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Abstract

In this paper we introduce a dimensionality reduction method based on object class, which can be
of interest both to define an appropriate distance measure or to visualize objects in a multidimensional
space. The method we present is derived from data analysis techniques, such as Principal Components
Analysis (PCA). In this paper we propose to consider only pairs of objects that belong to different
classes, i.e. to maximise inter-classes distance. Moreover, we introduce a weight parameter that
limits the influence of distant objects and favours the influence of close ones, in order to focus on
local spatial organization, and thus raise the quality of nearest neighbour classification. Various tests
results are presented, which show that a small set of characteristic dimensions can be sufficient to
achieve a very satisfying good classification rate.

1 Introduction

Dimensionality reduction plays an important role in many machine learning problems. In this paper we
propose an appropriate object representation method for supervised learning. Let us consider a set of
observations {(xi, yi), i = 1..n} where xi stands for the representation (i.e. a set of features) of a given
object and yi stands for the class of this object. Given such a context, various tasks can be aimed at,
the most frequent of which consisting in proposing a class y for a new observation x (classification);
visualizing object (in a low dimension space) can also be of interest, in order to observe the general
organization, to identify outliers or classes that are close together, etc.; last, we can look for coherent sub
groups within classes (clustering).

For any of these goals, having a relevant description of objects is of first interest. Most of time, a
more or less important part of the original features describing objects ({xi}) has no or few links with the
class of this latter, the main issue consisting thus in identifying significant data. A lot of work has been
conducted in such ways as feature selection and similarity measures. Such methods present a potentially
serious drawback : each feature is evaluated independently from others, using a score function (Guyon
& Elisseeff, 2003). By the way, features that together bring information might be eliminated. On the
other side, most of similarity measures do not take into account the class attribute (except such works
as (Sebag & Schoenauer, 1994; Martin & Moal, 2001), where source or compiled features are weighed,
this weight being computed according to a given heuristic).

In this paper we propose a method call “r-discriminant analysis”, to compute a limited set of features,
that are relevant with regard to class. These features are computed in the way that each of them consists
of a combination of source features which maximises the overall (euclidean) distance amongst objects
that belong to different classes (i.e. inter-class distance or between-class distance). As a consequence we
first focus on numerical attributes, but non numerical ones can also be handled using a quantification
mechanism 1.

We thus compute a projection subspace of a given dimension where the sum of inter-classes distance
is maximized. A new distance measure is induced by this subspace. It is obvious that such a method
is derived from Principal Components Analysis (PCA), where a projection subspace is computed that
maximizes the total variance (i.e. the sum of the distance between each pair of objects). Our approach
is distinct from linear discriminant analysis, which both maximizes inter-class variance and minimizes
within-class variance.

When p source features are provided, r-discriminant analysis produces p orthogonal dimensions, sorted
according to their (decreasing) influence w.r.t. the sum of inter-class distances, the influence of the last
dimensions using to be negligible (but not null). We will thus introduce a simple criterion to determine
the number of dimension of interest, and more sophisticated criteria will be mentioned.

The main drawback of a raw r-discriminant analysis resides in the fact that distant objects obviously
influence inter-class variance more than close ones, which limits the discriminating ability of such an
analysis. As a consequence we propose a weighting technique, that rises the influence of close objects,
thus preserving local organization of objects from different classes. We call this weighted approach wr-
discriminant analysis.

Validating (w)r-discriminant analysis is quite uneasy, as this approach does not constitute a classifi-
cation method, but rather a data representation (or analysis) tool. We propose two validation methods:

1by replacing a k value feature by k binary features
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• We first use a nearest-neighbour classification, where distance is computed, on one hand using the
whole set of source features, and on the other hand using the more relevant dimensions of the
subspace computed by (w)r-discriminant analysis. We will focus on the influence of the subspace
dimension towards the good classification rate, showing that a limited set of dimensions can signif-
icantly raise this rate. We use various (standard) test sets of the UCI repository (Newman et al.,
1998).

