LABORATOIRE
D'INFORMATIQUE
.|I|||||‘||||
FONDAMENTALE

UNIVERSITE D'ORLEANS D'ORLEANS

4 rue Léonard de Vinci
BP 6759

F-45067 Orléans Cedex 2
FRANCE

Rapport de Recherche

http://www.univ-orleans.fr/lifo

Task-to-processor allocation
for distributed heterogeneous
applications on SMP clusters

Sylvain Jubertie, Emmanuel Melin
Université d’Orléans, LIFO

Rapport N 2007-08
05/04/2007

Task-to-processor allocation for distributed
heterogeneous applications on SMP clusters

Sylvain Jubertie and Emmanuel Melin
{sylvain.jubertid emmanuel.melih@univ-orleans.fr

Laboratoire d'Informatique Fondamentale d'Orléans
Université d’Orléans

Abstract. Today, distributed architectures are based on multi cor® Sbldes.
Several middleware, like the FlowVR framework, exist toigasnteractive and
heterogeneous distributed applications for these anthites. FlowVR defines
an application as a set of codes mapped on cluster nodesrded by a com-
munication and synchronization network. But if we contia tvay modules are
synchronized and mapped on nodes, we do not control the waingdf concur-
rent modules on processors which is done by the Operatingei@yscheduler.
Since modules may be synchronized across different nodeh, lecal schedul-
ing can affect the whole application performance. MoredtierOS scheduling
is dynamic thus it is very difficult to predict and guarantegfprmance of such
applications and especially of interactive ones becaus®rpgance variations
may totally break the immersion feeling. In this paper weppise to use a perfor-
mance model to determine the processor load required bydisichbuted task.
With this information we can define a task-to-processorcation and tune the
scheduler to respect it. Thus we can abstract this allatétion a particular OS,
avoid effects of a dynamic scheduling, guarantee perfocmanptimize the pro-
cessor use and the number of nodes used for our application.

1 Introduction

Today, distributed architectures have very differentlleeé parallelism. A cluster may
be composed of heterogeneous SMP nodes connected witipiahikiterogeneous net-
works. Common parallel programming libraries, like MPI &fN®, are not well suited
to build heterogeneous distributed applications. Indéedrésulting application code
contains the communication and synchronization schentass The developer has to
modify the application code to change these schemes or ¢oatdkantage of different
architectures. Consequently this approach is very depeiofithe underlying architec-
ture.

The FlowVR frameworkallows to create applications for heterogeneous distitbut
architectures. It was developed with distributed Virtuablity applications in mind but
its model is general enough to consider non interactiveibiged applications. The un-
derlying model behind FlowVR can be compared to compongmigthes. A FlowVR
application is a set of tasks, called modules in the FlowMhieology. The commu-
nication and synchronization schemes are defined indepdya# the modules by a

! http://flowvr.sourceforge.net

FlowVR network. Since modules are independent of a pagi@dmmunication or syn-
chronization scheme it is possible to adapt an applicatiafifferent clusters without
modifying the application code. FlowVR can be used to bualdjé distributed appli-
cations like the Virtual Reality applications presentef3nd] which can contain more
than 5000 FlowVR objects. However, FlowVR does not provideoivn performance
model. Consequently the mapping of the application objedéaved to the developer’s
skills but it is difficult and tedious to find an efficient mappi especially for interactive
application where performance is crucial. A performancelehdor FlowVR applica-
tions would bring to the user a mean to determine performfordéts mapping without
having a deep knowledge of the FlowVR model.

We propose in [8] a performance prediction model for Flow\fiplecations. This
model integrates the synchronization and the communicaihemes as well as the
concurrency between modules to compute performance ofghpkcation. To deter-
mine the effect of concurrency between modules on perfocedme choice is made
to model the OS scheduling policy. Obviously the OS schedides not take into ac-
count synchronization between modules and a performargefdr one module may
be transmitted to modules on other nodes. Thus a local sthgdaan affect the global
performance of an application.

