
�����������

	
�����
������

���	�
������

	
�������

���������	��	
�	�
�	
������������	
��
����	������
�


���������	
�������
	�


�������

������������
	���������

��� �!

Task-to-processor allocation
for distributed heterogeneous
applications on SMP clusters

Sylvain Jubertie, Emmanuel Melin
Université d’Orléans, LIFO

Rapport No 2007-08
05/04/2007



Task-to-processor allocation for distributed
heterogeneous applications on SMP clusters

Sylvain Jubertie and Emmanuel Melin
{sylvain.jubertie| emmanuel.melin}@univ-orleans.fr

Laboratoire d’Informatique Fondamentale d’Orléans
Université d’Orléans

Abstract. Today, distributed architectures are based on multi core SMP nodes.
Several middleware, like the FlowVR framework, exist to design interactive and
heterogeneous distributed applications for these architectures. FlowVR defines
an application as a set of codes mapped on cluster nodes and linked by a com-
munication and synchronization network. But if we control the way modules are
synchronized and mapped on nodes, we do not control the scheduling of concur-
rent modules on processors which is done by the Operating System scheduler.
Since modules may be synchronized across different nodes, each local schedul-
ing can affect the whole application performance. Moreoverthe OS scheduling
is dynamic thus it is very difficult to predict and guarantee performance of such
applications and especially of interactive ones because performance variations
may totally break the immersion feeling. In this paper we propose to use a perfor-
mance model to determine the processor load required by eachdistributed task.
With this information we can define a task-to-processor allocation and tune the
scheduler to respect it. Thus we can abstract this allocation from a particular OS,
avoid effects of a dynamic scheduling, guarantee performance, optimize the pro-
cessor use and the number of nodes used for our application.

1 Introduction

Today, distributed architectures have very different levels of parallelism. A cluster may
be composed of heterogeneous SMP nodes connected with multiple heterogeneous net-
works. Common parallel programming libraries, like MPI or PVM, are not well suited
to build heterogeneous distributed applications. Indeed the resulting application code
contains the communication and synchronization schemes. Thus the developer has to
modify the application code to change these schemes or to take advantage of different
architectures. Consequently this approach is very dependant of the underlying architec-
ture.

The FlowVR framework1 allows to create applications for heterogeneous distributed
architectures. It was developed with distributed Virtual Reality applications in mind but
its model is general enough to consider non interactive distributed applications. The un-
derlying model behind FlowVR can be compared to component approaches. A FlowVR
application is a set of tasks, called modules in the FlowVR terminology. The commu-
nication and synchronization schemes are defined independently of the modules by a

1 http://flowvr.sourceforge.net



FlowVR network. Since modules are independent of a particular communication or syn-
chronization scheme it is possible to adapt an application to different clusters without
modifying the application code. FlowVR can be used to build large distributed appli-
cations like the Virtual Reality applications presented in[3, 4] which can contain more
than 5000 FlowVR objects. However, FlowVR does not provide its own performance
model. Consequently the mapping of the application objectsis leaved to the developer’s
skills but it is difficult and tedious to find an efficient mapping, especially for interactive
application where performance is crucial. A performance model for FlowVR applica-
tions would bring to the user a mean to determine performancefor its mapping without
having a deep knowledge of the FlowVR model.

We propose in [8] a performance prediction model for FlowVR applications. This
model integrates the synchronization and the communication schemes as well as the
concurrency between modules to compute performance of the application. To deter-
mine the effect of concurrency between modules on performance the choice is made
to model the OS scheduling policy. Obviously the OS scheduler does not take into ac-
count synchronization between modules and a performance drop for one module may
be transmitted to modules on other nodes. Thus a local scheduling can affect the global
performance of an application.

In this paper we propose to use our performance model to determine the proces-
sor load required by each FlowVR module for a given mapping. Then we define a
module-to-processor allocation on each cluster node. We also point out nodes which
are overloaded when such an allocation is not possible on them. In this case we can
tell the developer to modify his mapping and to move some modules to other avail-
able nodes. Finally, the processor loads and the module-to-processor allocation allow
the tuning of the scheduler in order to respect this information. We test our approach
on a distributed application which contains more than 80 different objects to map on
cluster nodes. Since our approach does not depend on a particular OS anymore we can
completely abstract the performance prediction model froma specific OS scheduling
policy. The FlowVR model is very close to underlying models of lots of distributed
codes, for example component based applications, thus our approach can be useful for
all designers of distributed applications.

