
LABORATOIRE
D'INFORMATIQUE

FONDAMENTALE
D'ORLEANS

Rapport de Recherche
http://www.univ-orleans.fr/lifo

4 rue Léonard de Vinci
BP 6759

F-45067 Orléans Cedex 2
FRANCE

Mapping and Performance
Prediction for Distributed

Applications on
Heterogeneous Clusters

Sylvain Jubertie, Emmanuel Melin
Université d’Orléans, LIFO

Rapport No 2007-07
05/02/2007

Mapping and Performance Prediction for
Distributed Applications on Heterogeneous

Clusters

Sylvain Jubertie, Emmanuel Melin

Université d’Orléans — LIFO
BP 6759 — F-45067 Orléans cedex 2

{sylvain.jubertie | emmanuel.melin}@univ-orleans.fr

Abstract. Distributed applications running on clusters may be composed
of several components with very different performance requirements. The
FlowVR middleware allow the developer to deploy such applications and
to define communication and synchronization schemes between components
without modifying the code. Whereas it eases the creation of mappings,
FlowVR does not come with a performance model. Consequently optimiza-
tion of mappings is left to the developer skills. This task seems difficult to
perform when the number of components and cluster nodes grow. Moreover
the cluster may be composed of heterogeneous nodes making this task even
more complex. In this paper we propose an approach to predict performances
of FlowVR distributed applications given a mapping and a cluster. We also
give some advices to the developer to create efficient mappings and avoid
configurations which may lead to issues. Since the FlowVR model is very
closed to underlying models of lots of distributed codes, our approach can
be useful for all designers of such applications.

1 Introduction

The different parts of an heterogeneous distributed application are difficult to map
efficiently on a cluster. FlowVR [2] is a middleware which eases the coupling and
the mapping of distributed applications. It was designed with distributed Virtual
Reality applications in mind but its approach could be generalize to non-interactive
applications. FlowVR allows the developer to define communications, synchroniza-
tions and mappings of the application parts without code modification. For instance
the developer can implement outside of the code operations like data filtering, data
sampling, collective communications schemes like broadcasts, etc. This fine control
over data handling enables to take advantage of both the specificity of the appli-
cation and the underlying cluster architecture to optimize the latency and refresh
rates. But these fine control capabilities does not come with a FlowVR performance
model. Consequently the optimization of the application performance is left to the
developer skills.

When building a mapping on a cluster, the developer has to choose among lots
of possibilities and only few of them are able to take the best advantage of the
clusters performance. To find an efficient mapping, the developer should take care
of communications, synchronizations and concurrency between parts of the applica-
tion. He must introduce asynchronism to increase performances while ensuring that
the application communication and synchronization schemes are coherent. Then
he should have a precise idea of the performances of the different modules of the
application. Some of them may be distributed on several nodes to increase their
performances, but distributing modules could increase communications. Moreover
the developer should also consider the behaviour of the operating system scheduler

to predict performances of concurrent modules. The scheduling policy depends of
the nature of the module which could be I/O-bound if the module performs I/O
operations or CPU-bound if the module performs pure computations. In the case of
a I/O-bound module the processor is not used at full load because the module waits
for I/O-operations to complete. We have in this category modules performing out-
of-core operations or accessing databases. In the second case we have for example
simulation modules which are only limited by the CPU performance. Some mod-
ules may be less critical than others for the global performance of the application.
In some cases concurrency could benefit to performances whereas in other cases it
could dramatically decrease performances. Last, the cluster could be composed of
heterogeneous nodes and networks, increasing the difficulty of the developers task.
When the number of application parts grows it seems difficult for the developer to
analyse all the possible mappings without an efficient performance model.