In this paper we propose to use our performance model torditerthe proces-
sor load required by each FlowVR module for a given mappirgerifwe define a
module-to-processor allocation on each cluster node. & @bint out nodes which
are overloaded when such an allocation is not possible an.thethis case we can
tell the developer to modify his mapping and to move some rexdio other avail-
able nodes. Finally, the processor loads and the modubteetcessor allocation allow
the tuning of the scheduler in order to respect this inforomatWe test our approach
on a distributed application which contains more than 8€edkht objects to map on
cluster nodes. Since our approach does not depend on autart®S anymore we can
completely abstract the performance prediction model feospecific OS scheduling
policy. The FlowVR model is very close to underlying modefdais of distributed
codes, for example component based applications, thusppuoach can be useful for
all designers of distributed applications.

2 Performance prediction for the FlowVR framework

In this section we briefly present the FlowVR framework anel plerformance predic-
tion model proposed in [8].

2.1 FlowVR

The FlowVR framework is an open source middleware used td blistributed appli-
cations. More details on FlowVR can be found in [2]. A FlowVRdication is a set of
objects which communicate via messages through a data-#tmonk. Each message
is associated with lightweight data callsthmpswhich contain information used for
routing operations.

Some objects, called modules, are endless iteration winchpsulate tasks. Each
module waits until it receives one message on each of itstippd. This task is per-
formed by a call to the FlowVRvait function. Then messages are retrieved bygee

function and are processed by the module. Finally the mgahalduces new messages
and put them on its output ports with that method.

The data-flow network describes the communication and spnditation schemes
between module ports. Each communication is done with at poipoint FIFO con-
nection. Operations on messages like routing, broadeggstierging or scattering are
done with a special object calledifier. Synchronization and coupling policy are per-
formed with another kind of object calledsginchronizerBoth filters and synchronizers
are placed on connections between modulesychronizeonly receivestampsrom
filters or modules. Then it takes a decision according toadtgting policy and sends
newstampgo destination objects. This decision is finally performgdtte destination
filters or modules. With the use of synchronizers it is pdedit implement thgreedy
filter. When used between a source and a destination modhigefjlter allows them
to respectively write and read a message asynchronousig. ffile destination module
always uses the last available message while older mesaegydiscarded. A FlowVR
application can be viewed as a gra@tV,), called theapplication graphwhere each
vertex inV represents a FlowVR objects like a module, a filter or a syorizer, and
each directed edge iff represents a connection between two objects.

2.2 Performance prediction for heterogeneous distributedpplications

In this section, we only present some aspects of our prediatiodel, described in [8],
needed to understand our approach.

The goal of our performance model is to determine the effeckynchronization
and concurrency between modules on performance. Our agpi®based on the study
of an application graplir enriched with mapping information (figure 1). A mapping
is defined by two functionsode andnetwork. For each object € V', node(o) re-
turns the node inVodes, the set of the cluster nodes, wherés mapped. For each
connectiore € E between two objects;, o, € V, network(c) returns the network in
Networks, the set of the cluster networks, usedd¥f network(c) = () then we have
a local connection between objects on the same node. Eagbnketet € Networks
is associated to a bandwidBiV (net) and a latency.(net).

We now present the inputs of our performance prediction mdéae each module
m we need to know its execution tiffé,...(m, n) and its loadl. D(m, n) on each node
n € Nodes. The execution tim&,...(m, n) corresponds to the time needed to execute
the module task i.e. the time between the exit oftlaét function and its next call, when
m has no concurrent modules on nedeThe loadL D(m, n) represents the amount of
Tezec(m,n) used for computation and not for I/O operations on nedé/e also need
to knowvol(c), the amount of data sent on each connection E. We assume that
Tezec(m,n) and LD(m,n) for each modulen on each node, andvol(c) for each
connection, are given by the developer.

