), charc (for any
character c), strings (for any string s), nil and cons, all of which are defined in
the library, in Section C.4.
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M Jmodule a[f1, . . . , fp]fd1 . . . fdnK = new
−−−−−−−−−−−−−−−−→
b ∈ (

S
i fn(fdi))\{fi} in spawn F Jfd1K and . . . and F JfdnK

F Jf = fun(v1, . . . , vn)− >eK = on f v1 v2 . . . vn res do E JeKres,self

E JvKres,self = res v

E JfKres,self = res f

E JzKres,self = numberz res self

E JaKres,self = res a

E JcKres,self = charc res self

E JsKres,self = strings res self

E J[]Kres,self = nil res self

E J[e1|e2]Kres,self = new res1, res2 in

spawn E Je1Kres1,self
and E Je2Kres2,self

and once res1 x1 do once res2 x2 do cons x1 x2 res self

E J{e1, . . . , en}Kres,self = new res1, res2 . . . , resn in

spawn E Je1Kres1,self
and . . . and E JenKresn,self

and once res1 x1 do . . . once resn xn do tuplen x1 . . . xn res self

E Jforeign x = e1 in e2Kres,self = new res′ in spawn E Je1Kres′,self
and once res′ x do E Je2Kres,self

E Japply f(e1, . . . , en)Kres,self = new res1, res2, . . . , resn in

spawn E Je1Kres1,self
and . . . and E JenKresn,self

and once res1 x1 do . . . once resn xn do f x1 . . . xn res self

E Jletrecf1 d1 f2 d2 . . . fn dn in eKres,self

= new f1, . . . , fn in

spawn F Jf1d1K and . . . and F JfndnK and E JeKres,self

E Jcase e of c1 . . . cnKres,self = new test1, go1, success1, test2, go2, success2 . . . , testn, gon, successn in

new res′ in

spawn C Jc1Kres,self,testi,successi,goi and . . .

and C Jc1Kres,self,testi,successi,goi

and E JeKres′,self

and once res′ x do (spawn test1 x and . . . testn x)
and

either once success1 V Jc1K do go1
−→x1

. . .
or once successn V JcnK do gon

−→xn

E Jreceive c1 . . . cn after e1− >e2Kres,self

= once self x do E Jcase e of c1 . . . cn − >e2Kres,self

C.3 Pattern-matching

This encoding uses reserved names ifsamethenelse, nthi (for all integers i) and
uncons, all of which are defined in the library, in Section C.4.
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C Jp when e1− > e2Kres,self,in,success,go

= new res′, res′′, structure in once in x do

spawn P JpKx,structure
and once structure −→y do

spawn E Je1Kres′,self
and once res′ z do ifthenelse z success } res′′ self

and once res′′ do spawn next −→z and once go −→x do E Je2Kres,self

(where −→y = −→x = V JpK)
P Jp1, p2, . . . , pnKin,out = new out1, out2 . . . , outn in

spawn new res1 in

spawn nth1 in res1 self and

once res1 elem1 do P Jp1Kelem1,out1

and . . .
and new resn in

spawn nthn in resn self and

once resn elemn do P JpnKelemn,outn

and once out1
−→x1 do . . . once outn

−→xn do out −→x−→x2 · · · −→xn

P JaKin,out = ifsamethenelse a in out }
P JvKin,out = out x

P J[p1, p2, . . . , pn|pn+1]Kin,out

= new out1, out2 . . . , outn+1 in

spawn

new hd1, tl1 in spawn uncons in hd1 tl1 and once hd1 h1 do P Jp1Kh1,out1

and once tl1 t1 do new hd2, tl2 in

spawn uncons t1 hd2 tl2 and once hd2 h2 do P Jp2Khead2,out2

. . .

spawn uncons tn hdn+1 tln+1 and once hdn+1 hn+1 do P Jpn+1Khn+1,outn+1

and once out1
−→x1 do . . . once outn+1

−−−→xn+1 do out −→x1
−→x2 · · · −−−→xn+1

V Jp1, p2, . . . , pnK = V Jp1KV Jp2K . . .V JpnK
V JvK = {v}
V JaK = {}
V J[p1|p2]K = V Jp1KV Jp2K

C.4 Library

This is an abriged version of the library.
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• Message emission
on erlang : send x1 x2 res, self do spawn res x2 and x1 x2

• Identification of the current process
on erlang : self res self do res self
• Process spawning
on erlang : spawn f arg res self do new res′ in foreign self ′ = Process() in

spawn f arg self ′ res′ and res self ′ and once res′ do nothing

• Exceptions/killing
on erlang : exit3 reason res self do spawn kill self reason and res true
on erlang : exit4 pid reason res self do spawn kill pid reason and res true
on kill pid reason do new do kill, trap exit in foreign next = IfThenElse(False, trap exit, do kill) in

spawn next and either once do kill do terminate pid or once trap exit do pid reason
• File management (simplified)
on open name res self do foreign file = File() in res file
on close name res self do spawn free file and foreign a = Finalize(file) in res true
on write name content res self do res true
• Waitlines (simplified)
on new lock res self do foreign a = Lock() in spawn a and res a
on acquire lock l res self do once l do res true
on release lock l res self do spawn l and res true
• Primitive values
on numberz res self do foreign a = Numberz() in res a
on strings res self do foreign a = Strings() in res a
on charc res self do foreign a = Charc() in res a
on nil res self do foreign a = Nil() in res a
on cons h t res self do foreign a = Cons(h, t) in res a
on uncons x h t self do foreign a = Head(x) in foreign b = Tail(x) in spawn h a and t b
on tuplen x1 x2 . . . xn res self do foreign a = Tuplen(x1, . . . , xn) in res a
on nthi x res self do foreign a = Nthi(x) in res a
on ifthenelse x y z res self do foreign next = IfThenElse(x, y, z) in res next
on ifsamethenelse w x y z res self do foreign next = IfThenElse(Same(w, x), y, z) in res next
• Garbage-collection
on free x do foreign a = Free(x) in nothing

on terminate x do foreign a = Terminate(x) in nothing

b = Process() � foreign c = Terminate(b) in i | P
b = File() � foreign a = Free(b) in i | P
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Appendix D

Proving resource-safety

D.1 Relations

If ⊕ is a function from S2 to S and � is a relation on S, we extend the definition
of both symbols to functions from N to S by

• ∀λ, µ ∈ SN ,∀a ∈ N , (λ⊕ µ)(a) , λ(a)⊕ µ(a)

• ∀λ, µ ∈ SN , λ � µ ⇐⇒ ∀a ∈ N , λ(a) � µ(a)

We also extend the definition of ⊕ and � to pairs in S × SN by

• (t, λ)⊕ u 7→ r , (t, λ⊕ (u 7→ r))

• (t, λ)⊕} 7→ r , (t⊕ r, λ)

• (t, λ) � (t′, λ′) ⇐⇒ t � λ ∧ λ � λ′.