2 Performance prediction for the FlowVR framework

In this section we briefly present the FlowVR framework and the performance predic-
tion model proposed in [8].

2.1 FlowVR

The FlowVR framework is an open source middleware used to build distributed appli-
cations. More details on FlowVR can be found in [2]. A FlowVR application is a set of
objects which communicate via messages through a data-flow network. Each message
is associated with lightweight data calledstampswhich contain information used for
routing operations.

Some objects, called modules, are endless iteration which encapsulate tasks. Each
module waits until it receives one message on each of its input port. This task is per-
formed by a call to the FlowVRwait function. Then messages are retrieved by theget



function and are processed by the module. Finally the moduleproduces new messages
and put them on its output ports with theputmethod.

The data-flow network describes the communication and synchronization schemes
between module ports. Each communication is done with a point to point FIFO con-
nection. Operations on messages like routing, broadcasting, merging or scattering are
done with a special object called afilter. Synchronization and coupling policy are per-
formed with another kind of object called asynchronizer. Both filters and synchronizers
are placed on connections between modules. Asynchronizeronly receivesstampsfrom
filters or modules. Then it takes a decision according to its coupling policy and sends
newstampsto destination objects. This decision is finally performed by the destination
filters or modules. With the use of synchronizers it is possible to implement thegreedy
filter. When used between a source and a destination module, this filter allows them
to respectively write and read a message asynchronously. Thus the destination module
always uses the last available message while older messagesare discarded. A FlowVR
application can be viewed as a graphG(V, E), called theapplication graph, where each
vertex inV represents a FlowVR objects like a module, a filter or a synchronizer, and
each directed edge inE represents a connection between two objects.

2.2 Performance prediction for heterogeneous distributedapplications

In this section, we only present some aspects of our prediction model, described in [8],
needed to understand our approach.

The goal of our performance model is to determine the effectsof synchronization
and concurrency between modules on performance. Our approach is based on the study
of an application graphG enriched with mapping information (figure 1). A mapping
is defined by two functionsnode andnetwork. For each objecto ∈ V , node(o) re-
turns the node inNodes, the set of the cluster nodes, whereo is mapped. For each
connectionc ∈ E between two objectso1, o2 ∈ V , network(c) returns the network in
Networks, the set of the cluster networks, used byc. If network(c) = ∅ then we have
a local connection between objects on the same node. Each network net ∈ Networks

is associated to a bandwidthBW (net) and a latencyL(net).
We now present the inputs of our performance prediction model. For each module

m we need to know its execution timeTexec(m, n) and its loadLD(m, n) on each node
n ∈ Nodes. The execution timeTexec(m, n) corresponds to the time needed to execute
the module task i.e. the time between the exit of thewait function and its next call, when
m has no concurrent modules on noden. The loadLD(m, n) represents the amount of
Texec(m, n) used for computation and not for I/O operations on noden. We also need
to knowvol(c), the amount of data sent on each connectionc ∈ E. We assume that
Texec(m, n) andLD(m, n) for each modulem on each noden, andvol(c) for each
connection, are given by the developer.

These inputs are then used by our model. Since the OS scheduler may interleave the
execution of concurrent modules, the execution time of eachconcurrent module may
increase depending of the scheduling policy. This new execution time is called the con-
current execution timeTconc(m). If the modulem is synchronized with other modules
then, once it has completed its task, it must stay in thewait function until it receives
messages from them. The iteration timeTit(m) corresponds to the time between two



Fig. 1. An application graphG (left) enriched with mapping information (right)

consecutive calls to thewait function. The goal of the performance model is to deter-
mine, for a given mapping,Tconc(m) andTit(m) for each modulem. This is done
by the study of two graphs,Gsync andGdep, derived fromG (figure 2). Note that we
do not consider filters and synchronizers in our study. Indeed filters and synchronizers
are waiting for messages from modules connected to them and have negligible loads
compared to modules since filters only perform memory operations like merging or du-
plicating messages, and synchronizers perform simple operations on stamps. Thus we
assume that filters and synchronizers have negligible loadsand execution times.