These inputs are then used by our model. Since the OS schathyénterleave the
execution of concurrent modules, the execution time of eactturrent module may
increase depending of the scheduling policy. This new di@ttime is called the con-
current execution timé&,,,.(m). If the modulem is synchronized with other modules
then, once it has completed its task, it must stay invilaé function until it receives
messages from them. The iteration tiffig(m) corresponds to the time between two

oot)
beginlt

modulel
(nodel)

. o
beginlt

modulel

Greedy/in
(nodel)

module2
(node2)

_cl(net0)

Greedy/filter
(nodel)

N\ module3
\ (nodel)

A endlt

module3

endlt

\
\
\
\
\
\
\
\
16
i
\

\
\

! module4
c7 E (node2)
|
|

h
!
!

|

/

module4

endlt

\

\ |
\ 1

\C5 [

\ ” / h

Greedy/sync Gr(eneodg/ésl);nc

Fig. 1. An application grapit (left) enriched with mapping information (right)

\
! | S
/’ N\ //
/ \ /
/ _c5(net0) &/ /
\

/

\
4 |
\ \
| i
T ;

! endit [
i /
! 1
/

consecutive calls to theait function. The goal of the performance model is to deter-
mine, for a given mappingl.on.(m) andT;:(m) for each modulen. This is done
by the study of two graphs,,,. andG.,, derived fromG (figure 2). Note that we
do not consider filters and synchronizers in our study. Iddérs and synchronizers
are waiting for messages from modules connected to them avel regligible loads
compared to modules since filters only perform memory operatike merging or du-
plicating messages, and synchronizers perform simpleatipas on stamps. Thus we
assume that filters and synchronizers have negligible laad®xecution times.

The first graphG,n. is obtained fromG by removinggreedyfilters. Thus it only
contains synchronized modules since modules connectegtdadyfilters run asyn-
chronously. This graph may be splitted into several coretesynchronous compo-
nents. A modulen in Gs,,. must wait for messages from modules connected to its
input ports. These modules are called input modules eihd are noted M (m). The
iteration time of a modulen in a componen&,,,. depends on it ,,.(m) and on
the iteration time of its inputs modules :

111' (m) = MAaATy,cI M, (m) (Tconc(m)a Tit (mz)) (1)

The graphG,, .. is useful to verify for each modutbe thatT,.,.(m) < T;(m;), m; €
IMg(m). If this is not the case them is slower than its input modules and messages
are accumulated in the receiving buffer until it is full. Gaguently we predict that

a buffer overflow will occur when running the applicationn& we want to avoid it,
we must havel’;;(m) = T;:(m;) for eachm,; € IM(m). Thus the iteration time of

oot) C teant)

beginit beginlt
modulel modulel
(nodel) (nodel)

&Jto I outl Iendlt &to I outl Iendlt
_cO(net0) _cO(net0)

(in0 Ibeginl? (in0 Ibeginl? (in0 IbeginIP (in0 Ibeginl?
module2 module4 module2 module4
(node2) (node2) (node2) (node2)

outo Iendlg __endlt) \outo Iendlg __endit)

_c1l(net0) _c1l(net0)

ﬁo Ibeginlt ﬁo Ibeginlt

module3 module3
(nodel) (nodel)
endlt endlt

Fig. 2. Gsync (left) andGqe, (right) derived fromG (figure 1)

each module in a componefit,,,. must be the same and we notdjt(Csyy.). We
note that a modulen € Ci,,. may havel M (m) = . These modules are called
predecessor modules C,,,,. and we note themreds(Csyy.). In this case we have
Tt (pm) = Teone(pm), pm € preds(Ceync). Thus we defin€,(Csyn.) as follow :

Ti (Osync) - Tconc(pm)vpm € preds(csync) (2)

This means that the performance of modules in a compafigpf. only depends on
the concurrent execution times of predecessor modules.

