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Abstract

A linear forest is a graph in which each connected component is a

chordless path. A linear partition of a graph G is a partition of its edge

set into linear forests and la(G) is the minimum number of linear forests

in a linear partition. When each path has length at most k a linear forest

is a linear k-forest and lak(G) will denote the minimum number of linear

k-forests partitioning E(G). We clearly have lan−1(G) = la(G).
In this paper we consider linear partitions of cubic simple graphs for

which it is well known that la(G) = 2. We give a survey of already known

results with new ones and new conjectures.

1 Introduction.

For any undirected graph G, we denote by V (G) the set of its vertices and by
E(G) the set of its edges. The number of vertices of G, |V(G)|, is denoted by
n and the number of edges of G, |E(G)|, is denoted by m. If F ⊆ E(G) then
V (F ) is the set of vertices which are incident to some edges of F . For any path
P we shall denote by l(P ) the length of P , that is to say the number of its
edges. A vertex of degree one of a path P is said to be an end vertex, and a
vertex of degree two is said to be an internal vertex. If u and v are vertices
of a path P then P [u, v] denotes the subpath of P end vertices of which are u
and v. A strong matching C in a graph G is a matching C such that there is
no edge of E(G) connecting any two edges of C, or, equivalently, such that C
is the edge-set of the subgraph of G induced by the vertex-set V (C).
A linear k-forest is a graph in which each component is a chordless path of length
at most k. The linear k-arboricity of an undirected graph G is defined in [18] as
the minimum number of linear k-forests needed to partition the set E(G). The
linear k-arboricity is a natural refinement of the linear arboricity introduced by
Harary [20] (corresponding to linear-(n−1)-arboricity). The linear k-arboricity
will be denoted by lak(G).

2



Let χ
′

(G) be the classical chromatic index and let la(G) be the linear arboricity
of G. We clearly have:

la(G) = lan−1(G) ≤ lan−2(G) ≤ ... ≤ la2(G) ≤ la1(G) = χ
′

(G)

We know by Vizing’s Theorem [29] that la1(G) ≤ ∆(G)+1 ( where ∆(G) is the
maximum degree of G). In [5] it is shown that for any k ≥ 2, lak(G) ≤ ∆(G).
In an obvious way, for any k ≥ 2 we have lak(G) ≥ ⌈∆(G)

2 ⌉.
If {L1, · · · , Lp} is a partition of E(G) in p linear k-forests, and if for any j ∈
{1, · · · , p} , ω(Lj) denotes the number of maximal paths (or components) of Lj,
we have | V (Lj) | ≤ (k + 1)ω(Lj), | E(Lj) | = | V (Lj) | − ω(Lj). Then for any
j ∈ {1, · · · , p} | E(Lj) | ≤

k|V (Lj)|
k+1 ≤ kn

k+1 .
Thus m = | E(G) | = | E(L1) | + · · ·+ | E(Lp) | ≤ p kn

k+1 . By choosing

p = lak(G) we obtain lak(G) ≥ max(⌈∆(G)
2 ⌉, ⌈m(k+1)

kn
⌉) (see also Proposition 3

in [19]).
In this paper we consider cubic graphs, that is to say finite simple 3-regular
graphs. Since in a cubic graph 3n = 2m, the previous formula becomes (Prop.
2 in [5]):

lak(G) ≥ max(2, ⌈
3(k + 1)

2k
⌉)

It was shown by Akiyama, Exoo and Harary [1] that lan−1(G) = 2 when G is
cubic. A natural question ([5]) is the following : what is the smallest integer i,
with 2 ≤ i ≤ n− 1, such that lai(G) = 2? If K4 denotes the complete graph on
4 vertices then clearly la1(K4) = la2(K4) = 3 and la3(K4) = 2. We know that
there exist two distinct cubic graphs on 6 vertices: PR3 (two disjoint triangles
connected by a matching) and K3,3 (the complete bipartite balanced graph on
6 vertices), and it is easy to see that la3(PR3) = 3, la3(K3,3) = 3, la5(PR3) = 2
and la5(K3,3) = 2. In [5] Bermond et al. conjectured that la5(G) = 2. Jackson
and Wormald [24] proved a weaker version with k = 18 instead of 5. Aldred
and Wormald [3] proved that 18 can be replaced by 9. Finally, Thomassen [28]
proved the conjecture, which is best possible since, in view of la4(K3,3) = 3 and
la4(PR3) = 3, 5 cannot be replaced by 4.

A partition of E(G) into two linear forests LB and LR will be called a linear
partition and we shall denote this linear partition L = (LB, LR) . We shall say
that every path of LB and every path of LR is an unicoloured path (for instance,
a Blue path or a Red path). For c ∈ {B, R} , we shall denote by E(Lc) the set of
edges of Lc and by l(Lc) the length of a longest path in Lc. For c ∈ {B, R} let
ω(Lc) be the number of maximal paths (or components) of Lc and we remark
that ω(Lc) = |V (G)| − |E(Lc)|. Since every vertex of G is either end vertex of
a maximal path of LB or end vertex of a maximal path of LR, we have

ω(LB) + ω(LR) =
|V (G)|

2
.

An odd linear forest is a linear forest each of whose components are paths of
odd length. An odd linear partition is a partition of E(G) into two odd linear
forests. A semi-odd linear partition is a linear partition L = LB ∪LR such that
LB or LR is an odd linear forest.

3



We shall give some complementary results on linear arboricity of cubic graphs
and some new results concerning various problems.

2 Jaeger’s graphs

A special class of cubic graphs will be considered ( Jaeger’s graphs in the sequel)
and we shall see that these graphs have nice properties leading to new questions
(to be developed into forthcoming sections) for the whole set of cubic simple
graphs.

2.1 Matchings and transversals of the odd cycles

In [10] Erdős showed how to obtain a large spanning bipartite subgraph of a
given simple graph.

Theorem 2.1 Let G be a simple graph then there is a spanning bipartite sub-
graph H such that, for every vertex v the degree dH(v) of v in H verifies

dH(v) ≥ ⌈dG(v)
2 ⌉.

By Theorem 2.1, in every cubic graph there is a bipartite spanning subgraph of
minimum degree at least 2. This yields the following corollary.

Corollary 2.2 Let G be a cubic graph, then there is a matching M which is a
transversal of the odd cycles.

Assume that G is a cubic graph and let M be a matching transversal of the odd
cycles. Since G \ M is bipartite, we can colour V (G) in two colours Blue and
Red accordingly to the bipartition of G \M . Let MB (respectively MR) be the
set of edges of M such that their two end vertices are Blue vertices (respectively
Red vertices). An edge of E(G) is said to be mixed when one end is Blue while
the other is Red. Hence, the edges of G \ M are mixed while M is partitioned
into three sets (some of them, possibly empty)

M = MB + MR + M ′

where M ′ is the subset of mixed edges of M . Note that MB and MR induce
strong matchings in G.