D.2 Type system

Figures D.1 and D.2 present the type system. For the sake of readability, we
slightly alter the syntax to allow writing foreign a : N = e in · · · and (νa :
N = v). When necessary, we write a 7→ r for the function defined on N whose
value is r for a and ⊥ for everything else, λ\{x} for the function defined on N
whose value on x is ⊥ and identical to that of λ everywhere else, and ⊥N for the
function defined on N whose value is ⊥ everywhere. We extend the definition
to always have λ(}) = ⊥.

Rule T-Nil states that the terminated process is always typable. Rule T-
Repl permits the typing of on · do . . . services, as long as they require no
resources or that the resources are provided by the caller. Rules T-New and
T-Op count the allocation of resources to a name a and the possible reuse of
these resources by a process, while rule T-Finalize redistributes some of these
resources to an instruction i. Rule T-Par adds the costs and resource reuse of
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T-Nil Γ ` nothing : T
T-Repl

Γ ` once m x do i : Bound(⊥,⊥N )

Γ ` on m x do i : T

T-New
Γ, a : Name(C, ra) ` P : Bound(tP , λ)

Γ ` (νa : Name(C, ra) = v)P : Bound(t′, λ′)

res(v) � ra λ(a) � ra

λ′ � λ\{a} t′ � ra ⊕ tP

T-Op

Γ, a : N ` i : Bound(t, λ)
Γ ` e : Allocation(re)

Γ ` foreign a : N = e in i : Bound(t′, λ′)

N = Name( , re) λ(a) � re

λ′ � λ\{a} t′ � re ⊕ t

T-Par

Γ ` P : Bound(tP , λP )
Γ ` Q : Bound(tQ, λQ)

Γ ` P |Q : Bound(t′, λ′)
t′ � tP ⊕ tQ λ′ � λP ⊕ λQ

T-Spawn

Γ ` i : Bound(ti, λi)
Γ ` j : Bound(tj , λj)

Γ ` spawn i and j : Bound(t′, λ′)
t′ � ti ⊕ tj λ′ � λi ⊕ λj

T-Choice

Γ ` P : Bound(tP , λP )
Γ ` Q : Bound(tQ, λQ)

Γ ` P + Q : Bound(t′, λ′)
t′ � tP t′ � tQ λ′ � λP λ′ � λQ

T-Either

Γ ` i : Bound(ti, λi)
Γ ` j : Bound(tj , λj)

Γ ` either i or j : Bound(t′, λ′)
t′ � ti t′ � tj λ′ � λi λ′ � λj

T-Receive

Γ ` m : Name(Chan(N, g, d), )
Γ, x : N ` i : Bound(t, λ)

Γ ` once m x do i : Bound(t′, λ′)
t′ ⊕ g � t λ′ � λ\{x} d � λ(x)

T-ReceiveUnknown

Γ ` m : Name(Unknown, )
Γ, x : Name(Unknown, ) ` i : Bound(t, λ)

Γ ` once m x do i : Bound(t′, λ′)
t′ � t λ′ � λ λ(x) = ⊥

T-Send
Γ ` m : Name(Chan(N, g, d), ) Γ ` n : N

Γ ` m n : Bound(t′, λ′)
(t′, λ′) � (g,⊥N )⊕ n 7→ d

T-SendUnknown
Γ ` m : Name(Unknown, ) Γ ` n : Name(Unknown, )

Γ ` m n : T

T-Ref
Γ(a) = T

Γ ` a : T
T-Null

Γ ` } : T

Figure D.1: Type system for resource guarantees (non-foreign terms).
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T-Alloc-Value
Γ ` v : Allocation(r)

res(v) � r

T-Alloc-Nothing
Γ ` e : Allocation(r)

e /∈ Value, fn(e) ⊆ Γ

T-Finalize
Γ, a : N ` i : Bound(t, λ)

Γ ` foreign a : N = Finalize(m) in i : Bound(t′, λ′)

N = Name(Finalizer,⊥)
tr ⊕ r � t
(t′, λ′) � (tr, λ)⊕m 7→ r
λ(a) = ⊥

T-If

Γ, a : N ` i : Bound(t, λ)
Γ ` m : N Γ ` n : N

Γ ` foreign a : N = IfThenElse(e, m, n) in i : Bound(t′, λ′)

(t′, λ′) � (t, λ\{a}) ⊕(m 7→ λ(a))
⊕(n 7→ λ(a))

Figure D.2: Type system for resource guarantees (foreign terms and terms spe-
cific to this work).

two concurrent processes, while rule T-Choice only considers a boundary for
any of two processes which might be executed. Rules T-Receive and T-Send
permit the typing of communications, including the transfer of resources, while
rules T-ReceiveUnknown and T-SendUnknown forbid transfer of resources
or any assumption on names which are received from the outside world or sent
to the outside world, in which case no guarantee can made regarding their usage.
Rule T-If permits typing flow control statements, while T-Alloc-Value and
T-Alloc-Nothing compute bounds on the resource usage of an allocator.
Finally, T-Null states that the dangling reference may have any type and T-
Ref permits fetching the type of a reference from the environment.