The first graphGsync is obtained fromG by removinggreedyfilters. Thus it only
contains synchronized modules since modules connected bygreedyfilters run asyn-
chronously. This graph may be splitted into several connected synchronous compo-
nents. A modulem in Gsync must wait for messages from modules connected to its
input ports. These modules are called input modules ofm and are notedIMs(m). The
iteration time of a modulem in a componentGsync depends on itsTconc(m) and on
the iteration time of its inputs modules :

Tit(m) = maxmi∈IMs(m)(Tconc(m), Tit(mi)) (1)

The graphGsync is useful to verify for each modulem thatTconc(m) ≤ Tit(mi), mi ∈
IMs(m). If this is not the case thenm is slower than its input modules and messages
are accumulated in the receiving buffer until it is full. Consequently we predict that
a buffer overflow will occur when running the application. Since we want to avoid it,
we must haveTit(m) = Tit(mi) for eachmi ∈ IMs(m). Thus the iteration time of



Fig. 2.Gsync (left) andGdep (right) derived fromG (figure 1)

each module in a componentCsync must be the same and we note itTit(Csync). We
note that a modulem ∈ Csync may haveIMs(m) = ∅. These modules are called
predecessor modulesof Csync and we note thempreds(Csync). In this case we have
Tit(pm) = Tconc(pm), pm ∈ preds(Csync). Thus we defineTit(Csync) as follow :

Tit(Csync) = Tconc(pm), pm ∈ preds(Csync) (2)

This means that the performance of modules in a componentCsync only depends on
the concurrent execution times of predecessor modules.

The dependency graphGdep (figure 2) models concurrency between modules by
adding bidirected edges inGsync between concurrent modules. It is used to determine
the effects of both concurrency and synchronization on module performance. If several
modules are concurrent i.e. connected with bidirected edges in Gdep, then we deter-
mine their performance according to a scheduling policy. In[8], we choose to model
the Linux scheduling policy [1, 5]. But we have experienced in our applications that
it does not always provide the best performance since it doesnot take into account
synchronization between modules. Moreover the OS scheduling is dynamic thus the
priority of modules may change during execution. Since modules may be synchronized
over several nodes a local scheduling may affect the scheduling on each node. This can,
for example, lead to variable performance which breaks the interactive feeling in Vir-
tual Reality applications. To prevent this variation we need to detect interdependencies
between the effects of concurrency and synchronization. Aninterdependency occurs
when we have a cycle with both directed and bidirected edges in Gdep. Thus we use
Gdep to detect interdependencies between modules and to guide the developer to avoid
them.

This approach, precisely described in [8], allows to determine the effects of syn-
chronization and concurrency on performance and to detect when the OS scheduling
policy can lead to poor or variable performance. This approach is not well suited if
we want to guarantee performance since it highly depends on the local OS scheduling
policy of each node. On the other hand, we now show that is is possible to guarantee
performance by choosing a suitable module-to-processor allocation and to harness the



scheduler to it. This approach also provide a mean to abstract our performance model
from the OS scheduler.

3 Module-to-processor allocation

In this section we describe the principle of our module-to-processor allocation. Our
approach is based on the study of a mapping given by the developer. In our previous
approach modules were mapped on nodes by the developer and then on processors by
the OS scheduler. We now propose to define a static module-to-processor allocation
which ensures performance and avoid the OS scheduler drawbacks. The first step con-
sists in determining the processor load required by each module. This is done by using
our prediction performance model.

3.1 Determining module processor loads

The main idea of our approach is to take advantage of the time amodule waits, which
depends on its own loadLD(m) and on the time it stays in the FlowVRwait function,
for the execution of other processes. For example if a modulem is synchronized with
an input module then from equation 1 we can add concurrent modules while we have
Tconc(m) ≤ Tit(mi), mi ∈ IMs(m) to avoid a buffer overflow. We assume that ap-
plications have a fixed number of processes and are running ondedicated nodes thus a
static allocation seems realistic.