Theorem 2.3 A cubic graph is 3-edge colourable if and only if there is a par-
tition of its vertex set into two sets, Blue and Red and a perfect matching M
such that every edge in G − M is mixed.

Proof Let G be a cubic 3-edge colourable graph. Any colour of a 3-edge
colouring of G induces a perfect matching M , and the two others colours induce
a graph in which each component is an even cycle. Let us colour the vertices
of these cycles in Blue and Red alternately. Hence every edge lying on these
cycles is mixed.
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Conversely, assume that G has a perfect matching M and a partition of its
vertex set into Blue and Red such that every edge in G − M is mixed. Let us
consider the 2-factor of G obtained by deleting M . Since every edge outside M
is mixed, this 2-factor is even, which means that G is 3-edge colourable. �

Remark 2.4 Under conditions of theorem 2.3 we certainly have the same num-
ber of Blue vertices and Red vertices, since every edge of the 2-factor G − M
is mixed. When considering M = MB + MR + M ′ we have |MB| = |MR| since
every mixed edge of M uses a vertex in each colour.

2.2 Definitions

Definition 2.5 Let G be a cubic 3-edge colourable graph with a perfect match-
ing M given as in Theorem 2.3 by a 3-edge colouring. We shall say that a
partition of M in MB + MR + M ′ is an associated partition.

Definition 2.6 A cubic graph G is a Jaeger’s graph if G contains a perfect
matching union of two disjoint strong matchings. A perfect matching which is
union of two disjoint strong matchings is said to be a Jaeger’s matching.

Assume that G is a Jaeger’s graph and let MB and MR be the two strong
matchings which partitions a perfect matching M of G. Let us colour with
Blue the vertices which are end vertices of edges in MB and Red those which
are end vertices of edges in MR. Since MB and MR are strong matchings
the remaining edges are mixed. Hence G is 3-edge colourable and, as pointed
out in remark 2.4, we have |MB| = |MR| = |M |/2. The associated partition
M = MB + MR + M ′ is such that M ′ is empty.
In his thesis [23] Jaeger called these cubic graphs equitable and pointed out that
the above 2-colouring of their vertices leads to a balanced colouring as defined
by Bondy [7].

2.3 Towards a linear partition

Assume that we are given a cubic 3-edge colourable graph together with an
associated partition M = MB +MR +M ′. Let us fix an arbitrary orientation to
the cycles of G\M . To each vertex v of V (G) we can associate an edge o(v) of
E(G)\M such that v is the origin of o(v) with respect to the chosen orientation
of the cycle through v. It will be convenient to denote by s(v) (successor of v)
the end of o(v) in that orientation and by p(v) its predecessor. We can colour
o(v) in Blue or Red accordingly to the colour of v. MB being coloured with
Blue and MR with Red, we get hence a larger set CLB of edges coloured with
Blue (and a set CLR of edges coloured with Red). CLB and CLR are linear-
forests where each maximal unicoloured path has length 1 or 3. Moreover each
edge of MB ∪ MR is the central edge of a path of length 3. At this point, the
only edges which are not coloured are the edges of M ′ and we do not know how
we can affect these edges in CLB or CLR in order to get a linear partition of
E(G). We shall see in Theorems 2.8 and 2.9 that this can be done for particular
cases.
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Definition 2.7 We shall refer to the above construction of CLB and CLR when
an associated partition is given as the associated linear construction.

Theorem 2.8 [5] A cubic graph G has a linear partition L = (LB, LR) such
that each path has length at most 3 if and only if G is a Jaeger’s graph .

Proof : Suppose that G has a linear partition L = (LB, LR) with maximum
lengths l(LB) ≤ 3 and l(LR) ≤ 3 . Since ω(LB) + ω(LR) = |V (G)|

2 , and
|E(G)| = 3 |V (G)|

2 each path in LB and LR have length exactly 3. Let CB

(respectively CR) be the set of the middle edges of the paths of LB (respectively
LR). It is an easy task to check that CB and CR are strong matchings and
|CB | = |CR|. Moreover M = CB ∪CR is a perfect matching and G is a Jaeger’s
graph .
Conversely, let us suppose that G is a Jaeger’s graph and let M = MB + MR

be an associated partition. Since M ′ is empty, in using the associated linear
construction above, we have coloured every edge of G and each unicoloured path
has length 3. �

Theorem 2.9 Let G be cubic 3-edge colourable graph and an associated par-
tition MB + MR + M ′. Assume that M ′ can be partitioned into two strong
matchings M ′

B and M ′
R. Then there is an odd linear partition of E(G) every

maximal path of which has length 1, 3, 5 or 7.

Proof : Let CLB and CLR be the linear-forests of the associated linear
construction. Recall that each maximal path of CLB (respectively CLR) has
length 1 or 3 and is unicoloured with Blue (respectively unicoloured with Red).
Let LB = CLB ∪ M ′

B and LR = CLR ∪ M ′
R, in addition M = MB + MR + M ′

and B denotes the set of Blue vertices of G and R its set of Red vertices.
We now prove that the components of LB and LR are odd paths of length at
most 7. We only have to consider components that contain an edge of M ′.
Without loss of generality, let C be a component of LB which contains an edge
of M ′

B.

Claim Let br be an edge of M ′
B such that b ∈ B ∩ C and r ∈ R ∩ C and let

r′ = s(b). Then the unique neighbour of r′ in C is b.

Proof of Claim Since G\M contains only mixed edges r′ is a Red vertex.
Observe that o(r′) is a Red edge while the edge of M incident to r′ in G, say
e, cannot belong to M ′

B since M ′
B is a strong matching. Moreover, e having a

Red end must belong either to MR or to M ′
R, consequently e belongs to LR.

Thus, among the three edges incident to r′, only o(b) belongs to C and the
result follows. �

Let b1r1 be an edge of C ∩ M ′
B (b1 ∈ B, r1 ∈ R). Let us set r2 = s(b1). We

know by the above Claim that r2 is a pendant vertex in C.
Let b2 = p(r1) and r3 = p(b2), obviously b2 ∈ B, r3 ∈ R, b2r1 is a Blue edge
and r3b2 is a Red one. Consider in G the edge of M incident to b2, say e. M ′

B

being a strong matching, the edge e cannot belong to M ′
B. Moreover, the edge

e has a Blue end, namely b2, and thus cannot belong to MR. If e belongs to
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M ′
R we are done since e is a Red edge and the component C is reduced to the

path of length 3 r2b1r1b2.
Assume in the following that e belongs to MB. From now on e will be denoted
b2b3 (b3 ∈ B) and s(b3) will be denoted r4, we have r4 ∈ R. Let e′ be the edge
of M incident to r4 in. Since r4 is a Red end of e′, e′ cannot belong to MB. If
e′ is a member of MR ∪ M ′

R we are done since e′ and o(r4) both belong to LR

and C is reduced to a path of length 5, namely r2b1r1b2b3r4.
Suppose now that e′ ∈ M ′

B. Let us denote e′ as r4b4 (b4 ∈ B) and s(b4) as r5.
But now, by the above Claim b4 is the unique neighbour of r5 in C and thus
C = {r2, b1, r1, b2, b3, r4, b4, r5} induces a path of length 7. �

2.4 Some classes of Jaeger’s graphs.

We can construct a Jaeger’s graph starting from any cubic 3-edge colourable
graph. Indeed, consider a perfect matching M of G together with a bipartition
of its vertex set in Blue and Red induced by a 3-edge colouring of G given by
Theorem 2.3. If there are no mixed edge, we are done since G itself is a Jaeger’s
graph. Otherwise for any mixed edge apply the transformation depicted in
figure 1 on the Blue vertices. Every such Blue vertex is transformed into a new
triangle containing a new Blue edge while the mixed edge is transformed into
a Red edge. The resulting graph is a Jaeger’s graph .