Note that, while T-Alloc-Nothing and T-Alloc-Value are valid with
respect to the encoding of Erlang presented in this paper, they represent a
simplification of the generic rule for Teπc, and may easily be rendered invalid by
enriching the language with well-chosen allocators and/or resource signatures.
Also note that this type system makes no attempt to type intelligently lists or
tuples, as they are not the focus of this study, or non-trivial process-to-process
communication, as they are inherently untyped in Erlang.
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Appendix E

Proving the type system

E.1 Lemmas

Lemma 3 (α-conversion in foreign operations) If Γ, a : Ta ` e : B and
b /∈ fn(e) then Γ, b : Ta ` e{a← b} : T .

We prove this lemma by structural congruence upon a proof of Γ, a : r ` e : T .

T-Null We have e = } = e{a← b}. Trivial.

T-Ref We have e = a and T = Ta. Trivial.

T-Alloc-Nothing We have any T . Trivial.

�
Note This lemma is heavily dependent on the set of foreign operations

permitted.

Lemma 4 (α-conversion) If Γ, a : r ` P : Bound(tP , λP ) and b /∈ fn(P )
then Γ, b : r ` P{a← b} : Bound(tP , λ{a← b}).

We prove this lemma by structural congruence upon a proof of Γ, a : r ` P :
T . Most cases are identical to their counterpart in cπ .

The key differences are in the handling of

T-New As res is stable by α-conversion and by induction hypothesis, we may
apply again T-New, with the same hypothesis and the same result.

T-Op By lemma 3, we have Γ ` e{a ← b} : Allocation(re). From this and by
induction hypothesis, the hypothesis of T-Op are stable by α-conversion.
Therefore, we may again apply T-Op and obtain the same result.

T-ReceiveUnknown Trivial.

T-SendUnknown Trivial.
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�

Lemma 5 (Substitution) If Γ, x : N ` P : Bound(t, λ) and Γ ` m : N then
Γ ` P{x← m} : Bound(t, λ\{x})⊕m 7→ λ(x)

This is proved by induction on the structure of a proof of Γ, x : N ` P :
Bound(t, λ).

The only tricky case is P = foreign a : M = Foreign(x) in i with m = c,
where M = Name(Finalizer,⊥).

We have the following type derivation

Typing P

Γ, x : Name( , ra), a : M `i : Bound(ti, λi) By hypothesis
⇒ Γ, x : Name( , ra) `foreign a : M = Finalize(x) in i : Bound(t, λ) From T-Finalize

Where t � tr

λ′ � λi ⊕ a 7→ r
tr ⊕ r � ti

λi(a) = ⊥

©

Therefore, we may have

Typing i{x← }}
Γ, x : Name( , ra), a : M `i : Bound(ti, λi) See above

⇒ Γ, a : M `i{x← }} : Bound(ti ⊕ λi(x), λi\{x}) From Induction hypothesis

Typing P

Γ, a : M `i{x← }} : Bound(ti ⊕ λi(x), λi\{x}) See above
Since (λi\{x})(a) = ⊥

t⊕ λ(x) � tr ⊕ λi(x)⊕ r
tr ⊕ λi(x)⊕ r � ti ⊕ λi(x)

⇒ Γ `foreign a : M = Finalize(}) in i{x← }} : Bound(t′′, λ′′) From T-Finalize
Where t′′ = t′r ⊕ r

t′r = t⊕ λi(x)
λ′′ = λi\{x}

©

As t′′ = t⊕ λi(x)⊕ r, and λ(x) � λi ⊕ a 7→ r, we have t′′ � t⊕ λ(x).
In addition, λ′′ = λi\{x} = (λi ⊕ (x 7→ r))\{x} � λ′.
By weakening, we conclude that Γ ` P{x ← m} : Bound(t, λ\{x}) ⊕m 7→

λ(x)

Lemma 6 (Weakening) If Γ ` P : T and a /∈ fn(P ) then Γ, a : N ` P : T .

Trivial. �

Lemma 7 (Weakening deallocations) If Γ ` P : Bound(t, λ) and λ′ � λ
then Γ ` P : Bound(t, λ′).

39



Trivial. �

Lemma 8 (Strengthening deallocations) If Γ ` P : Bound(t, λ) and a /∈
fn(P ) then Γ ` P : Bound(t, λ\{a}).

Trivial. �

Lemma 9 (Foreign operation progress) Let e and e′ be two foreign opera-
tions such that 
 e e′. Let Γ be an environment such that Γ ` foreign x :
N = e in i : T . Then we have Γ ` e : Te for some Te. In addition, we have
Γ ` e : T ′

e.

We prove this by examining relations · 
 · ·.

cases l = Cons(h, t) 
 Head(l)  h and l = Cons(h, t) 
 Tail(l)  t:
everything has type Allocation( )

case t = Tuplen(a1, a2, . . . , an) 
 Nthp(t) ap 1 ≤ p ≤ n: everything has
type Allocation( )

case
a = v 
 e f

a = v 
 IfThenElse(e, b, c) IfThenElse(f, b, c)
: everything has type

Allocation( )

�

Lemma 10 (Foreign operation dereference) Let e be a foreign operation
and b a name such that e ( b. Let Γ be an environment such that Γ `
foreign x : N = e in i : T . Then we have b ∈ Γ and Γ(b) = x.

The fact that b ∈ Γ stems from the definition of e( b and T-Alloc-Nothing:
since b ∈ fn(e) and fn(e) ⊆ Γ.

We prove this by examining relations · 
 · · and ·( ·.

• case a( a: trivial

• case IfThenElse(True, a, b)( a: trivial

• case IfThenElse(False, a, b)( b: trivial

�
Note This lemma is quite dependent on the set of allowed foreign operations.

However, it seems quite likely that it could be generalised by adding a type
discipline to foreign operations themselves.

Lemma 11 (Pseudo-weakening environment) If Γ is an environment, if
we have a process A, a name b and types T , N such that Γ, b : N ` A : T and
Γ ` b : N then we also have Γ ` A : T .

This lemma is trivial. �
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E.2 Subject equivalence

Proposition 1 (Subject equivalence) If Γ is an environment, if A is a pro-
cess such that Γ ` A : T and if B is a process such that B ≡ A then we also
have Γ ` B : T .