Classical performance models for parallel codes are not well suited for FlowVR
applications. The PRAM model involves synchronous computations and doesn’t
take care of communications between processors so it is not well adapted to clus-
ters. The BSP model [6] catches the parameters of distributed architectures but
applications should be structured in supersteps which are too synchronous. The
LogP model [7] was developed specifically for distributed architectures but it does
not allow complex asynchronous communications like data sampling. The same re-
mark is addressed to the Athapascan model [5]. Moreover the mapping of each
task is done according to a scheduling policy and the optimization of this policy
is left to the developer. However, sampling communication are very important for
real-time application since we can take advantage of a data exchange model based
on sampling to improve latency. This is possible in the FlowVR model since the
producer updates data in a shared buffer asynchronously read by the consumer.
Consequently we need to define a new performance model which should integrate
sampling communications and efficient mapping of the application.

We present in this paper an approach to determine performances of FlowVR
applications from a given mapping and cluster characteristics. With theses perfor-
mance informations the developer is able to compare several mappings and choose
the one which offers the best performances. We also provide to the developer rec-
ommendations to built coherent mappings.

2 The FlowVR model/design

FlowVR is an open source middleware dedicated to distributed interactive applica-
tions and currently ported on Linux and Mac OS X for the IA32, IA64, Opteron,
and Power-PC platforms. The FlowVR library is written in C++ and provides tools
to build and deploy distributed applications over a cluster. We turn now to present
its main features. More details can be found in [2].

A FlowVR application is composed of two main parts, a set of modules and a
data-flow network ensuring data exchange between modules. The user has to create
modules, compose a network and map modules on clusters hosts.

Data exchange Each message sent on the FlowVR network is associated with a
list of stamps. Stamps are lightweight data that identify the message. Some stamps
are automatically set by FlowVR, others can be defined by users. Basic stamps are
a simple ordering number or the module id of the message source. Stamps makes
possible to perform computations or routing on messages without having to read
the message content nor transmit it to avoid useless data transfers on the network.

Modules Modules encapsulate tasks and define a list of input and output ports. A
module is an endless iteration reading input data from its input ports and writing
new results on its output ports. A module uses three main methods:

– The wait function defines the beginning of a new iteration. It is a blocking call
ensuring that each connected input port holds a new message.

– The get function obtains the message available on a port. This is a non-blocking
call since the wait function guarantees that a new message is available on each
module ports.

– The put function writes a message on an output port. Only one new message
can be written per port and iteration. This is a non-blocking call, thus allowing
to overlap computations and communications.

Note that a module does not explicitly address any other FlowVR component.
The only way to gain an access to other modules are ports. This feature enforces
possibility to reuse modules in other contexts since their execution does not induce
side-effect. An exception is made for parallel modules (like MPI executables) which
are deployed via duplicated modules. They exchange data outside FlowVR ports,
for example via MPI message passing but they can be apprehended as one single
logical module. Therefore parallel modules do not break the FlowVR model.

The FlowVR Network The FlowVR network is a data flow graph which specifies
connections between modules ports. A connection is a FIFO channel with one source
and one destination. This synchronous coupling scheme may introduce latency due
to message bufferization between modules. This may induce buffer overflows. To
prevent this behavior, VR applications classically use a ”greedy” pattern where the
consumer uses the most recent data produced, all older data being discarded. This
is relevant for example when a program just needs to know the most recent mouse
position. In this case older positions are usefullness and processing them just induces
extra-latency. FlowVR enables to implement such complex message handling tasks
without having to recompile modules. To perform these tasks FlowVR introduces a
new network component called filter. Filters are placed between modules onto con-
nection and has an entire access to incoming messages. They have the freedom to
select, combine or discard messages. They can also create new messages. Although
FlowVR model does not enforce the semantics of filters, the major pattern in VR
applications is the ”greedy” filter. loaded by FlowVR daemons. The goal is to favor
the performance by limiting the required number of context switches. As a conce-
quence the CPU load gererated by greedy filters can be considered as negligible in
front of module load.