Red edge

Mixed edge

Blue vertex

Red vertex

Blue edge

Figure 1: Triangle Extension

Let us recall that the distance d(u, v) between two vertices u and v in a connected
graph G is the length of a shortest path joining them. The square G2 of a graph
G has V (G2) = V (G) with u, v adjacent in G2 whenever the distance d(u, v) in
G is at most 2.

Proposition 2.10 [5] If G is a cubic graph such that G2 is 4-chromatic then
G is a Jaeger’s graph .

A cubic planar graph is a multi-k-gon [13] (with 3 ≤ k ≤ 5) if all of its faces
have length multiple of k.

Proposition 2.11 [5] If G is a multi-k-gon with k = 3, 4 then G is a Jaeger’s
graph .

Proof This result is a consequence of Proposition 2.10, since Jaeger [23] has
shown that a multi-k-gon G with k = 3, 4 has a square G2 which is 4-chromatic.
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When G is a cubic graph having a 2-factor of C4’s, say F , we consider the
auxiliary graph G′ defined as follows : every C4 of F is replaced with its com-
plementary graph which is a 2K2 ; G′ is a two regular graph in which connected
components are cycles.

Theorem 2.12 Let G be a connected cubic graph having a 2-factor of squares,
say F and let p be the number of cycles of G′. Then there are 2p−1 Jaeger’s
matchings which intersect F .

Proof We first prove that there are at most two types of Jaeger’s matchings
in G.

Claim Let M = MB ∪ MR be a Jaeger’s matching of G, if M intersects F
then every C4 of F contains an edge of MB and an edge of MR.

Proof of Claim Recall that MB and MR are strong matchings. Without loss
of generality we may assume that there is some edge say ab of some C4 in F ,
say abcd which belongs to MB. Since M is a perfect matching and MB is a
strong matching the vertices c and d must be the endpoint of some edge(s) of
MR. Since MR is a strong matching we have cd ∈ MR. Let a′b′c′d′ be another
C4 of F which is connected to abcd by some edge say aa′. The edge aa′ is not
an edge of M (M is a matching), since a′ must be an endpoint of an edge of
MR, MR intersects a′b′c′d′. Consequently, G being connected we have that MB

and MR intersect all cycles of F . �

It follows that a Jaeger’s matching of G is either contained into F or disjoint
from F .
We now establish a correspondence between the orientations of the cycles of G′

and the Jaeger’s matchings of G which intersect F .
Let us give an orientation of the cycles of G′. Going back now to G, each C4 of
F has an edge connected to two out-going edges and an edge connected to two
in-going edges. Let MB be the set of edges connected to two out-going edges
over all the C4’s of F while MR contains the edges connected to two in-going
edges. It’s an easy task to check that MB ∪ MR is a Jaeger’s matching of G.
Conversely let us consider a Jaeger’s matching M = MB ∪ MR of G which
intersects F . We know by the claim given above that each C4 of F contains
an edge of MB and an edge of MR. For any C4 of F and for any vertex v of
this C4 we denote ev the edge of E(G)\E(F) that is adjacent to v. We know
that v is an endpoint of an edge in MB or in MR. We give an orientation to
the edge ev in such a way that ev is an out-going edge (that is v is the origin)
if and only if v is endpoint of an edge of MB. Since every edge of E(G)\E(F)
is connected to two C4’s of F those edges are oriented twice ; more precisely :
when aa′ is an edge connecting two cycles of F , say abcd and a′b′c′d′, if aa′ = ea

is an out-going edge for the cycle abcd then aa′ = ea′ must be an in-going edge
for a′b′c′d′ for otherwise MB would no be a strong matching. Consequently the
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given orientation of all edges ev (v ∈ V (G)) extends to an orientation of the
cycles of G′.

We have 2p possible orientations of the cycles of G′. A given orientation of
each cycle of G′ and the opposite orientations of these cycles yield to the same
partition of M , consequently, there are 2p−1 Jaeger’s matchings intersecting the
2-factor F of G. This finishes the proof. �

By Theorem 2.12 every cubic graph having a 2-factor of squares has at least
one Jaeger’s matching. Hence we conclude this subsection with the following
corollary.

Corollary 2.13 A cubic graph having a 2-factor of squares is a Jaeger’s graph.

Furthermore, we can derive from Theorem 2.12 a simple linear time algorithm
for finding a Jaeger’s matching in a connected cubic graph which have a 2-factor
of squares.

It can be noticed that every cubic graph with a perfect matching M can be
transformed into a Jaeger’s graph by using the transformation (square exten-
sion) depicted in figure 2 on each edge of M . Indeed, the resulting graph has a
2-factor of squares and we can apply Theorem 2.12

Figure 2: Square Extension

2.5 Construction

Let G be a Jaeger’s graph and let L = (LB, LR) be a linear partition every path
of which has length 3. Assume that U = {a, b, c, d} is a set of 4 vertices such
that a and d are internal vertices in LB while b and c are internal vertices in
LR.
Let us consider the linear forest LR and the edges of LR incident to the vertices
of U = {a, b, c, d}. We notice that, without loss of generality, there are six
distinct cases (by exchanging the role of a for that of d or/and the role of b for
that of c). See figure 3.

b

a a a a a a

b b b b b

c c c c c c

d d d d d d

Figure 3: Six distinct cases
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Analogous situations appear for the linear forest LB (by exchanging {a, d} for
{b, c}).

Definition 2.14 Let G be a Jaeger’s graph and let L = (LB, LR) be a linear
partition every path of which has length 3. Assume that U = {a, b, c, d} is a
set of 4 vertices such that a and d are internal vertices in LB while b and c
are internal vertices in LR. A (L, U)-extension of G is a cubic simple graph G′

obtained from G in the following way.

1) The set U is splitted into two sets UR = {aR, bR, cR, dR} and UB =
{aB, bB, cB, dB} (that is V (G′) = V G) \ U ∪ (UR ∪ UB)).