• We then present some screen snapshots of 3-D projections, using ACP and (w)r-discriminant anal-
ysis, highlighting the fact that, for some data sets, our approach can also offer a better spatial
representation of objects.

In section 2 we will both formaly define r-discriminant and weighted r-discriminant analysis and demon-
strate how they can be solved by searching for eigenvalues. Related work will be presented in section 3.
In section 4 we will present various test results both in terms of supervised learning (nearest neighbour
classification) and of visualization, as described above. Finally, we will sum up and propose future work
guidelines in section 5.

2 R-discriminant analysis

Let us consider a set of observations {(xi, yi), i = 1..n} where xi stands for a given object (here: a point
in R

p) and yi stands for its class. Let us denote xi = (xi1, . . . , xip).

2.1 Principal Component Analysis (PCA) - a brief reminder on principle and
technique

The main goal of PCA consists in the search of a 1-dimensional sub-space where the variance of the
projected points is maximal. Practically speaking, man looks for a unit vector u such that, if du is the
euclidean distance in the sub-space defined by u, the sum

∑

i du(xi, g)2 is maximized (g being the centroid
of the points).

Let hu(x) denotes the projection of x in the sub-space defined by u (and containing the origin). From
the matrix point of view, the sum can be expressed as (X ′ being the transposed matrix of X , and using
the same notation for a point and the corresponding vector) :

∑

i

d(hu(xi), hu(g))2 =
∑

i

||hu(xi) − hu(g)||2

= ||hu(xi − g)||2

= u′M ′Mu (1)

and M = (mij) where mij = xij−gi and gi stands for the mean value of attributes of rank i, gi = 1
n

∑

j xji

(g can be ignored, as long as the data use to be normalized, i.e. the mean is subtracted).
This problem is usually solved by looking for the highest eigen value of M ′M , u being thus the eigen

vector associated to this eigenvalue. The second most interesting dimension can then be found by looking
for the next dimension, orthogonal to u, that have the maximal variance (which corresponds to the second
highest eigenvalue of M ′M and its associated eigen vector), and so on.

2.2 R-discriminant analysis (RDA)

Considering PCA, we can underline the fact that, in the projection sub-space:

∑

i,j

du(xi, xj)
2 = 2n

∑

i

du(xi, g)2 (2)
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which can be expressed as the sum of an inter-class (Σr) and a within-class (Σa) sums:

2n
∑

i

du(xi, g)2 =
∑

i,j | yi 6=yj

du(xi, xj)
2

+
∑

i,j | yi=yj

du(xi, xj)
2 (3)

Thus, maximizing the total variance is equivalent to maximizing the sum of the distance between each
pair of objects.

With r-discriminant analysis, we propose to only consider and maximize the sum of inter-class dis-
tances, so that, in the subspace computed, the priority is given to a good relative representation of objects
belonging to different classes.

We thus look for u, maximising a quadratic objective function under quadratic constraint:
{

Max(u)

∑

i,j yi 6=yj
du(xi, xj)

2

||u||2 = 1

which will correspond to the dimension which preserves inter-class distances at most. We will then look
for the next vector v, orthogonal to u (||v||2 = 1) that maximizes the same expression, and so on.

2.3 Solving

We can clearly express the preceding sum in a matrix form, using equation (1). But the size of M ′M
(to be diagonalized), which corresponds to the number of pairs of objects of distinct classes, is then of
the order of n2. Nevertheless, it can be expressed in a much simpler form, using equation (2), where the
(double) sum of inter-objects distances can be replaced by the (simple) sum of the distance of each object
to the centroid.