Component performance : The developer must choose for each predecessor mod-
ule pm its Tconc(pm) such asTconc(pm) ≥ Texec(pm, node(pm)). Thus we also ob-
tain Tit(Csync) of each componentCsync ∈ Gsync from equation 2. If he wants to
slow down the component then he can choose for each predecessor pm the correspond-
ing Tconc(pm) such asTconc(pm) > Texec(pm, node(pm)). Then we obtain the load
LDc(pm) required on the processor to ensure the correctTconc(pm) with the following
equation :

LDc(pm) = Texec(pm, node(pm)) ×
LD(pm, node(pm))

Tconc(pm)
, pm ∈ preds(Csync)

(3)

If the developer wants to run the predecessor module at its full speed then he chooses
Tconc(pm) = Texec(pm, node(pm)) and we obtainLDc(pm) = LD(pm, node(pm)).
Note that the developer must chooseTconc(pm), consequently from equation 2 we have
theTit(Csync) each module in a componentCsync must respect.

Module performance : We now determine for each other modulem ∈ Csync its
LDc(m). The lowestLDc(m), notedLDcmin(m), we can allocate to each module
m is reached whenTconc(m) = Tit(Csync). It depends on the part ofTit(m) used for
computation and not for I/O operations. Thus we defineLDcmin as follow :

LDcmin(m) =
Texec(m, node(m)) × LD(m, node(m))

Tit(Csync)
, m ∈ Csync (4)



If LDcmin(m) < LD(m) the developer can choose for each module a higher processor
load LDc(m) such asLDcmin(m) ≤ LDc(m) ≤ LD(m). Thus we can decrease
Tconc(m) according to the following equation :

Tconc(m) =
Texec(m, node(m)) × LD(m, node(m))

LDc(m)
(5)

This can be useful to reduce latency between modules. IfLDcmin(m) > LD(m, node(m))
then it means that we can not allocate enough processor load to m and we can predict
a buffer overflow. In this case the developer can increaseTit(Csync) by slowing down
predecessors or by mapping the module on a faster processor to decrease itsTexec.

An application mapping gives us the mapping of modules on nodes. We now give
means to map each modulem on a processor according to itsLDc(m).

3.2 Mapping modules on processors

We now determine how to map modules on processors. For each node n we define
Procs(n) as the set of processors ofn. For each modulem on a noden we define
proc(m, n) as the processor wherem is mapped. We can map several modules on a
processor while the sum of theirLDc does not exceed 1. Thus to find a correct mapping
we must verify the following inequality :

∀n ∈ Nodes
∑

p∈Procs(n),
proc(m,n)=p

LDc(m) ≤ 1 (6)

If this inequality is not verified on some nodes then we have not enough processors to
ensure expected performance. Consequently the developer can slow down predecessors
of modules mapped onn or he can consider a different mapping.

However, we can improve the mapping of modules on processorsby determining if
some modules can not run at the same time due to synchronization between them. In
this case, these modules can be mapped on the same processor without cumulating their
LDc. This is for example the case of modules in the same synchronous cycle. This is
also the case of modules in a synchronous pathPsync which verifies :

∑

m∈Psync

Tconc(m) ≤ Tit(Csync), Psync ⊆ Csync (7)

This means that the iteration of the last module inPsync ends before the first module in
Psync begins a new iteration. We can now traverse the different components ofGsync

to determine the paths which verify inequality 7. Moreover we only restrict our study
to paths which start and end with modules mapped on the same node. Thus for each
noden we obtain a set of synchronous path. Each pathPsync is defined between two
modulesm1, m2 such asnode(m1) = node(m2) = n and contains a setS of modules
which can not run at the same time. Then we can remove fromS modules which are not
mapped onn. Thus we can map them on the same processor and the highest processor
load required is equal tomaxm∈S(LDc(m)) and is notedLDc(S). Consequently if
we map modules inS we replace the sum of theirLDc by LDc(S) in inequality 6.