2) For x, y ∈ V (G) \ U , if xy ∈ E(G) then xy ∈ E(G′).

3) For x ∈ V (G) \ U and y ∈ U if xy ∈ E(LB) then xyB ∈ E(G′) and if
xy ∈ E(LR) then xyR ∈ E(G′).

4) For x, y ∈ U if xy ∈ E(LB) then xByB ∈ E(G′) and if xy ∈ E(LR)
then xRyR ∈ E(G′).

5) The remaining edges of G′ are the edges of two paths of length 3 on
the sets UR and UB, respectively, such that the obtained graph G′ is cubic
(see figures 4 and 5).

a a a a a

b

a

b

c

d

c

b

d

b

d d

b

c c c

c

dd

R

R

R R R R R R

R

R

RR

RR

R

RRR

R

R

R

R

R
b

R

Figure 4: Addition of a path of length 3 on UR

L RL B

b

a

c

d

G G’

aR

bR

c R

dR

b

c

d
B

B

B

aB

Figure 5: Example of (L, U)-extension
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It is clear that the added path on UR (respectively UB) can be added to LB

(respectively LR) in order to obtain a linear partition of G′ each path of which
has length 3.

Note that the graph G′ is not uniquely defined, namely if the subgraph induced
on U in LR (respectively, in LB) is a stable set or has exactly one edge connecting
the vertices of degree 2 in LR (respectively, in LB).

So, by Theorem 2.8 we have the following Proposition.

Proposition 2.15 Let G be a Jaeger’s graph and let L = (LB, LR) be a linear
partition of G each path of which has length 3. Let U = {a, b, c, d} be a set of
4 vertices of G such that a and d are internal vertices in LB while b and c are
internal vertices in LR. Then any (L, U)−extension of G on U is a Jaeger’s
graph.

Definition 2.16 Let G be a Jaeger’s graph and let L = (LB, LR) be a linear
partition for which every path has length 3. Assume that P ∈ LB and Q ∈ LR

where P = {a1, b1, c1, d1} and Q = {a2, b2, c2, d2} are vertex disjoint paths in
G. A PQ-reduction of G on P and Q is a cubic simple graph G′ obtained from
G by deleting the edges of P and Q and identifying the internal vertices of P
with the end vertices of Q and the internal vertices of Q with the end vertices
of P .

Note that the PQ-reduction of G has a linear partition each path of which has
length 3. Hence we have the following.

Proposition 2.17 Let G be a Jaeger’s graph and let L = (LB, LR) be a linear
partition of G every path of which has length 3. Assume that P ∈ LB and
Q ∈ LR are vertex disjoint paths in G. Then the PQ-reduction of G on P and
Q is a Jaeger’s graph. 2

We get immediately from Propositions 2.15 and 2.17

Theorem 2.18 Every Jaeger’s graph on n ≥ 20 vertices is obtained from a
Jaeger’s graph on 16 vertices by a sequence of (L, U)−extensions.

Proof Assume that G is a Jaeger’s graph on n vertices with n ≥ 20. Let
L = (LB, LR) be a linear partition each of whose paths have length 3. Since
each path of L is incident to at most 4 distinct paths, as soon as n ≥ 20 we are
sure to find a path in P ∈ LB and a path Q ∈ LR such that V (P ) ∩ V (Q) = ∅.
By a PQ-reduction on these two paths we get a Jaeger’s graph on n−4 vertices
(Proposition 2.17). The proof is complete. �

3 Paths of length 3 in linear partitions.

In this section, we will develop some results about connection between linear
partition and paths of length 3. In particular, we shall see that the unicoloured
paths of length 3 play a special and important role.
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Let G be a cubic graph with |V (G)| = n ≥ 4 vertices and let L = (LB, LR) be
a linear partition of E(G).

Definition 3.1 For c ∈ {B, R} , let µ(Lc) be the mean length of the paths of
Lc, that is µ(Lc) = |E(Lc)|

ω(Lc)
.

Lemma 3.2 Let L = (LB, LR) be a linear partition of a cubic graph G. Then

µ(LB) =
|E(LB)|

n − |E(LB)|
=

n − ω(LB)

ω(LB)
=

2 ω(LR) + ω(LB)

ω(LB)

and

µ(LR) =
|E(LR)|

n − |E(LR)|
=

n − ω(LR)

ω(LR)
=

2 ω(LB) + ω(LR)

ω(LR)

Moreover, the following five conditions are equivalent:
a) ω(LB) = ω(LR)
b) |E(LB)| = |E(LR)|
c) µ(LB) = µ(LR)
d) µ(LB) = 3
e) µ(LR) = 3

Any of these five conditions implies n ≡ 0 (mod 4).

Proof : Let c ∈ {B, R}. Since Lc is a spanning linear forest of G, we have

n − |E(Lc)| = ω(Lc) (1)

We also know that ω(LB) + ω(LR) = n
2 . Hence

µ(Lc) =
|E(Lc)|

n − |E(Lc)|
=

n − ω(Lc)

ω(Lc)
(2)

and, by consequence,

µ(LB) =
2 ω(LR) + ω(LB)

ω(LB)
and µ(LR) =

2 ω(LB) + ω(LR)

ω(LR)
(3)

Using the equations (1) and (2) it is easy to see that conditions a), b) and c)
are equivalent. Moreover, if ω(LB) = ω(LR) then, by (3), we have ω(Lc) = 3.
If µ(LB) = 3 (or µ(LR) = 3) then (3) implies easily ω(LB) = ω(LR). Hence d)
and a) are equivalent.

By (2), µ(Lc) = 3 implies n = 4 ω(Lc) ≡ 0 (mod 4). This completes the
proof of Lemma 3.2. �

Lemma 3.3 Let L = (LB, LR) be a linear partition of a cubic graph G. Then

| ω(LB) − ω(LR) | ≡
n

2
(mod 2)
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Proof : For every pair {a, b} of integers, it is easy to see that |a − b| ≡
(a + b)(mod 2). Since ω(LB) + ω(LR) = n

2 , we have | ω(LB) − ω(LR) | ≡
n
2 (mod 2). �

We recall that for c ∈ {B, R} , l(Lc) is the length of a longest path in Lc.

Theorem 3.4 Let L = (LB, LR) be a linear partition of a cubic graph G. If
l(LB) ≤ 3 then ω(LB) ≥ ω(LR). Moreover, if l(F ) = max(l(LB), l(LR)) is at
most 3 then ω(LB) = ω(LR) (therefore n ≡ 0 (mod 4) ) and for c ∈ B, R,
every maximal path in Lc has length 3 (that is G is Jaeger’s graph ).

Proof : By Lemma 3.2 we have µ(LB) = 2 ω(LR)+ω(LB)
ω(LB) . If l(LB) ≤ 3 then

µ(LB) ≤ 3. Thus 2 ω(LR)+ω(LB)
ω(LB) ≤ 3 and we obtain ω(LB) ≥ ω(LR).