Let α be a class and gαj the mean value of attribute j amongst objects of class α: gαj = 1
nα

∑

i | yi=α xij

and gα is the centroid of points of class α. Let nα be the number of objects of class α.
According to equation (2), once projection is done, the sum of distances amongst all objects of class

α is:

∑

i,j | yi=yj=α

du(xi, xj)
2 = 2nα

∑

i | yi=α

du(xi, gα)2 (4)

which, according to (1), is :

2nα

∑

i | yi=α

d(hu(xi), hu(gα))2 = 2nαu′M ′
αMαu

where Mα = (mα
ij) ∈ R

p×p with

mα
ij =

{

xij − gαj is yi = α
0 otherwise

Let Bα = (bα
ij) = nαM ′

αMα: such that

bα
ij = nα

∑

r | yr=α

(xri − gαi)(xrj − gαj)

The total sum of within-class distances (after projection) is the sum, amongst all classes, if the
expression given by (4):

Σa =

k
∑

α=1

∑

i,j | yi=yj=α

d(h(xi), h(xj))
2

=
k

∑

α=1

2nαu′M ′
αMαu (5)
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This expression can be expressed as 2u′Mau, where Ma = (ma
ij) is the sum of matrices nαM ′

αMα , with
α = 1 . . . k (i.e. the sum matrices Bα as defined above):

ma
ij =

k
∑

α=1

nα

∑

r | yr=α

(xri − gαi)(xrj − gαj) (6)

Last, the total sum of within-class distance (within the projection sub-space associated with vector u)
can be expressed as: u′Mau. Since the variance of the complete data is given by 2nu′M ′Mu (according
to (1) and (2)), the sum of within-class distances, after projection, can be expressed the same way as its
value is the difference of these two latter:

Σr = 2nu′M ′Mu − 2u′Mau

= u′(2nM ′M − 2Ma)u

= u′(2nM ′M − 2
∑

α

nαM ′
αMα)u (7)

Maximizing this expression is obtained by searching extrema of quadratic form under quadratic constraint.
We can notice that, the matrix to be diagonalized is symmetric (sum of symmetric matrices) of order p.

2.4 R-discriminant analysis: dual expression

There exists a so-called “dual” expression of PCA that consists in diagonalizing MM ′ instead of M ′M ,
both of them having the same eigenvalues, and the eigen vectors of one being obtained from the ones of
the other. This dual expression enables the diagonalization of the matrix of order min(n, p).

Considering r-discriminant analysis, the matrix to be diagonalized is nM ′M −Ma. In fact, we have
to maximize u′(nM ′M − Ma)u. Since matrices M ′

αi
and Mαj

are orthogonal for each αi 6= αj , the
expression of Ma can be rewritten: M ′

ΛMΛ with MΛ = (mΛ
ij) =

∑

α=1..k

√
nαMα.

We can also notice that u′(nM ′M − M ′
ΛMΛ)u can be expressed as u′A′Bu where A and B are two

matrices of dimension 2n × p, A = (aij), B = (bij) defined by:

aij =

{ √
nmij if i ≤ n

mΛ
i−n,j if i > n

bij =

{ √
nmij if i ≤ n

−mΛ
i−n,j if i > n

Thus we have to maximize u′A′Bu under constraint ||u||2 = 1, which is equivalent to searching the
eigenvalues of A′B. We can easily notice that A′B and BA′ have the same eigenvalues, BA′ being of
order 2n.

Last, we can diagonalize BA′. Obtaining the eigen sub-spaces of A′B using the eigen vectors BA′ is
then similar to the dual method of PCA (L. Lebart, 2000).

2.5 Weighted r-discriminant analysis (WRDA)

R-discriminant analysis aims at maximizing the sum of the square of distances amongst objects of dif-
ferent classes. We can see that a possible drawback of this approach lies in the fact that it favours
the representation of the most distant objects. In effect, due to the criteria to maximize, the higher a
distance, the higher its impact on the objective function. As a consequence, nearby objects could be
very near or even merged in the representation subspace. In a context of classification (using a “nearest
neighbour” method), this constitute a real drawback, as nearby objects of different classes should be well
projected. Thus, rather than optimizing:

Σr =
∑

i,j | yi 6=yj

du(xi, xj)
2
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we propose to optimize

Σr,w =
∑

i,j | yi 6=yj

wijdu(xi, xj)
2

the weight wij growing when d(xi, xj) decreases (d(xi, xj) stands for the euclidean distance within the
source space). We can notice that, if d(xi, xj) = 0, then du(xi, xj) as no effect on the objective function
(in this case, wij can be set to 1).