A special class of filters, called synchronizers, implements coupling policies. They
only receive/handle/send stamps from other filters or modules to take a decision
that will be executed by other filters. This detached components makes possible a
centralised decision to be broadcasted to several filters with the aim to synchronize
their policies. For example, a greedy filter is connected to a synchronizer which
selects in its incoming buffer the newest stamp available and sends it to the greedy
filter. This filter then forwards the message associated with this stamp to the down-
stream module.

The FlowVR network is implemented by a daemon running on each host. A
module sends a message on the FlowVR network by allocating a buffer in a shared
memory segment managed by the local daemon. If the message has to be forwarded
to a module running on the same host, the daemon only forwards a pointer on the
message to the destination module that can directly read the message. If the message
has to be forwarded to a module running on a distant host, the daemon sends it
to the daemon of the distant host. Using a shared memory enables to reduce data

copies for improved performances. Moreover a filter does not run in its own process.
It is a plugin loaded by FlowVR daemons. The goal is to favor the performance
by limiting the required number of context switches. As a concequence the CPU
load gererated by the FlowVR network management can be considered as negligible
compared to module load.

FlowVR does not include performance informations to help the modules place-
ment. This tasks is leaved to the developer.

3 Performance prediction

We turn now to present our approach to provide performance informations for a
FlowVR application. This section is based on our preceding approach described in [1]
and extends it to clusters with heterogeneous and SMP nodes and to clusters with
multiple networks. Our goal is to give to the developer performance informations
for a given application mapping on a given cluster. These informations are :

modules iteration times : it corresponds to the time between two consecutive
calls to the wait function. The developer has to minimize iteration times to
provide good performances to the application.

processor loads : this gives information on the efficiency of the mapping. If some
processors are overloaded some modules may be mapped on different processors
with lower loads.

communication volumes : we need to detect possible network bottlenecks.
latencies between modules : if we consider an interactive application then la-

tency is critical.

We also provide a mean to detect problems which may occur in some particular
configurations and may lead to buffer overflows. In these different cases we propose
some solutions to solve these problems.

To compute performances of a mapping we need the following informations for
each module m :

its nature : CPU or I/O-bound. The developer should identify his modules. If the
modules is performing lots of I/O operations, like an interaction module, then
it is I/O-bound else it is CPU-bound when it performs computations, like a
simulation module. This helps to determine the scheduler policy in the case of
concurrent modules.

its computation time Tcomp(m) on the host processor. It is the time a module
needs to perform its computation when there is no concurrent modules on the
processor.

its processor load LOAD(m) on the host processor. It corresponds to the per-
centage of the computation time used for the computation and not for waiting
I/O operations.

Our approach is based on the traversal of the FlowVR application graph which
is the extension of the data-flow graph of the application. We define the FlowVR
application graph Gappl as a directed graph. Each vertex V in the graph represents
a FlowVR object (a module, a filter or a synchronizer) mapped on a given node,
and each directed edge E represents a connection from a FlowVR object to another
on a given network.

From this graph we are able to give the developer informations on graph con-
figurations which may lead to buffer overflows. Then we compute modules iteration
times depending of synchronizations and concurrency with other modules. Finally,
from modules iteration times and amount of data sent by each module we are able
to compute volumes of data sent from each cluster node on the network. We also
provide a mean to compute latencies between FlowVR objects.

3.1 Study of the application graph

For a module m we define its input modules IM(m) as the set of modules connected
to its input ports. We distinguish two subsets of IM(m) : IMs(m) and IMa(m),
which contain respectively the modules connected to m synchronously (with FIFO
communications) and asynchronously (with greedy communications).

From the application graph we could detect some possible problems related to
specific graph configurations. Indeed the FlowVR model does not restrict the com-
munication and synchronization schemes and some particular configurations may
lead to buffer overflow. A first study of the application graph could reveal such
configurations. We note that this problem only happens with synchronous commu-
nications. Indeed a module m with only greedy communications connected to its
input ports (IMs(m) = ∅) should not wait for messages and their iteration time
does not depend of the iteration time of their predecessors. Consequently greedy
communications could not generate buffer overflows. From this remark we could re-
move the greedy communications from the graph Gappl and keep only synchronous
communications to detect issues. The resulting graph is referred as Gsync. We note
that Gsync may not be connected anymore and may be splitted into several com-
ponents.