If the inequality is still not verified on some nodes then the developer can slow down
predecessors or he can modify its mapping. Since we compute the processor loads in
our study, we can use this information to move some modules from nodes where the
inequality is not verified to other available nodes.

3.3 Conclusion

With this information determined above on processor loads and on concurrent modules
we are now able to determine a module-to-processor allocation for a given mapping. In
usual applications, the number of modules mapped on nodes isgenerally comparable
to the number of processors which is limited on current architectures. Thus we can eas-
ily map modules on processors since the number of possible allocations is reasonable.
However chip makers are working on processors with even morecores. Consequently
the allocation process will become even more complex. In this case it can be solved with
the use of a solver based on allocation constraints obtainedfrom equations 6 and 7.

Our method can also partially guide the developer in its mapping creation. Indeed,
from allocation constraints, we can use a solver to generatemappings compatible with
the performance expected without mapping information. This can be useful to increase
performance, to minimize the number of nodes required for running an application or
to run different applications on the same cluster. In [7] we have presented an approach
to optimize communication schemes. In this case we can also define constraints on
communication. The two approaches may be combined to optimize both module and
communication performance. Even if we use the different constraints, a high number of
mappings may still be possible. We can not give a general approach to optimize map-
pings since the mapping also depends on the performance expected by the developer.
However, the developer can also add its own performance constraints to reduce the
number of possible mappings. Thus we can further guide the developer in its mapping
creation.

Since resulting allocations are static we can ensure performance to the developer.
We are also able to evaluate the load of each processor and to detect if a node is over-
loaded. In this approach the allocation process does not depend on a particular OS
scheduler. Consequently our performance prediction modelis fully abstracted from the
cluster and the operating system. We can now guarantee performance for heterogeneous
distributed applications and interactivity in the case of Virtual Reality applications.

4 Experiments

4.1 Simple application

We first show the effects of the OS scheduling on a simple application. This application
is composed of modules with different loads and execution times. Tests are performed
on dual processor nodes. The operating system is based on theLinux kernel version
2.6.21. We use thenice command to set the priority of modules and thetaskset
command from theLinux scheduler utilities2 to bind modules to processors.

2 http://rlove.org/schedutils/



Fig. 3. First test application

We first consider an application composed of four modules on dual processor nodes
as described in figure 3. Results are shown in table 1. We note that, onnode2, the OS
scheduler gives priority to modulesmodule2 andmodule3 and maps them on different
processors. Thusmodule4 is mapped withmodule3 which has the lowest load. How-
ever if we need better performance formodule4 we have to define our own allocation.
For example it is possible to mapmodule2 andmodule3 on the same processor and
module4 on the other processor. Thus,module4 can run at its full speed. Indeed, with
this allocation we obtain better results formodule4 as shown in table 1.

Fig. 4. The graphGdep with bidirected edges between concurrent modules

We now study another application with modules mapped on the same dual processor
node. The application graph is the same as in figure 3 but modules have different execu-
tion times and loads. This time we detect some interdependencies since we have cycles
in Gdep (figure 4). Indeed, results in table 2 show that concurrent execution times are
variable. In this case we propose a custom allocation to solve this problem. For exam-
ple we can slow downmodule1 by allocating it a load of only0.5. Then we determine



Module NodeTexec LD Tconc

OS schedulingcustom allocation
module1 1 22 0.5 22 22
module2 2 12 0.4 12 14
module3 2 9 0.3 9 12
module4 2 5 1 8 5

Table 1. (Times are given in ms)

Module NodeTexec LD OS scheduling custom allocation
LDc Tconc LDc Tconc pred.Tconc real

module1 1 8 0.600.35-0.5010-150.50 10 11
module2 1 6 0.650.45-0.557-9 0.40 10 9
module3 1 6 0.750.55-0.756-8 0.45 10 10
module4 1 5 1 0.60-1 5-8 0.60 8 9

Table 2. (Times are given in ms)

LDcmin(module2) andLDcmin(module3) from equation 4 and we choose to set their
LDc to these values. This allocation is described in table 2. Finally we mapmodule1
andmodule3 on the first processor to maximize its use since the sum of the modules
LDc reaches0.95. Consequentlymodule2, with LDc(module2) = 0.4, is mapped on
the second processor and a load of0.6 remains formodule4. Results in table 2 show
that predicted concurrent execution times are really closefrom measured ones.