If max(l(LB), l(LR)) ≤ 3 then ω(LB) ≥ ω(LR) and ω(LR) ≥ ω(LB), that is
ω(LB) = ω(LR). By Lemma 3.2 we have n ≡ 0 (mod 4) and µ(LB) = µ(LR) =
3. Every unicoloured path P of (LB, LR) has length l(P ) ≤ 3 (by hypothesis).
Thus, if there exists a path P0 in LB (respectively LR) such that l(P0) < 3 then
we have µ(LB) < 3 (respectively µ(LR) < 3), a contradiction. Hence, every
unicoloured path P of (LB, LR) has length exactly 3. �

Proposition 3.5 Let L = (LB, LR) be a linear partition of a cubic graph G
such that ω(LB) < ω(LR). Then there exists a linear partition (L′

B, L′
R) of G

such that ω(L′
B) = ω(LB) + 1 and ω(L′

R) = ω(LR) − 1.

Proof By Lemma 3.2 we have µ(LB) > 3. Then there exists a path P =
a0a1...ak in LB of length k ≥ 4. For every i, with 1 ≤ i ≤ k − 1, ai is an end
vertex of a path in LR. Since k ≥ 4, there exists i, with 1 ≤ i ≤ k−1, such that
ai and ai+1 are end vertices of two distinct paths Q1 and Q2 in LR. Let us
consider the edge aiai+1. Let L′

B = LB \ {aiai+1} and L′
R = LR ∪ {aiai+1}.

Then P is broken into two paths P [a0, ai] and P [ai+1, ak], and the paths Q1

and Q2 are connected by the edge aiai+1. Clearly (L′
B, L′

R) is a linear partition
such that ω(L′

B) = ω(LB) + 1 and ω(L′
R) = ω(LR) − 1. �

Proposition 3.6 Let L = (LB, LR) be a linear partition of a cubic graph G
such that ω(LB) ≥ ω(LR). Let α = ω(LB) − ω(LR). For c ∈ {B, R} and
j ∈ {1, n − 1} let nj

c be the number of paths of length j in Lc. Then

n−1
∑

j=1

(j − 3)nj
B = −2 α and

n−1
∑

j=1

(j − 3)nj
R = 2 α .

Moreover, l(LB) ≤ n
2 − α + 1 and l(LR) ≤ n

2 + α + 1 .

Proof By Lemma 3.2, µ(LB) = 2 ω(LR)+ω(LB)
ω(LB) and µ(LR) = 2 ω(LB)+ω(LR)

ω(LR) .
Then,

µ(LB) = 3 −
2 α

ω(LB)
and µ(LR) = 3 +

2 α

ω(LR)
.
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For c ∈ {B, R},
n−1
∑

j=1

jnj
c = |E(Lc)| = ω(Lc)µ(Lc) .

Thus,

n−1
∑

j=1

jnj
B = 3 ω(LB) − 2 α and

n−1
∑

j=1

jnj
R = 3 ω(LR) + 2 α

Since for c ∈ {B, R}
n−1
∑

j=1

nj
c = ω(Lc),

we have

n−1
∑

j=1

(j − 3)nj
B = −2 α and

n−1
∑

j=1

(j − 3)nj
R = 2 α .

Then,

2n1
B + n2

B = 2 α +

n−1
∑

j=4

(j − 3)nj
B

and

2n1
R + n2

R = −2 α +

n−1
∑

j=4

(j − 3)nj
R .

Set k = n
2 . Since ω(LB) + ω(LR) = k and ω(LB) − ω(LR) = α, we

have ω(LB) = k+α
2 and ω(LR) = k−α

2 . Let us suppose that for a given
j, with 4 ≤ j ≤ n − 1, nB

j ≥ 1. Then, 2n1
B + n2

B ≥ 2 α + (j − 3).

Since n1
B + n2

B < ω(LB), we have n1
B > 2 α + j − 3 − (k+α)

2 . Thus,
2 α + j − 3 − (k+α)

2 < n1
B < ω(LB) = k+α

2 . Then, j < k − α + 2 .
We have proved that if j ≥ k − α + 2 then there is no path of length j in
LB, that is to say l(LB) ≤ k − α + 1. Analogously, if for a given j, with
4 ≤ j ≤ n−1, nR

j ≥ 1 we can prove that j < k+α+2 and l(LR) ≤ k+α+1. �

Now, let us recall a result of Aldred, Jackson, Lou and Saito:

Theorem 3.7 [2] Every cubic graph G has a linear partition L = (LB, LR) such
that

(1) ω(LB) = ω(LR) if and only if n ≡ 0 (mod 4)
(2) ω(LB) = ω(LR) + 1 if and only if n ≡ 2 (mod 4)

Proof : Let L = (LB, LR) be a linear partition of G. We know that ω(LB) +
ω(LR) = n

2 . By Lemma 3.3, | ω(LB) − ω(LR) | ≡ α (mod 2) with

α =

{

0 if n ≡ 0 (mod 4)
1 if n ≡ 2 (mod 4)
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Without loss of generality, suppose that ω(LB) < ω(LR). Then ω(LR) −
ω(LB) = α + 2 r with r ≥ 0. If r = 0 then the theorem follows. Suppose
that r ≥ 1. Let (L′

B, L′
R) be a linear partition obtained by the effective pro-

cedure given in the proof of Proposition 3.5. We have ω(L′
B) = ω(LB) + 1

and ω(L′
R) = ω(LR) − 1. Hence ω(L′

R) − ω(L′
B) = α + 2(r − 1). Then, by

induction and Proposition 3.5, we obtain a sequence {(LB
(j), LR

(j))}1≤j≤r of

linear partitions of G with Lc
(1) = L′

c and such that for any integer j in {1, r},
ω(LR

(j))−ω(LB
(j)) = α+2(r− j). Therefore ω(LR

(r))−ω(LB
(r)) = α and

the theorem follows. �

4 Semi-odd and odd linear partitions

There are relationships between semi-odd linear partitions and perfect match-
ings, and between odd linear partitions and 3-edge colourability.

4.1 Semi-odd linear partitions and perfect matchings

Recall that a semi-odd linear partition is a linear partition where at least one
forest is odd.

Theorem 4.1 [16] Let G be a cubic graph having a perfect matching M . Then
there exists a set F ⊆ E(G) − M intersecting each cycle of the 2-factor G − M
such that F + M is an odd linear forest.

Theorem 4.2 [16] A cubic graph has a perfect matching if and only if it has a
semi-odd linear partition.

For any cubic graph G having a perfect matching we denote by ρ(G) the mini-
mum number of even maximal paths appearing in a semi-odd linear partition.
If ρ(L) denotes the number of even maximal paths of a semi-odd linear partition
L = (LB, LR) , then ρ(G) = Min{ρ(L)|L is a semi − odd linear partition of G}.
For any cubic graph G having a 2-factor we denote by o(G) the minimum num-

ber of odd cycles appearing in a 2-factor of G (we note that o(G) is an even
number).