By induction upon a proof of A ≡ B, we prove that Γ ` A : T if and only if
Γ ` B : T We may have A ≡ B either by an application of rules E-Commut,
E-Scope, E-Par or E-New, or by one of the following pseudo-rules:

E-Trans
P ≡ Q Q ≡ R

P ≡ R
E-Refl

P ≡ P
E-Sym

P ≡ Q

Q ≡ P

E-Par-Commut
P |Q ≡ Q|P

E-Par-Assoc
(P |Q)|R ≡ P |(Q|R)

E-Choice-Commut
P + Q ≡ Q + P

E-Choice-Assoc
(P + Q) + R ≡ P + (Q + R)

E-Alpha
(νa = v)P ≡ (νb = v)P{a← b}

b /∈ fn(P )

E.2.1 Initialisation

E-Refl Trivial.

E-Par-Commut We have A = P |Q and B = Q|P . As rule T-Par is symmet-
rical with respect to A and B, the case is trivial.

E-Par-Assoc We have A = (P |Q)|R and B = P |(Q|R). It is easy to check
that, by two applications of rule T-Par, we obtain the same constraints
for minimal types of A and B. Which proves the case.

E-Choice-Commut As E-Par-Commut.

E-Choice-Assoc As E-Par-Assoc.

E-Alpha By lemma 4.

E-Scope Let us consider A = ((νa = v : N)P )|Q such that Γ ` A : T and
a /∈ fn(Q). Then, we necessarily have the following derivation:

Typing (νa : Name(C, ra) = v)P
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Γ, a : Name(C, ra)` P : Bound(tP , λP ) By hypothesis
⇒ Γ `(νa : Name(C, ra) = v)P : Bound(t1, λ1) From T-New

Where res(v) � ra

λP (a) � ra

λ1 � λ\{a}
t1 � ra ⊕ tP

Typing ((νa = v : N)P )|Q
Γ `(νa : Name(C, ra) = v)P : Bound(t1, λ1) See above
Γ `Q : Bound(tQ, λQ) By hypothesis

⇒ Γ `((νa = v : N)P )|Q : Bound(t2, λ2) From T-Par
Where t2 � t1 ⊕ tQ

λ2 � λ1 ⊕ λQ

©

By lemma 8, as a /∈ fn(Q), we may assume that λQ(a) = ⊥.

Consequently, we may also derive :

Typing Q

Γ `Q : Bound(tQ, λQ) By hypothesis
⇒ Γ, a : Name(C, ra) `Q : Bound(tQ, λQ) From lemma 6

Typing P |Q
Γ, a : Name(C, ra) `P : Bound(tP , λP ) By hypothesis
Γ, a : Name(C, ra) `Q : Bound(tQ, λQ) See above

⇒ Γ, a : Name(C, ra) `P |Q : Bound(t3, λ3) From T-Par
Where t3 = tP ⊕ tQ

λ3 = λP ⊕ λQ

Typing (νa = v : N)(P |Q)

Γ, a : Name(C, ra) `P |Q : Bound(t3, λ3) See above
Since λ3 = λP ⊕ λQ

λP � ra

we deduce λ3(a) � ra

Since t2 � t1 ⊕ tQ

t1 � ra ⊕ tP

λ2 � λ1 ⊕ λQ

λ1 � λ\{a}
⇒ Γ `(νa = v : N)(P |Q) : Bound(t2, λ2) From T-New

©

Which proves one implication. The other way is similar.

E-New Trivial.

E.2.2 Induction step

E-Par Directly by induction hypothesis.

E-Trans Directly by induction hypothesis.
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E-Sym Directly by induction hypothesis.

E-Commut Directly by induction hypothesis.

We conclude by induction that the proposition has been proved.�

E.3 Open Subject Reduction

Proposition 2 (Open Subject Reduction) If A is a process, Γ an environ-
ment such that Γ ` A : Bound(r, λ) and if there is some process A′, a label l

and some resource r such that A
l−→pre A′ then

• if l = τ or l = e f , we have Γ ` A′ : Bound(r′, λ′), where Σc∈Nλ′(c) �
Σc∈Nλ′(c) r′ ⊕ Σc∈Nλ′(c) � r ⊕ Σc∈Nλ′(c)

• if l = a?b

– either Γ ` a : Name(Chan(N, ga, da), ), Γ, b : N ` A′ : Bound(r′, λ′),
r′ � r ⊕ ga and λ′ � λ⊕ b 7→ da.

– or Γ ` a : Name(Unknown, ), Γ, b : Name(Unknown, ) ` A′ :
Bound(r′, λ′), r′ � r and λ′ � λ

• if l = a?}, then

– either a ∈ Γ, Γ ` a : Name(Chan(N, ga, da), ), r′ � r⊕ ga ⊕ da and
λ′ � λ.

– or Γ ` a : Name(Unknown, ), r′ � r and λ′ � λ

• if l = a!b, then

– either Γ ` a : Name(Chan(N, ga, da), ), Γ ` b : N , r′ ⊕ ga � r,
λ′ ⊕ b 7→ da � λ

– or Γ ` a : Name(Unknown, ), Γ ` b : (Unknown, ), r′ � r and
λ′ � λ

• if l = a!}, then

– either Γa ` Name(Chan( , ga, da), ), r′ ⊕ ga ⊕ da � r, λ′ � λ

– or Γ ` a : Name(Unknown, ), r′ � r and λ′ � λ

• if l = νb : N = v.a!b, then

– either Γa ` Name(Chan(N, ga, da), ), N = Name( , rb), rb � res(v),
r′ ⊕ ga ⊕ rb � r, λ′(b)⊕ da � rb.

– or Γ ` a = Name(Unknown, ), N = Name(Unknown, rb), rb �
res(v), r′ ⊕ rb � r, λ′ � λ and λ(b) � rb.

We prove this proposition by induction on the structure of a proof of A −→pre

A′.
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E.3.1 Initialisation

R-Spawn Label is τ . Rules T-Spawn and T-Par produce the same typings
from the same set of hypothesis.

R-Either Label is τ . Rules T-Either and T-Choice produce the same typ-
ings from the same set of hypothesis.