The dependency grapH,., (figure 2) models concurrency between modules by
adding bidirected edges . between concurrent modules. It is used to determine
the effects of both concurrency and synchronization on rieogerformance. If several
modules are concurrent i.e. connected with bidirected ®itgé/ ., then we deter-
mine their performance according to a scheduling policy8lnwe choose to model
the Linux scheduling policy [1,5]. But we have experiencedur applications that
it does not always provide the best performance since it doésake into account
synchronization between modules. Moreover the OS scheglidi dynamic thus the
priority of modules may change during execution. Since negimay be synchronized
over several nodes a local scheduling may affect the scimgdah each node. This can,
for example, lead to variable performance which breaksntaractive feeling in Vir-
tual Reality applications. To prevent this variation wecdh&edetect interdependencies
between the effects of concurrency and synchronizationirkerdependency occurs
when we have a cycle with both directed and bidirected edy€g;i,,. Thus we use
Glep 10 detect interdependencies between modules and to gudietieloper to avoid
them.

This approach, precisely described in [8], allows to deteenthe effects of syn-
chronization and concurrency on performance and to deteenvthe OS scheduling
policy can lead to poor or variable performance. This apghda not well suited if
we want to guarantee performance since it highly dependie@total OS scheduling
policy of each node. On the other hand, we now show that iss$siple to guarantee
performance by choosing a suitable module-to-proceskmradion and to harness the

scheduler to it. This approach also provide a mean to abstteigperformance model
from the OS scheduler.

3 Module-to-processor allocation

In this section we describe the principle of our module-togessor allocation. Our
approach is based on the study of a mapping given by the dexellm our previous
approach modules were mapped on nodes by the developeremdriiprocessors by
the OS scheduler. We now propose to define a static modybestmessor allocation
which ensures performance and avoid the OS scheduler dciabBhe first step con-
sists in determining the processor load required by eachuteodihis is done by using
our prediction performance model.

3.1 Determining module processor loads

The main idea of our approach is to take advantage of the timedule waits, which
depends on its own loatlD(m) and on the time it stays in the FlowMRait function,
for the execution of other processes. For example if a moduie synchronized with
an input module then from equation 1 we can add concurrenuiesdvhile we have
Teonc(m) < Ti(m;), m; € IMs(m) to avoid a buffer overflow. We assume that ap-
plications have a fixed number of processes and are runnidgdicated nodes thus a
static allocation seems realistic.

Component performance: The developer must choose for each predecessor mod-
ule pm its Teone(pm) such asloone(pm) > Tezec(pm, node(pm)). Thus we also ob-
tain T;(Csync) of each components,,. € Ggyne from equation 2. If he wants to
slow down the component then he can choose for each predepesshe correspond-

iNg Teonc(pm) such asl.on.(pm) > Terec(pm, node(pm)). Then we obtain the load
LD.(pm) required on the processor to ensure the coffggt.(pm) with the following
equation:

LD(pm,node(pm))
Tconc (pm)

,pm € preds(Coyne)
Q)

If the developer wants to run the predecessor module atlitsgaed then he chooses
Teonc(pm) = Tezec(pm, node(pm)) and we obtair. D.(pm) = LD(pm, node(pm)).
Note that the developer must chod3g,..(pm), consequently from equation 2 we have
the T} (Csync) €ach module in a componefi,,. must respect.