If a module m has two input modules m1 ∈ IMs(m) and m2 ∈ IMs(m) with
respective iteration times Tit(m1), Tit(m2) then m must wait for the slowest one
: Tit(m) = max(Tit(m1), Tit(m2)). Messages from the fastest predecessor module
are accumulated in the receiving buffer leading to a buffer overflow. We could only
guarantee that this situation never occurs if modules in IMs(m) are synchronized by
a common predecessor module in Gsync. If this is not the case then we recommend
the developer to add a synchronizer between modules in IMs(m). Consequently, for
a module m, if |IMs(m)| > 1 then modules in IMs(m) have a common predecessor
module to synchronized them. In this case all modules in IMs(m) have the same
iteration time TitIMs(m) and we have for the module m :

Tit(m) = TitIMs(m) (1)

The main consequence of this remark is that all modules in a connected compo-
nent of Gsync must have at least a common predecessor. Indeed Gsync may contain
cycles and if a common predecessor is part of a cycle then all modules in the cycle
are also common predecessors. Consequently each component should begin with a
single common predecessor or with a cycle. Moreover if we apply equation 1 for each
module m in the component then we obtain that the iteration time should be the
same for all the modules in the component and is equal to the iteration time of the
predecessor pm :

Tit(m) = Tit(pm) (2)

The next step is to compute the iteration time of the common predecessors but
the iteration time also depends of concurrency between modules.

If a common predecessor pm has no concurrent module then we have :

Tit(pm) = Tcomp(pm) (3)

If several modules are mapped on the same processor then the scheduler may
interleave their executions. Consequently concurrent modules could have a greater
computation time which we called the concurrent computation time Tcc. In this case
we need to compute Tcc for each predecessor which depends of modules mapped on
the same processor.

To represent dependencies between predecessors and other modules we add di-
rected edges in Gsync from concurrent modules of a component to predecessor mod-
ules. We obtain the graph Gdep. In this graph different component of Gsync may be

joined if modules of different components are mapped on the same processor than
predecessors.

If we detect cycles in Gdep with predecessors from different component in Gsync

then we have an interdependency between these predecessors. In this case the it-
eration time of each predecessor depends of the iteration times of all the other
predecessors in the cycle. Moreover if we consider SMP nodes then the scheduler
may change the mapping and the priority of concurrent modules. Consequently in
this case it seems difficult to provide accurate prediction. We could compute itera-
tion time of a predecessor without taking care of iteration time of modules mapped
on the same processor then we could propagate the iteration time through the cycle
and repeat the process until it converges, but it also could oscillate. This information
is useful for interactive applications because if the iteration time of the predecessors
oscillate then it affects the whole component in Gdep. The developer should also
consider that he needs to optimize the iteration time of the predecessor modules
to increase performances of its applications. He should consequently avoid these
configurations in its mappings. He has also the possibility to increase the priority
of predecessor modules and to bind a module to a processor via scheduler settings.

If we have no cycle with several predecessors in Gdep but predecessors with
input edges then we have a simple dependency between components and we should
determine the concurrent computation time of the predecessors without input edges
first.

For a predecessor pm without input edges we have :

Tit(mp) = Tcomp(pm) (4)

We have define the order between predecessors to evaluate their iteration times.
We now study how to deal with concurrency.

3.2 Computing modules iteration times

We are able to compute iteration times of predecessors without dependencies. Then
we should take care of dependencies and interdependencies between components to
compute iteration times of the other predecessors. Once we have iteration time for
each predecessor we compute the concurrent iteration time for the other modules.

We now show how to determine iteration time for concurrent modules following
this evaluation order.