Practically speaking, we use wij = 1/dσ(xi, xj) where σ is a parameter that tunes the influence of
nearby objects (the higher σ, the higher the influence of nearby objects, σ ≥ 0).

We can not solve this problem using the former techniques. However the sum to maximize can be
expressed with matrices, similarly to (1):

∑

i,j | yi 6=yj

wij(hu(xi) − hu(xj))
′(hu(xi) − hu(xj))

= u′N ′Nu (8)

with N a matrix with p columns, the number of rows being equals to the number of pairs of objects of
different class (of the order of n2). Thus, each pair of objects (xi, xj) with yi 6= yj corresponds to a row
of matrix N :

(
√

wij(xi1 − xj1),
√

wij(xi2 − xj2) ,
. . . ,

√
wij(xip − xjp))

We thus compute the eigen values of the matrix NN ′ (of order p, which may be relatively small);
besides, building NN ′ implies going across N , having a size (o(n2 × p).

We can notice that this expression offers another formulation of the preceding problem (non-weighted
RDA, i.e. with weights wij = 1).

3 Related works

Feature selection has been applied to classification problems (Dash & Liu, 1997). Moreover, various
studies have been conducted that introduce some discriminant aspects within analysis methods (L. Lebart,
2000; J.P. Nakache, 2003), called Fisher Linear Discriminant Analysis (LDA) (Fukunaga, 1990). In recent
years, many approaches have been proposed to deal with high-dimensional problems (Ye & Xiong, 2006)
and different covariance matrices for different classes (Kumar & Andreou, 1996).

These approaches are based on the decomposition of the sum to be maximized within PCA: u′Tu
where T = M ′M is the variance-covariance matrix of observations. Using the Huygens decomposition
formula, the matrix can be expressed as the sum of the inter-class (E) and within-class (D) variance-
covariance matrices: u′Tu = u′Du + u′Eu.
In this case, within-class variance must be maximized while inter-class variance must be minimized, in
order to find a low dimensional representation space, where classes are more consistent and far from each
other. Practically speaking, u′Eu/u′Tu is maximized by searching for the higher eigenvalues of T−1E.

We can notice that our approach is different from LDA, as shown on the following example. Consider
4 objects and 2 classes (+ and -) and the following (2D) dataset:

+ - - +
In this dataset, the means of the classes + and - are both exactly in the center of the figure and then

the inter-class variance is null (but the sum of inter-class distances is not null). Then, if we search for
a 1-dimensional subspace, the LDA gives the vertical subspace (minimizing within-class variance) while
our method gives the horizontal subspace. This example illustrates the advantage of RDA when some
classes are split into distant subclasses.

In the case of classification, (Mohri & Tanaka, 1994) uses this approach, projecting objects on the
most discriminant axis (and thus using a one-dimensional representation space).
Nevertheless, this decomposition is obviously different from the one we use.

The representations proposed by a linear discriminant analysis will be of poor interest when within-
class variance can hardly be reduced, and/or when inter-class variance is low. R-discriminant analysis fits
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better to the case where classes are not scattered across space, and/or are split in sub-classes. Figure 1
presents the case of two classes (+ and -) and their centroids G+ and G-, where inter-variance is low
while within-class variance is high (considering class +).
Projecting the objects from two to one dimensional space, linear discriminant analysis will use axis D1

(which will mix classes), while r-discriminant analysis will use D2 (which will produce a more class-
consistent projection, and thus a better classification).

+ +
+

+ + +

+

+

+

+

+

+

+

++

+

−

− −

−

−
− −

−−

−

G−

G+

D2

D1

Figure 1: Example of dimensionality reduction

¿From another point of view, linear discriminant analysis consists of a PCA on classes centroids,
weighted according to the size of classes (J.P. Nakache, 2003). By the way, the number of discriminant
dimensions is bounded by the number of classes, which might be a too strong reduction.