Theorem 4.3 [16] Let G be a cubic graph having a 2-factor (or, equivalently,
a perfect matching M). Then ρ(G) = o(G).

Corollary 4.4 (see [3]) Let G be a cubic graph having a perfect matching.
Then the follwing properties are equivalent:

1. ρ(G) = 0

2. G is 3-edge colourable (that is χ′(G) = 3).

3. G can be factored into two odd linear forests
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4.2 Odd linear partitions and 3-edge colourability

Let G be a cubic graph. Assume that L = (LB, LR) is a linear partition of its
edge set. By colouring alternately the edges of the maximal paths in LB with
α and γ and those of LR with β and δ, we get a 4-edge colouring. Aldred and
Wormald proved :

Theorem 4.5 [3] Let G be a cubic graph. Then G can be factored into two odd
linear forests if and only if χ′(G) = 3.

Assume that G is a cubic 3-edge colourable graph and consider a 3-edge colour-
ing of G. Let α and β be any two distinct colours. The subset of E(G) coloured
with α or with β induces an even 2-factor (spanning subgraph components of
which are even cycles). In the following the 2-factor induced by any two dis-
tinct colours α and β will be denoted by Φ(α, β). Any cycle of Φ(α, β) is said
to be an αβ-cycle. Since any edge of a 3-edge colourable cubic graph belongs to
a 2-factor, it is clear that the connected components of G induce 2-connected
subgraphs.

Definition 4.6 Let α and β be any two distinct colours of E(G). In the follow-
ing SMG(α, β) will denote a strong matching of G intersecting every αβ-cycle
(when such a strong matching exists).

Theorem 4.7 [16] Let G be a 3-edge coloured cubic graph and let α and β be any
two distinct colours of E(G). Then there exists a strong matching SMG(α, β)
intersecting every cycle of Φ(α, β).

Corollary 4.8 [16] Let G be a cubic graph. Then G can be factored into two
odd linear forests L = (LB, LR) such that

i) Each path in LB has odd length at most 3

ii) Each path in LR has odd length at least 3.

if and only if G is 3-edge colourable.

Proof Assume that G has an odd linear partition L = (LB, LR) with these
properties. As in Theorem 4.5 we get immediately a 3-edge colouring.
Conversely, let us consider a 3-edge colouring of G. Let α and β be any two
distinct colours of E(G) and let γ be the third colour. Let Mγ be the perfect
matching of the γ-coloured edges. Let SMG(α, β) be a minimal strong matching
intersecting each cycle of Φ(α, β). Then, LB = Mγ + SMG(α, β) is a set of odd
paths of length at most 3, while LR = Φ(α, β) \ SMG(α, β) is a set of odd
paths of length at least 3 (recall that, G being simple, every bicoloured cycle
has length at least 4). Hence, (LB, LR) is an odd linear partition satisfying our
conditions.

�

We derive from Theorem 4.7 a result on unicoloured transversals of the 2-factors
induced by any 3 edge-colouring of cubic graph with chromatic index 3.
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Theorem 4.9 [16] Let G be a cubic 3-edge colourable graph and let Φ be a
3-edge colouring of G. Let α and β be any two distinct colours of Φ and let γ be
the third colour. Then there exists a set Fα of α-edges intersecting every cycle
of Φ(α, β) such that the set Fα together with the γ-edges has no cycle.

Remark 4.10 It is possible to derive a linear time algorithm for the construc-
tion of the unicoloured transversal Fα of Theorem 4.9 once a 3-edge colouring
and the strong matching described in Theorem 4.7 are given (see [16]).

4.3 Open problems

In the introduction of this paper we recalled that for any cubic graph G,
la1(G) = 3 or 4, la2(G) = 3, for k ∈ {3, 4} 2 ≤ lak(G) ≤ 3 and (by Thomassen
[28]) for k ∈ [5, n − 1] lak(G) = la(G) = 2.

Thomassen’s result is the best possible since, in view of la4(K3,3) = 3 and
la4(PR3) = 3, 5 cannot be replaced by 4. As far as it is known, these two
graphs are the only exceptions and it could be true that la4(G) = 4 with the
exception of K3,3 and PR3. Jackson and Wormald ([24]) propose thus as an
open problem:

Problem 4.11 Is it true that if G is a cubic simple graph with at least 8 vertices
then la4(G) = 2?

The answer to this problem when considering even the restricted class of planar
cubic graph could be of some interest.

In Theorem 2.9 we have seen a class of cubic 3-edge colourable graphs, containing
Jaeger’s graphs, where each graph can be provided with an odd linear partition
(into two forests) where each path has length at most 7. Aldred and Wormald
[3] proved that any cubic 3-edge colourable graph has a linear partition (not
necessarily odd) each of whose paths have length at most 7. Since we know, by
Thomassen’s result [28], that any cubic graph has a linear partition in which
every path has length at most 5, we propose as an open problem to find an
analogous universal bound for odd linear partition in cubic 3-edge colourable
graphs.

Problem 4.12 Is it true that if G is a cubic 3-edge colourable graph then
there is an odd linear partition in which every path has length at most 5?

5 On isomorphic linear partitions

For any cubic graph on n ≡ 0 (mod 4) vertices, we have seen in Theorem
3.7 that we can find a linear partition where ω(LB) = ω(LR). Moreover, by
Proposition 3.6, we can say that, from a statistical point of view, these two
linear forests are identical. In fact, a conjecture of Wormald [30] goes further in
that direction.

Conjecture 5.1 [30] Let G be a cubic graph with |E(G)| ≡ 0 (mod 2) (or
equivalently |V (G)| ≡ 0 (mod 4)). Then there exists a linear partition L =
(LB, LR) of E(G) such that LB and LR are isomorphic linear forests.

17



Remark 5.2 Theorem 2.8 implies that Conjecture 5.1 is true for Jaeger’s graphs.
Up to our knowledge, it is even the only known class with this property.

Our purpose, in that section, is to give some new results concerning this con-
jecture.

5.1 On cubic 3-edge colourable graphs

Assume that G is a cubic 3-edge colourable graph and let M = MB +MR +M ′

be an associated partition (see Definition 2.5). Let us recall that a Jaeger’s
graph has an associated partition M = MB +MR (M ′ is empty). One may ask
what happens when | M ′ | is bounded. A partial answer is given:

Theorem 5.3 [15] Let G be a cubic 3-edge colourable graph on n ≡ 0 (4)
vertices. Assume that we can find a 3-edge colouring with an associated partition
M = MB +MR +M ′ where M ′ has exactly two edges. Then there exists a linear
partition L = (LB, LR) of E(G) such that LB and LR are isomorphic linear
forests.