LD.(pm) = Tegec(pm, node(pm)) x

Module performance: We now determine for each other modute € Clyyc its
LD.(m). The lowestLD.(m), noted LD,;»(m), we can allocate to each module
m is reached wheff,,,.(m) = T} (Csync). It depends on the part df;, (m) used for
computation and not for I/O operations. Thus we defide.,,,;,, as follow:

Tezee(m,node(m)) x LD(m,node(m))
nt(csync)

LDcmin(m) = NS Csync (4)

If LD cmin(m) < LD(m) the developer can choose for each module a higher processor
load LD.(m) such asLD p,in(m) < LD.(m) < LD(m). Thus we can decrease
T.onc(m) according to the following equation:

_ Tegec(m,node(m)) x LD(m,node(m))
Tconc(m) = LDc(m) (5)

This can be useful to reduce latency between modulélf,,;,,(m) > LD(m,node(m))
then it means that we can not allocate enough processordoadand we can predict
a buffer overflow. In this case the developer can incré@age’,.) by slowing down
predecessors or by mapping the module on a faster procesdectease it$.,....

An application mapping gives us the mapping of modules oreao@e now give
means to map each moduteon a processor according to £D.(m).

3.2 Mapping modules on processors

We now determine how to map modules on processors. For eatdnwe define
Procs(n) as the set of processors of For each modulen on a noden we define
proc(m,n) as the processor whefe is mapped. We can map several modules on a
processor while the sum of thditD,. does not exceed 1. Thus to find a correct mapping
we must verify the following inequality :

Vn € Nodes Y LD.(m)<1 (6)

pEProcs(n),
proc(m,n)=p

If this inequality is not verified on some nodes then we haveenough processors to
ensure expected performance. Consequently the develapstav down predecessors
of modules mapped omor he can consider a different mapping.

However, we can improve the mapping of modules on processatetermining if
some modules can not run at the same time due to synchramizatween them. In
this case, these modules can be mapped on the same procikseat sumulating their
LD.. This is for example the case of modules in the same syncheoeyrle. This is
also the case of modules in a synchronous @t . which verifies:

Z Tconc(m) < Tit (Csync)a Psync c Csync (7)

mEPsync

This means that the iteration of the last modulé’jg,,. ends before the first module in
Psync begins a new iteration. We can now traverse the differentoamants ofG, ..
to determine the paths which verify inequality 7. Moreover enly restrict our study
to paths which start and end with modules mapped on the sadhe fbus for each
noden we obtain a set of synchronous path. Each ga),. is defined between two
modulesm;, ms such aswode(m;) = node(mz) = n and contains a se&& of modules
which can not run at the same time. Then we can remove fonodules which are not
mapped om. Thus we can map them on the same processor and the highessgoo
load required is equal taz,es(LD.(m)) and is notedLD.(S). Consequently if
we map modules irf we replace the sum of theitD. by LD.(S) in inequality 6.

If the inequality is still not verified on some nodes then tlegeloper can slow down
predecessors or he can modify its mapping. Since we combpetprbcessor loads in
our study, we can use this information to move some modutes fiodes where the
inequality is not verified to other available nodes.

3.3 Conclusion

With this information determined above on processor loadsan concurrent modules
we are now able to determine a module-to-processor altmtér a given mapping. In
usual applications, the number of modules mapped on nodgisrally comparable
to the number of processors which is limited on current aechires. Thus we can eas-
ily map modules on processors since the number of possibleatibns is reasonable.
However chip makers are working on processors with even mwares. Consequently
the allocation process will become even more complex. Bxdase it can be solved with
the use of a solver based on allocation constraints obtdinadequations 6 and 7.

Our method can also partially guide the developer in its rmappreation. Indeed,
from allocation constraints, we can use a solver to genenagpings compatible with
the performance expected without mapping informations tan be useful to increase
performance, to minimize the number of nodes required foning an application or
to run different applications on the same cluster. In [7] m@ehpresented an approach
to optimize communication schemes. In this case we can a@fioedconstraints on
communication. The two approaches may be combined to apitmdth module and
communication performance. Even if we use the differensti@mts, a high number of
mappings may still be possible. We can not give a generabagprto optimize map-
pings since the mapping also depends on the performancetegiday the developer.
However, the developer can also add its own performancetreams to reduce the
number of possible mappings. Thus we can further guide thelalger in its mapping
creation.