R-Deallocate Label is τ . We have A = (νa : Name(C, ra) = v)P and
A′ = P{a ← }}. By T-New, we also have Γ, a : Name(C, ra) `
A : Bound(rP , λP ), with r � rP ⊕ ra, λ � λP \{a}, λP (a) � ra and
res(v) � ra. By lemma 5, if Γ, a : N ` P : Bound(rP , λP ), then
Γ ` P{a ← }} : Bound(r′P , λ′P ), where Σb∈Nλ′P (b) � Σb∈Nλ′P (b) and
r′P ⊕ Σb∈Nλ′P (b) � rP Σb∈Nλ′P (b).

Which proves the case.

R-Deref Label is τ . We have A = foreign x : N = e in i and A′ = i{x← m}
where m = } or m /∈ fn(i) and N = Name( , re) Let us consider the
typings of A and deduce a typing of A′

Typing A

Γ `e : Allocation(re)
Γ, x : N `i : Bound(ti, λi)
⇒ Γ `A : Bound(t, λ) From T-Let

Where t � ti ⊕ re

λ � λi\{x}
λi(x) � re

Typing A′ case m = b 6= }
Γ, x : N `i : Bound(ti, λi) By hypothesis
⇒ Γ `i{x← b} : Bound(ti, λi\{x}) From Substitution

Since Γ(b) = N From Lemma 10

⇒ Γ `A′ : Bound(t, λ) From Weakening
Since t � ti ⊕ re

λ � λi\{x}

Typing A′ case m = }
Γ, x : N `i : Bound(ti, λi) By hypothesis
⇒ Γ `i{x← }} : Bound(ti ⊕ λi(x), λi\{x}) From Substitution
⇒ Γ `A′ : Bound(t, λ) From Weakening

Since λi(x) � re

λ � λi\{x}

©

Which proves the case.

R-Store Label is τ . We have A = foreign a : N = e in i and A′ = (νa : N =
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v)i, where N = Name( , re). Let us consider the typings of A and deduce
a typing of A′

Typing A

Γ `e : Allocation(re)
Γ, a : N `i : Bound(ti, λi)
⇒ Γ `A : Bound(t, λ) From T-Let

Where t � ti ⊕ re

λ � λi\{a}
λi(a) � re

Typing A′

Γ, a : N `i : Bound(ti, λi) By hypothesis
Since λ � λi\{a}

λi(a) � re

t � ti ⊕ re

⇒ Γ `(νa : N = v)i : Bound(t, λ) From T-New

©

Which proves the case.

R-Send We have A = a m, A′ = nothing and l = a!m. We also have
Γ ` A : Bound(t, λ) hence either Γ ` a : Name(Chan(N, ga, da), ) for
some ga and da. (by T-Send) or Γ ` a : Name(Unknown, ) (by T-
SendUnknown).

• If Γ ` a : Name(Chan(N, ga, da), ) and m 6= }, we know that
t � ga and λ � b 7→ da. As nothing may have any Bound( ) type,
Bound(⊥,⊥N ) is a possible choice, and it matches the property we
need to prove. In addition, by T-Send, we have Γ ` b : N .

• if Γ ` a : Name(Chan(N, ga, da), ) and m = }, we know that
t � ga⊕da. As nothing may have any Bound( ) type, Bound(⊥,⊥N )
is a possible choice, and it matches the property we need to prove.

• if Γ ` a : Name(Unknown, ) and m 6= }, we use Bound(⊥,⊥N ) In
addition, by T-SendUnknown, we have Γ ` b : Name(Unknown, ).

• if Γ(a) = Name(Unknown, ) and m = }, we use again Bound(⊥,⊥N ).

Which proves the case.

R-Once We have A = once a x do i and A′ = i{x ← m}. We also have
Γ ` A : Bound(t, λ) hence either Γ ` a : Name(Chan(N, ga, da), ) for
some ga and da (by T-Receive) or Γ ` a : Name(Unknown, ) (by T-
ReceiveUnknown). Therefore, depending on whether a is tagged as
Unknown and on whether m is }, we have 4 cases to consider.

Case 1 If Γ ` a : Name(Chan(N, ga, da), ) and m 6= }, we have Γ, x :
N ` i : Bound(ti, λi), where t⊕ ga � ti, λ � λi\{x} and da � λi(x).
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By hypothesis, we have Γ ` b : N . Hence, by lemma 5 (substitution),
we conclude that Γ ` i{x ← b} : Bound(ti, λi\{x}) ⊕ (b 7→ λi(x)).
With t′ = ti and λ′ = λi\{x} ⊕ (b 7→ λi(x)), we conclude that
t′ � t⊕ ga and λ′ � λ⊕ b 7→ da, which proves the case.

Case 2 If Γ ` a : Name(Chan(N, ga, da), ) and m = }, we have Γ, x :
N ` i : Bound(ti, λi), where t⊕ ga � ti, λ � λi\{x} and da � λi(x).
Hence, by lemma 5 (substitution), we conclude that Γ ` i{x ←
b} : Bound(ti, λi\{x}) ⊕ (b 7→ λi(x)). With t′ = ti ⊕ λi(x) and
λ′ = λi\{x}, we conclude that t′ � t ⊕ ga ⊕ da and λ′ � λ, which
proves the case.

Case 3 If Γ ` a : Name(Unknown, ) and m 6= }, by T-ReceiveUnknown,
we have Γ, x : Name(Unknown, ) ` i : Bound(ti, λi), where t � ti,
λ � λi and λi(x) = ⊥. By hypothesis, we have Γ ` b : Name(Unknown, ).
Hence, by lemma 5 (substitution), we conclude that Γ ` i{x ← b} :
Bound(ti, λi\{x})⊕(b 7→ λi(x)). With t′ = ti and λ′ = λi\{x}⊕(b 7→
λi(x)), we conclude that t′ � t and λ′ � λ\{x}, which proves the case.

Case 4 If Γ ` a : Name(Unknown, ) and m = }, we have Γ, x :
Name(Unknown, ) ` i : Bound(ti, λi), where t � ti and λ � λi

and λ(x) = ⊥. Hence, by lemma 5 (substitution), we conclude that
Γ ` i{x ← b} : Bound(ti, λi\{x}) ⊕ (b 7→ λi(x)). With t′ = ti and
λ′ = λi\{x}⊕ (b 7→ λi(x)), we conclude that t′ � t and λ′ � λ, which
proves the case.