Definition 5.4 A linear partition L = (LB, LR) of a cubic graph G such that
LB and LR are isomorphic linear forests is said to be an isomorphic linear
partition.

We shall see now that cubic 3-edge colourable graphs with a 2−factor of triangles
can be provided with an isomorphic odd linear partition.

Theorem 5.5 [15] Let G be a cubic 3-edge colourable graph on n ≡ 0 (4)
vertices and let M = MB + MR + M ′ be an associated partition. Assume that
for any two edges e and e′ in M ′ the shortest alternating path (that is a path
v = v0v1v2 . . . v2k+1 = w such that any edge vivi+1, where i is odd, is an edge of
M) joining these two edges have length at least 5. Then G has an odd isomorphic
linear partition.

Up to our knowledge, 3-edge colourable cubic graphs with a 2−factor of triangles
are the only examples satisfying 5.5.

Corollary 5.6 [15] Let G be a cubic 3-edge colourable graph on n ≡ 0 (4)
having a 2−factor of triangles. Then G has an odd isomorphic linear partition.

Proof Assume that G is 3-edge coloured and let M = MB + MR + M ′ an
associated partition. It is an easy matter to see that each triangle contains an
edge of MB or MR while exactly one edge connecting this triangle to another
one is also in M . Hence the three edges of each triangle are affected in the
associated linear construction either to LB or to LR. The edges of M ′ are edges
connecting some triangles of our 2−factor (each triangle being incident to at
most one edge of M ′). If M ′ is empty, G is a Jaeger’s graph and we are done.
M ′ being even, let xy, x′y′ two distinct edges of M ′, we want to show that their
alternating distance is at least 5.
Assume that x is contained in the triangle xuv and y in ywt while x′ is contained
in x′u′v′ and y′ in y′w′t′. A shortest alternating path joining xy to x′y′ begins
either with xuv or xvu or ywt or else ytw. In the same way, it must ends with
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v′u′x′ or u′v′x′ or t′w′t′ or w′t′y′. Since each triangle is incident to at most one
edge of M ′, a shortest alternating path has length at least 5. The conclusion
follows from theorem 5.5. �

We have seen in Theorem 2.12 that a cubic graph G having a 2-factor of squares
is a Jaeger’s graph and, hence, can be provided with an isomorphic linear
partition. As a step towards conjecture 5.1, it could be interesting to generalize
these results when considering k−uniform 2-factors (each cycle has length k for
a fixed k ≥ 5).

5.2 Graphs with strong chromatic index 5

A strong edge colouring of a graph G is a partition of its edge set into strong
matchings. Let χS(G) (strong chromatic index) denote the minimum integer k
for which E(G) can be partitioned into k strong matchings of G. This notion
was introduced in [13] and [14] while [11] is the usual reference for the origin
of this problem. When dealing with cubic graphs, we have immediately that
χS(G) ≥ 5. We know that χS(G) ≤ 10 (see [4] and [22]) for cubic graphs
in general and χS(G) ≤ 9 (see [27]) when considering cubic bipartite graphs
(answering thus positively to conjectures appearing in [14] and [12]).
The class of cubic graphs satisfying χS(G) = 5 (as Petersen’s graph, Dodecahe-
dron and the graphs associated to C60 the molecule of the well known fulleren)
is of particular interest. A simple counting argument leads to |V (G)| ≡ 0 (10).
By the way, this implies that χS(G) ≥ 6 when |V (G)| 6≡ 0 (10) which gives us
easy counterexamples to a conjecture in [12] saying that χS(G) = 5 when G is
a cubic bipartite graph with girth sufficiently large.

We have also the following structural result:

Theorem 5.7 [14, 15] Let G be a cubic graph with χS(G) = 5. Then for every
strong 5-edge colouring of G the spanning subgraph of G obtained in considering
three any colours is union of an induced subgraph K of G made of k disjoint
K1,3 and of an induced subgraph C union of disjoint cycles without chord of
length multiple of 6. The sum of the lengths of these cycles is equal to two times
the number of pendent vertices of K, that is 6k. Moreover, for any two positive
integers p and q such that p+q = k, G has a linear partition L = (LB, LR) such
that

• LB is a set of p paths of length 6, p + 2q paths of length 2 and q paths of
length 3

• LR is a set of q paths of length 6, q + 2p paths of length 2 and p paths of
length 3

By Remark 5.2 and Proposition 2.11 we know that multi-3-gons and multi-4-
gons satisfy conjecture 5.1. Multi-5-gons are not Jaeger’s graphs in general,
however we can show that they do have an isomorphic linear partition.
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Corollary 5.8 Let G be a multi-5-gon. Then G can be partitioned into two
isomorphic linear forests.

Proof In [13], it is proved that the strong chromatic index of a multi-5-gon
is 5 and its number of vertices is multiple of 20. In that case the number k of
K1,3 is even. From theorem 5.7 we consider p = q = k

2 and we get the result.
�

6 Compatible linear partitions

Let L = (LB, LR) be a linear partition of G. For each vertex v we can define
eL(v) as the edge incident to v which is an end edge of a maximal path in LB or
LR. We shall say that two linear partitions L = (LB, LR) and L′ = (L′

B, L′
R) are

compatible whenever eL(v) 6= eL′(v) for each vertex v. The qualifying adjective
”compatible” refers to the notion of compatible Euler’s tours introduced by
Kotzig [25] (see Bondy [6] for an introduction to this question).

6.1 Compatible partitions and associated linear construc-

tion

In view of the role played by Jaeger’s graphs, it is not surprising to see that
these graphs can be provided with two compatible linear partitions. In fact, we
have a more general result.

Theorem 6.1 Let G be a cubic 3-edge colourable graph with an associated
partition M = MB + MR + M ′. Assume that, we can colour the edges of M ′

in Blue and Red in such a way that, for each associated linear construction,
the whole colouring of E(G) so obtained is a linear partition. Then G has two
compatible linear partitions.

Proof An associated linear construction is obtained in fixing an arbitrary
orientation to the cycles of G \ M . To each vertex v of V (G) we associate
an edge o(v) of E(G) \ M such that v is the origin of o(v) with respect to
the chosen orientation of the cycle through v. We colour o(v) in Blue or Red
accordingly to the colour of v.
We give a colour to each edge of M ′, accordingly to some rule depending on the
class of graphs we are studying. When the edge of M ′ incident to some vertex
v is coloured in Blue or Red, v is transformed into a vertex of degree 2 in one
of the two colours (say Blue) and a vertex of degree 1 in the other (Red). Since
the whole colouring of E(G) leads to a linear partition L = (LB, LR) , the edge
incident to v of this last colour is hence the edge eL(v).
On each cycle of G \ M we can give now the opposite orientation. In the
associated linear construction, the colours of the edges of the cycles incident
to each vertex are exchanged. Since, with the same colouring of M ′, we have
supposed that the whole colouring of E(G) leads to a linear partition L′ =
(L′

B, L′
R), the above vertex v remains a vertex of degree 2 in the Blue colour.