Concurrency : The behaviour of concurrent modules is determined by the sched-
uler of the operating system. Our approach is based on the Linux scheduler policy [4]
which gives priority to a module over others according to the time each concurrent
module waits for I/O operations. In this case the more a module waits, the higher
priority it gets.

We define TI/O(m), the time a FlowVR module m waits, as follow :

TI/O(m) = Tit(m)− Tcomp(m)× LOAD(m) (5)

Sorting modules : Consequently to determine the priority order of the concurrent
modules we order them from the one which waits the most to the one which waits
the less according to their TI/O.

A predecessor module pm is not synchronized with any other modules so we
modify the equation 5 : TI/O(pm) = Tcomp(pm)× (1− LOAD(pm)).

If pm is mapped with modules from the same component then they have the
same iteration time which is not yet determined. We are nonetheless able to compare

them because if we consider two modules m1 and m2 we have Tit(m1) = Tit(m2) =
Tit(pm), then :

TI/O(m1)−TI/O(m2) = Tcomp(m2)×LOAD(m2)−Tcomp(m1)×LOAD(m1)) (6)

If pm is mapped with modules from other components then we have their itera-
tion times according to the evaluation order we have defined. Consequently we are
able to order them.

Determining CPULOAD : Once we have ordered concurrent modules on a
processor we are able to determine the processor load the scheduler will give to
each one. For two modules m1 and m2 if m1 has a higher priority than m2 we have
m1 > m2.

On a SMP computer we set each module on the processor with the lowest load.
The CPU load is allocated to a module m according to the following equation :

CPULOAD(m) = (1−
cpu(mi)=cpu(m)∑

mi>m

CPULOAD(mi))× LOAD(m) (7)

On a SMP node, if several modules have the same TI/O then we are not able
to order and mapped them if processors have different loads. Our tests show that
processes may be moved from a processor to another. In this case the developer has
the choice to take the worst case for each module or to change their priorities.

Determining concurrent computation time : With the CPU load information
we could compute the concurrent computation time :

Tcc(m) = Tcomp(m)× LOAD(m)
CPULOAD(m)

(8)

For a module m it is interesting to compare Tcc(m) and Tcomp(m) to measure
the consequence of concurrency on it. If values are close then concurrency has few
performance penalties, else the developer could change its mapping to reduce Tcc.

Determining iteration times : The iteration time of a module m with a pre-
decessor pm is defined by the following equation :

Tit(m) = max(Tcc(m), Tit(pm)) (9)

For a predecessor module pm we have Tit(pm) = Tcc(m) because IMs(pm) = ∅.
If Tcc(m) > Tit(pm) then m is slower than its input modules. Consequently messages
sent from modules in IMs(m) are accumulated in the shared memory leading to a
buffer overflow.

Remarks : At this step we are able to provide lots of informations to the developer.
The concurrent computation time gives us an indication on the consequence of
concurrency. From the CPU load we know if we use the processors efficiently. The
iteration time gives us the module frequency :

F (m) =
1

Tit(m)
(10)

We now study communications performances.

3.3 Communications

We now study the communications defined by an application mapping between the
different FlowVR objects.

We assume that synchronizer communications are negligible compared to the
other communications. Indeed even if synchronizations occurred at the frequency of
the fastest module involved in the synchronizations, they required only few stamps
informations compared to the message size sent by this module. We also assume
that communications between objects mapped on the same processor are free. In
this case the messages are stored in the shared memory and a pointer to the message
is given to the receiving object.

We begin our study with a traversal of the application graph to determine for
each filter f its frequency F (f) and the volume of data on its output ports. We start
our traversal with starting modules and follow the message flow in the graph. When
we consider a filter f then we assign it a frequency F (f) according to its behaviour.
For example a greedy filter fgreedy sends a message only when the receiving module
mdest asks it for a new data. Thus we have F (fgreedy) = F (mdest). A broadcast
filter fbroadcast processes messages at the same frequency of its input module msrc.
In this case we have Fbroadcast = Fmsrc . For each filter we also compute the size of
messages on its output port. For example a binary scatter filter takes as input a
message of size s and splits it into two output messages of size s

2 on each output
port.