R-On We have A = on a x do i and A′ = i{x ←} | on a x do . We also
have Γ ` A : Bound(t, λ) hence either Γ ` a : Name(Chan(N, ga, da), )
for some ga and da (by T-Receive) or Γ ` a : Name(Unknown, ) (by T-
ReceiveUnknown). In addition, by T-Repl, we have Γ ` once a x do i :
Bound(⊥,⊥N ).

• If Γ ` a : Name(Chan(N, ga, da), ), m 6= } and Γ ` b : N , we have
Γ, x : N ` i : Bound(⊥,⊥N ). Hence, by lemma 5 (substitution), we
have Γ ` i{x ← b} : Bound(⊥,⊥N ). By T-Par, we deduce that
Γ ` A′ : Bound(t, λ). Which proves the case.

• If Γ ` a : Name(Chan(N, ga, da), ) and m = }, we have Γ, x :
N ` i : Bound(⊥,⊥N ). Hence, by lemma 5 (substitution), we have
Γ ` i{x← m} : Bound(⊥,⊥N ). By T-Par, we deduce that Γ ` A′ :
Bound(t, λ). Which proves the case.

• If Γ ` a : Name(Unknown, ), m 6= } and Γ ` b : Name(Unknown, ),
we have Γ, x : Name(Unknown, ) ` i : Bound(⊥,⊥N ). Hence, by
lemma 5 (substitution), we have Γ ` i{x ← b} : Bound(⊥,⊥N ). By
T-Par, we deduce that Γ ` A′ : Bound(t, λ). Which proves the case.

• If Γ ` a : Name(Unknown, ) and m = }, we have Γ, x : Name(Unknown, ) `
i : Bound(⊥,⊥N ). Hence, by lemma 5 (substitution), we have
Γ ` i{x ← m} : Bound(⊥,⊥N ). By T-Par, we deduce that Γ `
A′ : Bound(t, λ). Which proves the case.
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R-Evaluate This is a direct corollary of lemma 9.

E.3.2 Induction step

R-Comm 1 Let us consider the case where A = P |Q, A′ = P ′|Q′, where
P

a?m−→pre P ′, Q
a!m−→pre Q′, Γ ` P : Bound(tP , λP ), Γ ` Q : Bound(tQ, λQ),

Γ ` a : Name(C, ). and m 6= }. Let us write b = m.

By induction hypothesis, we have Γ ` b : N , Γ ` a : Name(Chan(N, ga, da), ),
Γ, b : N ` P ′ : Bound(t′P , λ′P ), t′P � tP ⊕ ga, λ′P � λP ⊕ b 7→ da.
t′Q ⊕ ga � tQ, λ′Q ⊕ b 7→ da � λQ.

By T-Par, we deduce Γ ` A′ : Bound(t′P ⊕ t′Q, λ′P ⊕λ′Q). As t′P � tP ⊕ga

and t′Q⊕ga � tQ, we deduce t′P ⊕ t′Q � tP ⊕ tQ � t. As λ′P � λP ⊕b 7→ da.
and λ′Q ⊕ b 7→ da � λQ, we deduce λ′P ⊕ λ′Q � λP ⊕ λQ � λ.

Which proves the case.

R-Comm 2 Let us consider the case where A = P |Q, A′ = P ′|Q′, where
P

a?m−→pre P ′, Q
a!m−→pre Q′, Γ ` P : Bound(tP , λP ), Γ ` Q : Bound(tQ, λQ),

Γ ` a : Name(C, ). and m = }.

By induction hypothesis, we have Γ ` a : Name(Chan(N, ga, da), ), Γ `
P ′ : Bound(t′P , λ′P ), t′P � tP ⊕ ga ⊕ da, λ′P � λP , t′Q ⊕ ga ⊕ da � tQ and
λ′Q � λQ

By T-Par, we deduce Γ ` A′ : Bound(t′P ⊕ t′Q, λ′P ⊕ λ′Q). As t′P �
tP ⊕ ga ⊕ da and t′Q ⊕ ga ⊕ da � tQ, we deduce t′P ⊕ t′Q � tP ⊕ tQ � t. As
λ′P � λP . and λ′QλQ, we deduce λ′P ⊕ λ′Q � λP ⊕ λQ � λ.

Which proves the case.

R-Comm 3 Let us consider the case where A = P |Q, A′ = P ′|Q′, where
P

a?m−→pre P ′, Q
a!m−→pre Q′, Γ ` P : Bound(tP , λP ), Γ ` Q : Bound(tQ, λQ),

Γ ` a : Name(Unknown, ). and m 6= }. Let us write b = m.

This case is identical to R-Comm 1, with da = ra = ⊥.

R-Comm 4 Let us consider the case where A = P |Q, A′ = P ′|Q′, where
P

a?m−→pre P ′, Q
a!m−→pre Q′, Γ ` P : Bound(tP , λP ), Γ ` Q : Bound(tQ, λQ),

Γ ` a : Name(C, ). and m = }.

This case is identical to R-Comm 2, with da = ra = ⊥.

R-Comm-Close 1 Let us consider the case where A = P |Q, A′ = (νb :

N = v)(P ′|Q′), where P
a?m−→pre P ′, Q

(νb):N=v.a!m−→ pre Q′, Γ ` P :
Bound(tP , λP ), Γ ` Q : Bound(tQ, λQ), Γ ` a : Name(C, ). and m 6= }.
Let us write b = m and N = Name( , rb).

By induction hypothesis, we have rb � res(v), Γ ` a : Name(Chan(N, ga, da), ),
Γ, b : N ` P ′ : Bound(t′P , λ′P ), t′P � tP ⊕ ga, λ′P � λP ⊕ b 7→ da,
t′Q ⊕ ga ⊕ rb � tQ, λ′Q(b)⊕ da � rb.
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As b /∈ fn(P ), by lemma 8 (strengthening deallocation), we may assume
that λP (b) = ⊥. Therefore, as λ′P � λP ⊕b 7→ da, we have λ′P (b) � da. As
λ′Q(b)⊕ da � rb, we deduce that (λ′P ⊕ λ′Q)(b) � rb. Similarly, we deduce
that t′P ⊕ t′Q ⊕ rb � tP ⊕ tQ.