Since resulting allocations are static we can ensure paéoce to the developer.
We are also able to evaluate the load of each processor ardect éf a node is over-
loaded. In this approach the allocation process does nandkpn a particular OS
scheduler. Consequently our performance prediction medelly abstracted from the
cluster and the operating system. We can now guaranteapenfice for heterogeneous
distributed applications and interactivity in the case ofual Reality applications.

4 Experiments

4.1 Simple application

We first show the effects of the OS scheduling on a simple egfidin. This application
is composed of modules with different loads and executioesi. Tests are performed
on dual processor nodes. The operating system is based dintine kernel version
2.6.21. We use thai ce command to set the priority of modules and treeskset
command from thé&inux scheduler utilitie$to bind modules to processors.

2 http://rlove.org/schedutils/

(pbeanit)
beginlt

modulel
(nodel)

module2 module3
(node2) (node2)

endIt endlt

moduled |} 1
(node2) | "1

endit i |
Greedy/sync
(nodel)

Fig. 3. First test application

We first consider an application composed of four modulesuah processor nodes
as described in figure 3. Results are shown in table 1. We hatednnode2, the OS
scheduler gives priority to modulesodule2 andmodule3 and maps them on different
processors. Thusioduled is mapped withnodule3 which has the lowest load. How-
ever if we need better performance fapdulec4 we have to define our own allocation.
For example it is possible to mapodule2 andmodule3 on the same processor and
moduled on the other processor. Thuspdule4 can run at its full speed. Indeed, with
this allocation we obtain better results fawdule4 as shown in table 1.

o)
beginit

modulel (beginit)

{nodel) \ module4

\outo | outl |end|5 (nodel) |

endlt

~c0

(in0 Ibeginl? (in0 Ibeginl?

module2 module3
(nodel) (nodel)

endlt) ___endit

. 7

Fig. 4. The graphG., with bidirected edges between concurrent modules

We now study another application with modules mapped onahesiual processor
node. The application graph is the same as in figure 3 but reedhaive different execu-
tion times and loads. This time we detect some interdeperetesince we have cycles
in Gqep (figure 4). Indeed, results in table 2 show that concurreatetion times are
variable. In this case we propose a custom allocation teesthig problem. For exam-
ple we can slow dowmodulel by allocating it a load of only).5. Then we determine

Module |NodeTecqec|LD Teonc
OS schedulingcustom allocatioh

modulel|l 22 10.5|22 22

module2|2 12 |0.412 14

module3|2 9 0.3|9 12

module4|2 5 1 |8 5

Table 1. (Times are given in ms)
Module |Nod€Tez..|LD | OS scheduling custom allocation
LD, Teone|LDc|Teone pred|Teonc real

modulel|l 8 0.600.35-0.5010-150.50(10 11
module2|1 6 0.650.45-0.5%7-9 |0.40(10 9
module3|1 6 0.750.55-0.7%6-8 |0.45(10 10
moduled|1 5 1 1|0.60-1 |5-8 |0.60(8 9

Table 2. (Times are given in ms)

LD pin(module2) andL D i (module3) from equation 4 and we choose to set their
LD, to these values. This allocation is described in table 2allinve mapmodulel
andmodule3 on the first processor to maximize its use since the sum of thdures
LD, reache9$.95. Consequentlynodule2, with LD.(module2) = 0.4, is mapped on
the second processor and a load)df remains formodule4. Results in table 2 show
that predicted concurrent execution times are really diasa measured ones.

4.2 The FluidParticle application

To verify the efficiency of our approach we now test it on a falvVR application.
Our tests are performed on a cluster composed of two setgluf ebdes linked with a
gigabit Ethernet network. The first set is composed of nodéstwo dual-core Opteron
processors while the second set is powered with dual PeAtson processors.