4 Experimental results

4.1 Nearest neighbour

The tests we present aim at evaluating the gain introduced by weighted r-discriminant analysis (WRDA)
within a classification process. These tests are based on standard data sets (numerical data sets with no
missing value) available at UCI (Newman et al., 1998).
For each data set we realised a cross validation based on ten randomly generated subsets (the distribution
of objects amongst classes being the same in each subset). We established a correct classification rate
(using a 1-nearest neighbour method), based on the euclidean distance for subspaces from one to n
dimensional sub-spaces (n being the number of features in the original data set), using first the most
discriminant dimensions (WRDA) and the most significant (PCA).
Curves are based on the average value of twenty runs of the cross validation procedure. The weighting
parameter σ varies from 0 to 10.

4.1.1 Glass and Zoo

The curves we obtain with these two data sets are quite characteristic of the classification by nearest
neighbour with WRDA: when the number of dimensions growths, the correct classification rate first
growths and then lowers until it reaches the rate corresponding to the classification within the original
space. This highlights the interest of dimensionality reduction: a subspace can lead to better classification
rate than the original set of features.

Figure 2 presents the results for glass. For a small number of dimensions (from 1 to 4) PCA is
satisfying, compared to WRDA. But when the number of dimension growths (between 5 and 8), we can
notice that a WRDA with an high σ raises the correct classification rate (77 %, compared to 66 % with
PCA). We can notice that we obtain a clear peak with WRDA, for a relatively small number of dimension,
that is higher that the highest correct classification rate observed with PCA.
Concerning zoo (fig. 3), PCA remains interesting if we only consider the most significant dimension, while
WRDA brings a noticeable gain with 3 and even more with 4 dimensions (98 % of correct classification
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with 4 dimensions and σ=4, vs. 92 % with PCA). As with glass, we observe a peak of the correct
classification rate, followed by a slight decreasing when the number of dimensions increases, reaching 95
% when all available dimensions are used.
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Figure 2: Correct classification for glass
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Figure 3: Correct classification for zoo

4.1.2 Tic-tac-toe and Pima

Figures 4 and 5 concern respectively tic-tac-toe and pima indians diabete data sets. They offer two
characteristic shapes. With tic-tac-toe, a clear peak is followed by a strong decreasing, and finally a
stabilization around the rate observed within the original space.
On the contrary, with pima indians diabete, there is no noticeable peak (except a very light one with
PCA). Rates are growing regularly until they reach (using all the discriminant dimensions available) the
rate observed within the original space. We may think that this is due to the fact that each original
feature plays a role w.r.t. the object’s class, and thus any dimensionality reduction leads to a loss of
information and by the way of efficiency. We only observed this fact with 2 data sets (pima-diabete and
liver disorder).

4.1.3 Synthetic overview of tests

Table 1 offers a synthetic comparison of correct classification rates with PCA and WRDA over a larger
set of data sets, compared to classification within the original space. For each data set we have computed
the correct classification rate for PCA and WRDA, σ running from 0 to 10, with a step of 0.5 (σ = 0
corresponds to RDA). Columns of this table indicate:

• for each data set : name, cardinality and dimension of the original space;

• for PCA: best correct classification rate obtained and dimension of the corresponding sub space;

• for WRDA: best correct classification rate obtained, dimension of the corresponding sub space and
σ;

• correct classification rate with the original data (and euclidean distances).

When, for a given data set, the best rate was achieved with various values of σ and/or of the number of
dimensions used, we chose to present the lowest values of these parameters. Some data sets (signaled by
a *) do contain symbolic data. In this case quantification of symbolic data has been realized by replacing
it by a set of binary attributes, each of these corresponding to a given value of the symbolic attribute.
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Figure 4: Correct classif. for tic-tac-toe
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Figure 5: Correct classif. for pima diabete

In this case, the dimension of the original space we give corresponds to the dimension once quantization
has been done.