We assume a cluster network with point-to-point connections in full duplex
mode, with a bandwidth B and a latency L. Communications are handled by a
dedicated network controller without CPU overload.

The application graph G is defined by a set of vertices V for each FlowVR objects
and a set of directed edges E representing communications between objects output
ports and input ports. Then we add additional edges to represent communications
out of the FlowVR communication scheme, for example communications between
several instances of a MPI module. For each iteration we add output edges and
input edges respectively to and from other MPI instances. We define for each edge
e :

– a source object src(e) which is the FlowVR object sending a message through
e.

– a destination object dest(e) which is the FlowVR object receiving message from
src(e).

– a volume V (e) of data sent through it. It is equal to the size of the message sent
by src(e).

We provide a function node(o) which returns the node hosting a given FlowVR
object o.

Then we are able to compute the bandwidth BWs needed by a cluster node n
to send its data :

BWs(n) =
node(src(e)) 6=node(dest(e))∑

node(src(e))=n

V (e)× F (src(e)) (11)

We could also determine the bandwidth BWr needed by a cluster node n to
receive its data :

BWr(n) =
node(src(e)) 6=node(dest(e))∑

node(dest(e))=n

V (e)× F (src(e)) (12)

If for a node n BWs(n) > B then messages are accumulated in the shared
memory because the daemon is not able to send them all. Consequently we could

detect a buffer overflow. If BWr(n) > B then there is too much data sent to the
same node, leading to contention.

These informations give the developer the ability to detect network bottlenecks
in its mappings. Then he could solve them for example by reducing the number of
modules on the same node and changing the communication scheme.

Computing latencies : The latency is defined between two modules. It represents
the time needed by a message to be propagated from a module to another through
the communication network. In VR applications the latency is critical between
interaction and visualization modules : the consequence of a user input should be
visualize within the shortest possible delay to keep an interactive feeling.

We determine the latency between two modules m1 and m2 from the path P
between them. A path contains a set of FlowVR objects and edges between them.
The latency is obtained by adding the iteration time Tit(m) of each module m and
the network latency L for each edge e between two distinct nodes :

L(m1,m2, P) =
∑
m∈P

Tit(m) +
∑

src(e) 6=dest(e)

V (e)
B

+ L (13)

With this information the user is able to detect if the latency of a path is
low enough for interactivity. If the latency is too high then the developer should
minimize it by increasing frequencies of modules in the path and by mapping several
modules on the same node to decrease communications latencies.

Multiple networks : We assume that each network is based on point-to-point
connections in full duplex mode. A network Ni has a given bandwidth BNi

and a
latency LNi .

In the application graph each communication between two FlowVR objects is
associated to a given network. For each network we only consider the subgraph
associated to it. Then we could apply the formula to compute for each module the
required bandwidth to send and to receive data. This way we are able to detect
network contentions and buffer overflows if required bandwidths are higher than
physical bandwidths.

4 Test application

We illustrate our approach with our fluid-particles application. This application is
composed of the following modules :

– the flow simulation module based on an MPI version of Stam’s simulation [8]
computes fluid forces. The fluid is discretized on a 500x500 grid.

– the particle system module adds forces from the simulation to a set of particles.
We consider a set of 800x800 particles.

– the viewer module transforms particles into graphical primitives.
– the renderer module displays the scene on the screen.
– the interaction module which we could enabled if the simulation runs at an

interactive frequency to interact with the fluid.

The cluster is composed of height nodes (node1 to node8) with two 64bits dual-
core Opteron processors. Four nodes (node1 to node4) are connected to video-
projectors to display the application on a 2x2 display wall. Nodes are connected
with a gigabit network. We assume full-duplex connections between nodes handled
by network adapter (no CPU overload).

The renderer modules are necessarly mapped on nodes connected to video-
projectors so we study different mappings for the other modules. Our goal is to
provide maximum performance to the simulation and to provide an interactive vi-
sualization.