4.2 The FluidParticle application

To verify the efficiency of our approach we now test it on a realFlowVR application.
Our tests are performed on a cluster composed of two sets of eight nodes linked with a
gigabit Ethernet network. The first set is composed of nodes with two dual-core Opteron
processors while the second set is powered with dual Pentium4 Xeon processors.

Module Nodes OS scheduling Improved scheduling
Texec Tconc Tit cpu LDcmin LDc Tconc Tit

fluid 1, 2, 3, 440 45-5045-50 1, 2 1 1 40 40
particles 1, 2, 3, 49 9 45-50 4 0.225 1 9 40
viewer 1, 2, 3, 410 10 45-50 4 0.25 1 10 40
renderer 1, 2, 3, 410 10-2010-20 3 1 1 10 10

Table 3. (Times are given in ms)

Module Nodes Improved scheduling
Texec cpu LDcmin LDc Tconc Tit

fluid 1, 2 40 1, 2, 3, 41 1 40 40
particles 11, ..., 1413 1 0.325 1 13 40
viewer 11, ..., 1415 1 0.375 1 15 40
renderer 11, ..., 1420 2 1 1 20 20

Table 4. (Times are given in ms)



The FluidParticle application is composed of the followingmodules :

– fluid : this is an MPI version [6] of the Stam’s fluid simulation [9].
– particles: this is a parallel module which stores a set of particles andmoves them

according to a force field.
– viewer: it converts the particles positions into graphical data.
– renderer: it displays informations provided by the viewer modules. There is one

renderer per screen. In our study we use a display wall with four projectors thus we
use four renderer modules on four nodes.

– joypad: it is the interaction module which converts user interaction into forces.

Fig. 5.A simplified graph of the application (left) and the correspondingGsync (right)

A simplified application graph is described in figure 5. Thejoypadmodule is con-
nected to thefluid module through agreedyfilter since we want to interact with the
simulation asynchronously. Then thesimulationis connected with a FIFO connection
to the particle module. Thesimulationalso sends the position of the pointer to the
viewermodule. Theparticle module is connected to theviewerwith a FIFO connec-
tion. Finally theviewermodule sends messages to therendererthrough agreedyfilter.

We buildGsync, figure 5, to determine the different synchronous components. We
obtain three different components. The first one only contains thejoypadmodule. Since
the joypadmodule only reads a position from the interaction device it has a very low
execution time and load. Moreover it is the single module in the component and conse-
quently it has no effect on the iteration time of other modules. Thus thejoypadmodule
is negligible for our study and we choose to ignore it. The second component contains
the fluid modules which are predecessors, theparticlesmodules and theviewermod-
ules. The third component only contains therenderermodules which are predecessors.

We first test our application with the OS scheduling on four SMP nodes with two
dual-core processors. We map onerendererper node since each node is connected to a
projector. Thefluid simulation is parallel and requires eight processors to runat an inter-
active frequency thus we map twofluid modules per node to take advantage of the SMP



nodes. We also map oneparticleandviewermodule per node to reduce communication
cost between modules. For the sake of clarity, a simplified version of the application
graph with only two instances of each module is described in figure 6. Results are de-
tailed in table 3. We note that the iteration times of both components are variable. For
example the value ofTconc(fluid) varies from 40 to 50ms with an average value close
to 50ms. Indeed the scheduler can map several modules on the same processor and
change their scheduling dynamically. Sincefluid modules are synchronized, this affects
the whole simulation. Thus we propose to use our approach to avoid variable results
and to take a better advantage of the processors for the simulation. We choose to map
thefluid modules on two dedicated processors since we need the best performance for
the simulation. We choose to setLDc(particle) = 1 andLDc(viewer) = 1 since in
this case we haveTconc(particle) + Tconc(viewer) ≤ Tit(fluid). This means that
particleandviewerare never running at the same time. Thus we map them on one pro-
cessor without performance penalty. Therenderermodule is consequently mapped on
the fourth processor. The results of our improved scheduling are shown in table 3.