By T-Par and T-Res, we may therefore prove that Γ ` A′ : Bound(t′, λ′),
with t′ = t′P ⊕ t′Q ⊕ rb and λ′ = (λ′P ⊕ λ′Q)\{b}. As λ′P (b) � da and
λ′Q9b) ⊕ da � rb, we further deduce that λ′ � λ and t′ ⊕ Σc∈Nλ′(c) �
t⊕ Σc∈Nλ(c).

Which proves the case.

R-Comm-Close 2 Let us consider the case where A = P |Q, A′ = (νb :

N = v)(P ′|Q′), where P
a?m−→pre P ′, Q

(νb):N=v.a!m−→ pre Q′, Γ ` P :
Bound(tP , λP ), Γ ` Q : Bound(tQ, λQ), Γ ` a : Name(Unknown, ).
and m 6= }. This case is essentially identical to R-Comm-Close 1, with
da = ga = ⊥.

R-Fetch We have A = (νa : N = v)P , A′ = (νa : N = v)P ′ and P
e f7−→ P ′.

By induction hypothesis, the type of P and the type of P ′ are the same.
Which proves the case.

R-Par We have A = P |Q and A′ = P ′|Q where P
α−→pre P ′. By examin-

ing all possible configurations of α, invoking the corresponding induction
hypothesis and pasting the result in T-Par, we prove the case.

R-Choice As R-Par, just easier.

R-Hide As R-Par.

R-Equiv This is a direct corollary of lemma 1 (Subject Equivalence).

R-Open 1 Let us consider the case where A = (νb : Name( , rb) = v)P ,
A′ = P ′, P

a!b−→pre P ′ and Γ ` a : Name(C, ).

As A may be typed in Γ, by T-New, have Γ, b : N ` P : Bound(tP , λP ),
where t � tP ⊕ rb, λ � λP \{b}, λP (b) � rb and rb � res(v).

By induction hypothesis, we also have Γ ` a : Name(Chan(N, ga, da), ),
Γ ` b : N , t′P ⊕ ga � tP and λ′P ⊕ b 7→ da � λP .

Consequently, we have λ′P (b)⊕da � λP (b) � rb and t′P⊕ga⊕rb � tP⊕rb �
t.

Therefore, we have Γ ` A′ : Bound(t′, λ′), with λ′(b) ⊕ da � rb and t′ ⊕
ga ⊕ rb � t, which proves the case.

R-Open 2 Let us consider the case where A = (νb : Name( , rb) = v)P ,
A′ = P ′, P

a!b−→pre P ′ and Γ ` a : Name(Unknown, ).

This case is essentially identical to R-Open 1, with ga = da = ⊥.
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Proposition 3 (Subject Reduction) If A is a process, Γ an environment
such that Γ ` A : Bound(r, λ) and if there is some process A′ such that A −→pre

A′, then we also have Γ ` A′ : Bound(r′, λ′), where r′ � r and λ′ � λ.

This is a direct corollary of the Open Subject Reduction.

E.4 Subject Reduction under attack

Proposition 4 (Subject Reduction under attack) If A is a process, B a
client and Γ an environment such that, Γ isolates both A and B and such that
Γ ` A : Bound(r, λ), if there is some C such that A|B −→ C then we may
find two processes A′ and B′ and a set of names, types and values a1 : N1 =
v1, . . . , an : Nn, vn such that

1. C ≡ (ν−−−→a = v)(A′ | B′)

2. Γ,
−−−→
a : N ` A′ : Bound(t′, λ′)

3. Γ,
−−−→
a : N isolates B′

4. Σb∈Nλ′(b) � Σb∈Nλ(b)

5. t′ ⊕ Σb∈Nλ′(b) � t⊕ Σb∈Nλ(b)

6. ∀i ∈ 1..n, if Ni = Name( , ri) then λ′(ai) � ri

7. t′ ⊕ Σi∈1..nriΣb∈Nλ′\−→a (b) � t⊕ Σb∈Nλ(b)

8. B′ is a client

In particular, if B = nothing, it is possible to find A′ such that
−−−−−−→
a : N = v =

∅ and B′ = nothing. (Subject Reduction without attack). If λ = ⊥N , we
always have λ′ = ⊥N and t′ ⊕ Σi∈1..nri � t (Subject Reduction with closed
garbage-collection).

• if A −→pre A′ – by Open Subject Reduction, we have Γ ` A′ : Bound(r′, λ′),
where Σc∈Nλ′(c) � Σc∈Nλ′(c) r′ ⊕ Σc∈Nλ′(c) � r ⊕ Σc∈Nλ′(c). With
B′ = B, we have

1. C = A′|B′

2. Γ ` A′ : Bound(t′, λ′)

3. Γ isolates B′

4. Σb∈Nλ′(b) � Σb∈Nλ(b)

5. t′ ⊕ Σb∈Nλ′(b) � t⊕ Σb∈Nλ(b)

6. as we have added no name to Γ, ∀i ∈ 1..0, if Ni = Name( , ri) then
λ′(ai) � ri
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7. as we have added no name to Γ, t′ ⊕ Σi∈1..nriΣb∈Nλ′\−→a (b) � t ⊕
Σb∈Nλ(b)

8. B′ is a client

which proves the case.

• if B −→pre B′ – we have changed nothing to the typable contents.

• if A
a!b−→pre A′ and B

a?b−→pre B′ – by hypothesis, since Γ isolates B, we have
Γ ` a : Name(Unknown, ). By Open Subject Reduction, we may also
check that we have Γ ` A′ : Bound(t′, λ′), where t′ � t and λ′ � λ. In ad-
dition, by Open Subject Reduction, we have Γ ` b : Name(Unknown, ).
As Γ isolates B, we deduce that Γ isolates B′ Therefore, we have

1. C = A′|B′

2. Γ ` A′ : Bound(t′, λ′)

3. Γ isolates B′

4. as λ′ � λ, Σb∈Nλ′(b) � Σb∈Nλ(b)

5. as λ′ � λ and t′ � t, t′ ⊕ Σb∈Nλ′(b) � t⊕ Σb∈Nλ(b)

6. as we have added no name to Γ, ∀i ∈ 1..0, if Ni = Name( , ri) then
λ′(ai) � ri

7. as we have added no name to Γ, t′ ⊕ Σi∈1..nriΣb∈Nλ′\−→a (b) � t ⊕
Σb∈Nλ(b)

8. as B
a?b−→pre B′, by definition, B′ is a client

which proves the case.