4.1 Study of the application graph

Simulation modules are synchronized with the MPI library to ensure a global co-
herency of the simulation. Renderer modules are also synchronized with a swaplock
synchronizer to provide coherency of the rendering on the display wall. We remove
greedy connections from the application graph to obtain Gsync. We have two com-
ponents in Gsync: the first one contains the simulation, particle and viewer modules
and the second one contains renderer modules. Simulation modules are predecessor
modules so we have to avoid concurrency to obtain their minimal iteration times.
Renderer modules are also predecessor modules so we need to verify that concur-
rency with the other modules does not lead to a framerate under 15fps.

4.2 Determining module computation times

First we need the computation time for each module. The computation time for a
module could be given by the developer or it could be determined from a simple
mapping. In this last case we use the mapping 1 (Figure 1) where modules are
mapped on distinct nodes to obtain their respectives Tcomp. We use the four proces-
sors of node5 for the simulation. The interaction module could be neglected in this
study because it only performs I/O operations : it reads positions from the haptic
device and sends it them to the simulation modules. Results are shown on figure 2.
We note that, with four processors, Tcomp(simulation) = 330ms.

Fig. 1. Different mappings of the application

4.3 Mapping optimizations

We turn now to describe the mapping 2 (Figure 1). We note that, with the previous
mapping, the particle system and the viewer module generate respective loads of
only 20 and 15% on one cpu. Consequently we could map them on the same node
to avoid network communications between them. Renderer modules use only one
processor on the four vizualisation nodes so we could map the particle system, the
viewer module on node1. In the mapping 2 we map the simulation on the four
nodes available for a total of sixteen processors. The solver used in the simulation
has a linear cost thus we could expect to divide the simulation computation time
by four, but we need to had communications between simulation nodes to keep a
global coherency. We estimate from the solver and the network characteristics a
computation time around 100ms for mapping 2.

The viewer module has the simulation module as predecessor. From equations 2
and 3 we have Tit(viewer) = Tcomp(simulation) = 100ms. The viewer produces
primitive positions, for the 800x800 set of particles, which are then broadcasted
to node2 and node3. Each position consists of two floats. If Tit(viewer) = 100ms
then we have F (viewer) = 10Hz. In this case BWs(node1) is equal to 102.4MB/s
and is greater then the available bandwidth. We conclude that this mapping should
generate a buffer overflow on node1. We have verified that the simulation has a com-
putation time between 90 and 110ms and that a buffer overflow error is generated
after some iterations of the application.

To solve this problem we propose in mapping 3 (Figure 1) to split the particle
system on node1 and node2. This way the viewer module on node1 only broadcast
2.56MB to node2 and node3. But node1 also need to send the simulation result
(2MB) to node2. In this case BWs(node1) = 71.2MB and is lower than the available
bandwidth. Results of this mapping are shown in 2.

In mapping 4 (Figure 1) we map the particle system and the viewer modules
on four nodes (node1 to node4). This way we reduce the computation time of these
modules and we also decrease the latencie between the simulation and the renderer
modules according to equation 13. Results of this mapping are shown in 2.