Module [Nodes OS scheduling Improved scheduling
Tezec||Tcone|Ts cpu LDcmin|LDc|Teonc|Ts
fluid 1,2,3,440 |45-5045-50 |[1, 2|1 1 1|40 |40
particles|1, 2, 3, 49 9 45-50 |4 |0.225 |1 9 40
viewer |1,2,3,410 |10 |45-50 |4 |0.25 1 |10 |40
1,2,3,4 1 |10 |10

10 ||10-2910-20 ||3 |1
Table 3. (Times are given in ms)

renderer

Module |Nodes Improved scheduling
Tezec cpu LDcm'Ln LDC Tconc T’L
fluid 1,2 40 1,2,3,41 1 40 |40
particles|11, ..., 1413 1 0.325 |1 13 |40
viewer |11, ...,1415 1 0.375 |1 15 |40
renderer|11, ..., 1420 2 1 1 20 |20

Table 4. (Times are given in ms)

The FluidParticle application is composed of the followmgdules :

— fluid : this is an MPI version [6] of the Stam’s fluid simulation [9].

— particles: this is a parallel module which stores a set of particlesrandes them
according to a force field.

— viewer: it converts the particles positions into graphical data.

— renderer: it displays informations provided by the viewer modulekefe is one
renderer per screen. In our study we use a display wall withfoojectors thus we
use four renderer modules on four nodes.

— joypad: it is the interaction module which converts user inte@atinto forces.

) T = T
Renderer | | Renderer |

Fig. 5. A simplified graph of the application (left) and the correspimg Gsyn. (right)

A simplified application graph is described in figure 5. ftygpadmodule is con-
nected to thdluid module through areedyfilter since we want to interact with the
simulation asynchronously. Then thanulationis connected with a FIFO connection
to the particle module. Thesimulationalso sends the position of the pointer to the
viewermodule. Theparticle module is connected to theewerwith a FIFO connec-
tion. Finally theviewermodule sends messages to thedererthrough agreedyfilter.

We build Gy, figure 5, to determine the different synchronous companéftie
obtain three different components. The first one only costdigoypadmodule. Since
the joypadmodule only reads a position from the interaction deviceag b very low
execution time and load. Moreover it is the single modulda¢omponent and conse-
quently it has no effect on the iteration time of other moduTéhus thgoypadmodule
is negligible for our study and we choose to ignore it. Theosdoccomponent contains
the fluid modules which are predecessors, flagticlesmodules and thgiewer mod-
ules. The third component only contains thaderermodules which are predecessors.

We first test our application with the OS scheduling on fourFSMdes with two
dual-core processors. We map aaadererper node since each node is connected to a
projector. Thdluid simulation is parallel and requires eight processors t@tam inter-
active frequency thus we map tlaid modules per node to take advantage of the SMP

nodes. We also map oparticle andviewermodule per node to reduce communication
cost between modules. For the sake of clarity, a simplifiedioa of the application
graph with only two instances of each module is describedyurdi 6. Results are de-
tailed in table 3. We note that the iteration times of both ponents are variable. For
example the value df.,,.(fluid) varies from 40 to 50ms with an average value close
to 50ms. Indeed the scheduler can map several modules oratie grocessor and
change their scheduling dynamically. Sifdleeéd modules are synchronized, this affects
the whole simulation. Thus we propose to use our approachdio aariable results
and to take a better advantage of the processors for theaiomlWe choose to map
thefluid modules on two dedicated processors since we need the isihpence for
the simulation. We choose to seD.(particle) = 1 and LD (viewer) = 1 since in
this case we hav&,,,.(particle) + Teonc(viewer) < T (fluid). This means that
particle andviewerare never running at the same time. Thus we map them on one pro-
cessor without performance penalty. Tieaderermodule is consequently mapped on
the fourth processor. The results of our improved scheduliie shown in table 3.