We can notice that WRDA tends to offer higher performance (w.r.t. correct classification rate using
one-nearest neighbour) than the original space. Its performance is also similar or higher than the one of
PCA (better rate or smaller number of dimensions). The interest of weighting is also underlined by the
fact that, in most cases, the best rate is reached with σ > 0. The counter performance observed with
balance scale does a priori come from the very uniform distribution of objects amongst the original space,
which limits discrimination possibilities.

These tests show that in many case WRDA can lead to a limited set of highly discriminant dimensions,
and thus consistent w.r.t. classification. We consider that an automated parametering of WRDA, i.e.
automated search of the number of dimensions and of the value of σ to be used, would be of great interest
as a future work (see section 5).

Table 1: Best correct classification rate observed with PCA and wr-discriminant analysis
Set PCA wr-d analysis source

space
name # of # of Max # of Max nb. σ N.N.

obj. dim. (%) dim. (%) dim. (%)
balance scale 625 4 95 2 88,8 2 3,5 79

cars (extrait) (*) 518 19 94,9 5 96,3 11 5 93,1
ecoli 336 7 81 7 81 5 2,5 80,9
glass 214 9 70,2 9 77,1 7 6 70,2

ionosphere 351 34 91,2 12 91,1 8 2 86,6
iris 150 4 94,5 4 96,3 1 4 94,5

liver disorder 345 6 62,5 6 62,5 6 0 62,5
pima-diabete 768 8 71 7 70,5 8 0 70,5

soybean (small) 47 35 100 2 100 2 0 100
teaching(*) 151 56 66,9 17 67,4 16 0,5 63,7

tic-tac-toe(*) 958 26 98,9 16 99,1 9 3 79,8
zoo 101 16 95,1 11 97,8 4 5 95,1
wine 178 13 95,5 5 97,6 2 4 95,2
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4.2 Visualization

While WRDA appear to be efficient in the context of nearest-neighbour classification, its interest for
visualization is to be show, as far as it introduces a bias in distance amongst objects. In order to show
that WRDA might be anyway of interest considering visualization, we present a sample visualization of
(small) soybean data set with PCA (fig. 6) and WRDA with σ = 2 (fig. 7). This data set consists of only
47 objects defined over 4 dimensions, and was thus easy to visualize in a small screen-shot. To distinguish
objects among classes we use a different shape for each class.

PCA produces three groups. Two classes are clearly separated, the last two being more mixed. With
WRDA the four classes are clearly separated. We can notice that WRDA clearly separate classes for
1 ≤ σ ≤ 3, but complementary visualizations show that with higher values of σ, discrimination keep
on growing, thus offering a slight side-effect: the axis that moves away the objects of the nearby classes
becomes more and more significant, this stretching tending to visually move the two other classes closer.

Figure 6: PCA for soybean (small) Figure 7: WRDA for soybean (small), σ = 2

5 Conclusion and future works

In this paper we have proposed a dimensionality reduction technique called weighted r-discriminant
analysis, based on the maximization of inter-class distances. We have highlighted the relevance of this
approach and of the weighting method we introduce to favour local organization of close objects that
belong to different classes.
The tests we conducted have shown that WRDA does in many case improve results compared to a nearest
neighbour search within the original representation space, in terms of the maximum correct classification
rate and/or the number of dimensions used to reach this best rate. WRDA can also raise the quality of
a spatial (2 or 3-D) visualization of objects compared to PCA.

In a classification framework, using WRDA supposes that two parameters are defined : the weighting
coefficient and the number of dimensions aimed at. In this paper we studied, through several tests, the
performance of WRDA when these parameters vary. Future work will consist in proposing strategies to
estimate satisfying values for both of them, depending on the data set considered. This estimation could
be based on the study of the eigenvalues associated with the most discriminant dimensions, using only
the most significant ones (in many cases, the very first eigenvalues handle most of the variance).

¿From another point of view, as WRDA tends to render local organization of objects, one can wonder
if a global maximization, even weighted, is still of interest. We could thus explore and propose local
sets of dimensions depending on the space region observed. This would suggest three directions of study
: first splitting space into areas (automatically, and/or manually), then searching the (locally) most
discriminant dimensions, and last proposing and developing appropriated visualization tools.
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