 0

 50

 100

 150

 200

 250

 300

 350

 400

RendererViewerParticleSimulation

tim
e

Mapping 1

Tcomp
Tit

 0

 20

 40

 60

 80

 100

 120

 140

RendererViewerParticleSimulation

Mapping 2

Tcomp
Tcomp predicted

Tit
Tit predicted

 0

 20

 40

 60

 80

 100

 120

 140

RendererViewerParticleSimulation

Mapping 3

Tcomp
Tcomp predicted

Tit
Tit predicted

 0

 20

 40

 60

 80

 100

 120

 140

RendererViewerParticleSimulation

Mapping 4

Tcomp
Tcomp predicted

Tit
Tit predicted

Fig. 2. Performance predictions of the different mappings

In mapping 4 we have on node1 to node4 only three modules mapped on four
processors. We note that Tit(particle)+Tit(viewer) < Tit(simulation). This means
that a message from the simulation is processed by the particle and the viewer mod-
ules before the production of a new simulation message. In this case the particle
and the viewer modules are never concurrent. We would like to map them on the
same processor and to add two simulation modules by node on node1 to node4 for a
total of 24 processors dedicated to the simulation. But we know that the scheduler
gives the priority to modules which wait the most, here the particle and the viewer
modules, and tends to map them on different processors. Because the irregular ac-
tivity of these modules, the scheduler often remaps CPU-bound modules, here the

simulation and the renderer modules, and we could expect a variable concurrent
computation time of these last modules. In the worst case a simulation module
could be mapped with another CPU-bound module with the consequence of mul-
tiplying by two the computation time of the whole application because simulation
modules are synchronized. Consequently in such cases the developer should tune
the scheduler to bind modules to processors and to increase the priority of the crit-
ical modules to reach optimal performances. In our application with 24 processors
dedicated to the simulation we predict Tit(simulation) = 70ms. With this infor-
mation we compute the bandwidth needed by node1 to send messages. We obtain
BWs(node1) = 98.4MB/s which is greater than the real bandwidth available. Tests
show that this mapping lead effectively to a buffer overflow on node1.

We also could keep the mapping 4 (Figure 1) and use the available processors to
increase the amount of particles in the application. In this case we are limited by the
bandwidth of node1. We could have at most a number of particles with generates
BWs(node1) = 80MB/s. In this case we determine that we could consider a global
field of 1000× 1000 particles. We also could propose to map two particles and two
viewer modules by node to decrease the latency between the simulation and the
renderer.

5 Conclusion

We have shown in this paper that we are able to predict performances for distributed
applications. We also guide the developer in its mapping optimizations by giving him
means to detect networks contentions and to measure consequences of concurrency
between modules.

This approach brings to the FlowVR model a mean to abstract the performance
prediction from the code. Nevertheless our approach is not limited to FlowVR ap-
plications and is sufficiently general to consider applications developed with other
distributed middleware. The developer only needs sufficient informations on mod-
ules he wants to integrate in his applications. Moreover it enforces the possibility to
reuse modules on other applications. For example a developer could replace his sim-
ulation and adapt his mapping without having a deep knowledge of implementation
details.

We have shown that the developer could optimize a lots of parameters but that
some local optimizations does not always lead to more efficient mappings. The next
step in our approach is to provide automated tools based on our model to assist
the developer in his mapping creation and optimization. We also plan to provide
automatic optimizations of mapping from constraints defined by the developer.

References

[1] S. Jubertie and E. Melin : Performance Prediction for Distributed Virtual Reality
Applications Mappings on PC Clusters. Technical Report RR-2007-03, LIFO, Orlans,
France, December 2006

[2] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin, S. Robert :
FlowVR: a Middleware for Large Scale Virtual Reality Applications. Proceedings of
Europar 2004

[3] J. Allard, C. Mnier, E. Boyer, B. Raffin : Running Large VR Applications on a PC
Cluster: the FlowVR Experience. Proceedings of EGVE/IPT 05, Denmark, October 2005

[4] J. Aas : Understanding the Linux 2.6.8.1 CPU Scheduler
[5] G. Cavalheiro, F. Galilee and J.-L. Roch : Athapascan-1: Parallel Programming with

Asynchronous Tasks. Proceedings of the Yale Multithreaded Programming Workshop,
Yale, June 1998

[6] D.B. Skillicorn : Predictable Parallel Performance: The BSP Model

[7] D. Culler and R. Karp and D. Patterson and A. Sahay and K. E. Schauser and E.
Santos and R. Subramonian and T. von Eicker : LogP: Towards a Realistic Model of
Parallel Computation

[8] J. Stam : Real-time Fluid dynamics for games. In Proceedings of the Game Developer
Conference, March 2003