Fig. 6.A simplified graph of the FluidParticle application with only two instances of each module



We can also propose another mapping which requires more nodes but less compu-
tational power. Indeed therenderermodule can be mapped on a node of the second
cluster set. In this case the processor and the graphic card are less powerful but the
frame rate is still interactive since we haveTexec(renderer, n) = 20ms on a noden of
the second set of nodes. We now consider mapping theparticleand theviewermodules
on the second set of processors. If we choose to allocate to each module a load of 1
then we still haveTconc(particle) + Tconc(viewer) ≤ Tit(fluid). Thus we can also
map them on a single processor. Consequently we can use four nodes from the second
set to host therenderer, theparticleand theviewermodules. Then we have not enough
processors available in the second set to run the simulationat 40ms per iteration. Thus
we use eight processors from two nodes from the first set. Results are shown in table 4.
Note that the application runs at an interactive frame rate but this improved mapping
increases the latency between thejoypadmodule and therenderermodule. Indeed we
increaseTexec for theparticle, viewerandrenderermodules, thus we increase the time
needed between the interaction and the visualization of itseffect. However the differ-
ence is negligible and is not perceptible by the user.

5 Conclusion

In this paper we have shown that the OS scheduling can lead to poor and variable per-
formance for distributed applications. Thus we have presented a module-to-processor
allocation process based on our performance model. The resulting allocation solves
the drawbacks of the OS scheduling. Indeed it ensures performance and stability of
FlowVR distributed applications. This allocation dependson our performance model
and also of the performance expected by the developer. Consequently it is abstracted
from a particular operating system and only driven by performance information. Thus
we can consider cluster with heterogeneous operating systems. Our approach can also
be applied to several applications running on the same cluster since we can consider
them as a single application with more synchronous components. This can be useful to
optimize both the performance of applications and the use ofthe cluster.

We also show that the mapping creation can be guided by different kind of con-
straints. These constraints are given by our model, by the hardware or software required
by modules and by the user to respect its performance expectation. For example a mod-
ule must have the same iteration time as its input modules in our model, an interaction
module must be mapped on the node connected to the interaction device or a mod-
ule must respect an iteration time given by the developer. Thus we plan to develop a
solver to solve these different constraints. The goal is to assist the developer in its map-
ping creation or to provide an automatic generation of mappings. It will also enables to
consider large heterogeneous applications with even more modules and connections on
large clusters with heterogeneous nodes connected with complex network topologies.

References

1. J. Aas. Understanding the Linux 2.6.8.1 CPU Scheduler.
http://citeseer.ist.psu.edu/aas05understanding.html.



2. J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin,B. Raffin, and S. Robert. FlowVR:
a Middleware for Large Scale Virtual Reality Applications.In Proceedings of Euro-par 2004,
Pisa, Italia, August 2004.

3. J. Allard, C. Ménier, E. Boyer, and B. Raffin. Running large vr applications on a pc cluster:
the flowvr experience. InProceedings of EGVE/IPT 05, Denmark, October 2005.

4. J. Allard and B. Raffin. Distributed physical based simulations for large vr applications. In
IEEE Virtual Reality Conference, Alexandria, USA, March 2006.

5. D. P. Bovet and M. Cesati.Understanding the Linux Kernel, Third Edition, chapter 7. Oreilly,
2005.

6. R. Gaugne, S. Jubertie, and S. Robert. Distributed multigrid algorithms for interactive scien-
tific simulations on clusters. InOnline Proceeding of the 13th International Conference on
Artificial Reality and Telexistence, ICAT, december 2003.

7. S. Jubertie and E. Melin. Multiple networks for heterogeneous distributed applications. In
Proceedings of PDPTA’07, Las Vegas, june 2007.

8. S. Jubertie and E. Melin. Performance prediction for mappings of distributed applications
on pc clusters. InProceedings of IFIP International Conference on Network and Parallel
Computing, NPC, Dalian, China, september 2007.To appear.

9. J. Stam. Real-time fluid dynamics for games. InProceedings of the Game Developer Confer-
ence, March 2003.