Fig. 6. A simplified graph of the FluidParticle application with grivo instances of each module

We can also propose another mapping which requires moresrimdéess compu-
tational power. Indeed theenderermodule can be mapped on a node of the second
cluster set. In this case the processor and the graphic carigss powerful but the
frame rate is still interactive since we hdlg,..(renderer,n) = 20ms on a node: of
the second set of nodes. We now consider mappingaditicle and theviewermodules
on the second set of processors. If we choose to allocatectoreadule a load of 1
then we still havel,.,,.(particle) + Teone(viewer) < Ti(fluid). Thus we can also
map them on a single processor. Consequently we can useddastfirom the second
set to host theenderer theparticle and theviewermodules. Then we have not enough
processors available in the second set to run the simulatid@ms per iteration. Thus
we use eight processors from two nodes from the first set.lReme shown in table 4.
Note that the application runs at an interactive frame ratettis improved mapping
increases the latency between jagpadmodule and theenderermodule. Indeed we
increasel ... for theparticle, viewerandrenderermodules, thus we increase the time
needed between the interaction and the visualization affiext. However the differ-
ence is negligible and is not perceptible by the user.

5 Conclusion

In this paper we have shown that the OS scheduling can leaolologmd variable per-
formance for distributed applications. Thus we have preeska module-to-processor
allocation process based on our performance model. Thétingsallocation solves
the drawbacks of the OS scheduling. Indeed it ensures peafize and stability of
FlowVR distributed applications. This allocation depengsour performance model
and also of the performance expected by the developer. Goerdy it is abstracted
from a particular operating system and only driven by penfamce information. Thus
we can consider cluster with heterogeneous operatingmmgs®ur approach can also
be applied to several applications running on the sameeslsstice we can consider
them as a single application with more synchronous compsen€his can be useful to
optimize both the performance of applications and the uskeeé€luster.

We also show that the mapping creation can be guided by elifféind of con-
straints. These constraints are given by our model, by thibwsae or software required
by modules and by the user to respect its performance exjgectior example a mod-
ule must have the same iteration time as its input modulesiimmmdel, an interaction
module must be mapped on the node connected to the interalidgce or a mod-
ule must respect an iteration time given by the developausTie plan to develop a
solver to solve these different constraints. The goal issisathe developer in its map-
ping creation or to provide an automatic generation of magilt will also enables to
consider large heterogeneous applications with even moditas and connections on
large clusters with heterogeneous nodes connected witpleametwork topologies.

References

1. J. Aas. Understanding the Linux 2.6.8.1 CPU Scheduler.
http://citeseer.ist.psu.edu/aasO5understanding.html

. J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. MelB, Raffin, and S. Robert. FlowVR:
a Middleware for Large Scale Virtual Reality Applications.Proceedings of Euro-par 2004
Pisa, Italia, August 2004.

. J. Allard, C. Ménier, E. Boyer, and B. Raffin. Running kg applications on a pc cluster:
the flowvr experience. IRroceedings of EGVE/IPT 0Benmark, October 2005.

. J. Allard and B. Raffin. Distributed physical based sirtialss for large vr applications. In
IEEE Virtual Reality Conferen¢é\lexandria, USA, March 2006.

. D. P. Bovet and M. Cesatinderstanding the Linux Kernel, Third Editipchapter 7. Oreilly,
2005.

. R. Gaugne, S. Jubertie, and S. Robert. Distributed migtadgorithms for interactive scien-
tific simulations on clusters. I@nline Proceeding of the 13th International Conference on
Artificial Reality and Telexistence, ICA@ecember 2003.

. S. Jubertie and E. Melin. Multiple networks for hetercgmus distributed applications. In
Proceedings of PDPTA'Q1as Vegas, june 2007.

. S. Jubertie and E. Melin. Performance prediction for nraggpof distributed applications
on pc clusters. IProceedings of IFIP International Conference on Networkl &arallel
Computing, NPCDalian, China, september 200¥o appear

. J. Stam. Real-time fluid dynamics for gamesPmceedings of the Game Developer Confer-
ence March 2003.