• if A
a!}−→pre A′ and B

a?}−→pre B′ – by hypothesis, since Γ isolates A and
B, we have Γ ` a : Name(Unknown, ). By Open Subject Reduction,
we may also check that we have Γ ` A′ : Bound(t′, λ′), where t′ � t and
λ′ � λ. As Γ isolates B, we deduce that Γ isolates B′ Therefore, we have

1. C = A′|B′

2. Γ ` A′ : Bound(t′, λ′)

3. Γ isolates B′

4. as λ′ � λ, Σb∈Nλ′(b) � Σb∈Nλ(b)

5. as λ′ � λ and t′ � t, t′ ⊕ Σb∈Nλ′(b) � t⊕ Σb∈Nλ(b)

6. as we have added no name to Γ, ∀i ∈ 1..0, if Ni = Name( , ri) then
λ′(ai) � ri

7. as we have added no name to Γ, t′ ⊕ Σi∈1..nriΣb∈Nλ′\−→a (b) � t ⊕
Σb∈Nλ(b)

8. as B
a?}−→pre B′, by definition, B′ is a client
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which proves the case.

• if A
a?b−→pre A′ and B

a!b−→pre B′ – by hypothesis, since Γ isolates A and
B, we have Γ ` a : Name(Unknown, ). By Open Subject Reduction, we
deduce that Γ, b : Name(Unknown, ) ` A′ : Bound(t′, λ′), where t′ � t
and λ′ � λ. As Γ isolates B, we deduce that Γ isolates B′. Therefore, we
have

1. C = A′|B′

2. Γ ` A′ : Bound(t′, λ′)

3. Γ isolates B′

4. as λ′ � λ, Σb∈Nλ′(b) � Σb∈Nλ(b)

5. as λ′ � λ and t′ � t, t′ ⊕ Σb∈Nλ′(b) � t⊕ Σb∈Nλ(b)

6. as we have added no name to Γ, ∀i ∈ 1..0, if Ni = Name( , ri) then
λ′(ai) � ri

7. as we have added no name to Γ, t′ ⊕ Σi∈1..nriΣb∈Nλ′\−→a (b) � t ⊕
Σb∈Nλ(b)

8. as B
a!b−→pre B′, by definition, B′ is a client

which proves the case.

• if A
a?}−→pre A′ and B

a!}−→pre B′ – by hypothesis, since Γ isolates A and
B, we have Γ ` a : Name(Unknown, ). By Open Subject Reduction, we
deduce that r′ � r and λ′ � λ. As previously, the case is proved.

• if A
νb:N=v.a!b−→ pre A′ and B

a?b−→pre B′ – by hypothesis, since Γ isolates A
and B, we have Γ ` a : Name(Unknown, ). By Open Subject Reduction,
we deduce that N = Name(Unknown, rb), rb � res(v), t′⊕ rb � t, λ′ � λ
and λ(b) � rb.

Therefore, we have

1. C = (νb : N = v)(A′|B′)

2. Γ, b : N ` A′ : Bound(t′, λ′)

3. Γ, b : N isolates B′

4. as λ′ � λ, Σb∈Nλ′(b) � Σb∈Nλ(b)

5. as λ′ � λ and t′ � t, t′ ⊕ Σb∈Nλ′(b) � t⊕ Σb∈Nλ(b)

6. as λ(b) � rb, we may write that ∀i ∈ 1..1, if Ni = Name( , ri) then
λ′(ai) � ri

7. t′⊕Σi∈1..nriΣc∈Nλ′\−→a (c) � t′⊕rb⊕Σc∈Nλ′\{b}(c) � t⊕Σc∈N\{b}λ
′(c) �

t⊕ Σc∈N\{b}λ(c) � t⊕ Σc∈Nλ(c)

8. as B
a?b−→pre B′, by definition, B′ is a client.

Which proves the case.
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• if A
a?b−→pre A′ and B

νb:N=v.a!b−→ pre B′ – by hypothesis, since Γ isolates A
and B, we have Γ ` a : Name(Unknown, ). By Open Subject Reduction,
we deduce that Γ, b : Name(Unknown, ) ` A′ : Bound(t′, λ′), where t′ �
t and λ′ � λ. In addition, by definition, since B is a client, res(B) = ⊥.
Consequently, we have res(v) = ⊥.

Therefore, we have

1. C = (νb : N = v)(A′|B′)

2. Γ, b : N ` A′ : Bound(t′, λ′)

3. Γ, b : N isolates B′

4. as λ′ � λ, Σb∈Nλ′(b) � Σb∈Nλ(b)

5. as λ′ � λ and t′ � t, t′ ⊕ Σb∈Nλ′(b) � t⊕ Σb∈Nλ(b)

6. as λ(b) � rb, we may write that ∀i ∈ 1..1, if Ni = Name( , ri) then
λ′(ai) � ri

7. t′⊕Σi∈1..nriΣc∈Nλ′\−→a (c) = t′⊕Σc∈Nλ′\{b}(c) � t⊕Σc∈N\{b}λ
′(c) �

t⊕ Σc∈Nλ(c)

8. as B
a?b−→pre B′, by definition, B′ is a client.

Which proves the case.

Which concludes the theorem. �

E.5 Safety

Lemma 12 (Well-typed terms may run) If Γ ` P : Bound(reserve,⊥N )
then res(P ) � reserve.

This lemma may be proved by induction on the structure of a proof of
Γ ` P : Bound(reserve,⊥N ).
�

Proposition 5 (Well-typed terms behave) If Γ ` P : Bound(reserve,⊥N )
then P is non-exhausting.

This is a direct corollary of lemma 12 and theorem 3. �

Proposition 6 (Well-typed terms are robust) If Γ isolates P and Γ ` P :
Bound(reserve,⊥N ) then P is robust.

This is a direct corollary of lemma 12 and Subject Reduction with closed
garbage-collection (theorem 4).
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