Hence the Red edge incident to v eL′(v) is distinct from eL(v).
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Since eL(v) 6= eL′(v) for each vertex v, the two linear partitions L and L′ so
obtained are compatible. �

Corollary 6.2 Let G be a Jaeger’s graph then G has two compatible linear
partitions in which every path has length 3.

Proof In that case, we have a perfect matching M = MB +MR and any associ-
ated linear construction is a linear partition in which every path has length 3. �

In the same way we have,

Corollary 6.3 Let G be cubic 3-edge colourable graph and an associated par-
tition MB + MR + M ′. Assume that M ′ can be partitioned into two strong
matchings M ′

B and M ′
R. G has two compatible linear partitions in which every

path has length 1, 3, 5 or 7.

Proof In proof of Theorem 2.9 we have coloured the edges of M ′
B in Blue and

those of M ′
R in Red and we have shown that the associated linear construction

together with this colouring of M ′ leads to a linear partition with each path of
length 1, 3, 5 or 7. Applying Theorem 6.1 above leads to the result. �

It can be pointed out that the two compatible linear partitions L = (LB, LR) and
L′ = (L′

B, L′
R) obtained in Corollaries 6.2 and 5.6 are such that the four lin-

ear forests LB, LR, L′
B and L′

R are isomorphic. This is not necessarily true in
Corollary 6.3.

Corollary 6.2 lead the first author in 1991 to conjecture:

Conjecture 6.4 Every cubic graph has two compatible linear partitions.

6.2 Compatible partitions in hamiltonian cubic graphs

As a corollary of Theorem 4.7, we shall show now that cubic hamiltonian graphs
satisfy Conjecture 6.4. In fact, a stronger result is obtained since the two com-
patible partitions are odd.

Theorem 6.5 Let G be a cubic hamiltonian graph, then G has two compatible
odd linear partitions.

Proof Let C = a0, a1 . . . an−1 be a hamiltonian cycle of G. This hamiltonian
cycle induces a 3-edge colouring Φ : E(G) −→ {α, β, γ}. Let us colour every
edge aiai+1 of C with α when i ≡ 0(2) and with β otherwise, while the remaining
perfect matching is coloured with γ. From Theorem 4.7 we know that there is a
strong matching F intersecting every bicoloured cycle of Φ(β, γ). We choose F
minimal for the inclusion (that is F intersects each cycle of Φ(β, γ) in exactly
one edge). Let Mα be the set of α-coloured edges. Since F is a strong matching
intersecting every bicoloured cycle of Φ(β, γ), we can construct an odd linear
partition L′ = (L′

B, L′
R) :

L′
R = Mα ∪ F
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L′
B = E(G) − L′

R

For each vertex v, the edge eL′(v) is coloured with α excepted when v is an end
vertex of an edge of F . In that case eL′(v) coloured with γ when v is an end
vertex of the edge of F ∩ C and with β when v is an end vertex of an edge of
F \ C.

Case 1 : F contains some edges of C
Hence the edges of F ∩ C are coloured with β. F ∩ C is a strong matching
intersecting the 2-factor made of the unique cycle C leading to the following
odd linear partition L = (LB, LR) :

LB = C − F

LR = E(G) − LB

For each vertex v, eL(v) is coloured with γ excepted when v is an end vertex of
the edge of F ∩ C. In that case we have eL(v) coloured with β.
We can check that eL(v) 6= eL′(v) for each vertex v, since the colours of these
edges are distinct. Hence, the two odd partitions L and L′ are compatible.

Case 2 : Each edge of F is coloured with γ and there is an edge aiai+1 (i odd)
of C coloured with β which is not incident to an edge of F .
Let L = (LB, LR) be the following odd linear partition:

LB = C − aiai+1

LR = E(G) − LB

For each vertex v, eL(v) is coloured with γ excepted when v is ai or ai+1.
In that case eL(v) is coloured with α.
For each vertex v, eL′(v) is coloured with α unless when v is an end vertex of
an edge of F . In that case eL′(v) is coloured with β when v is an end vertex of
an edge of F .
We can check that eL(v) 6= eL′(v) for each vertex v, since the colours of these
edges are distinct. Hence, the two odd partitions L and L′ are compatible.

Case 3 : Each edge of F is coloured with γ and each edge of C coloured with β
is incident to an edge of F .
Without loss of generality assume that a2 is incident to F . Edge a3a4 being
incident to F , we must have a4 incident to F . Going through C, we get that
a2, a4, . . . a2k, . . . a0 must be incident to F . The remaining edges coloured with
γ are edges joining vertices of C with odd index. It is an easy task to see that
this set K of edges is a strong matching. The perfect matching coloured with
γ is the union of two strong disjoint matchings F and K with the same size.
Hence G is a Jaeger’s graph . Theorem 6.2 implies that we have two compatible
odd linear partitions. �
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6.3 Compatible odd linear partitions

The results of Theorem 6.5 and Theorem 6.1 leads us to a strengthening of
Conjecture 6.4.

Conjecture 6.6 Let G be a cubic 3-edge colourable graph then we can find two
compatible odd linear partitions.

As a partial result we have:

Theorem 6.7 Let G be a cubic 3-edge colourable graph then we can find three
odd linear partitions L, L′ and L′′ such that for each vertex v

|{eL(v), eL′(v), eL′′(v)}| ≥ 2

Proof Let us consider a 3-edge colouring Φ : E(G) −→ {α, β, γ}. Let us
denote by Mγ the perfect matching consisting of the γ-coloured edges. Theorem
4.9 implies that there exists a set Fα of α-coloured edges intersecting every cycle
of Φ(α, β) such that Fα ∪ Mγ is acyclic. In that way, we obtain an odd linear
partition L = (L1, L2)

L1 = Fα ∪ Mγ

L2 = E(G) − L1

For each vertex v we have eL(v) coloured with γ excepted for the vertices which
are the end vertices of an edge of Fα. In that case eL(v) is coloured with β.

Let us consider the perfect matching Mβ, the bicoloured cycles of Φ(α, γ) and
a matching Fγ obtained by Theorem 4.9. Hence, we get an odd linear partition
L′ = (L′

1, L
′
2) such that for every vertex v the edge eL′(v) is coloured either

with β (when the vertex v is an end vertex of an edge of Fγ) or with α. Finally
we obtain a third odd linear partition L′′ = (L′′

1 , L′′
2) from the perfect matching

Mα, the bicoloured cycles of Φ(β, γ) and a matching Fβ , such that the edges
eL′′(v) are coloured α or γ (γ when the considered vertices are the end vertices
of an edge of Fβ).

The three sets Fα, Fβ and Fγ being obviously pairwise disjoint, it is a routine
matter to see that for each vertex v two edges in {eL(v), eL′(v), eL′′(v)}, at least,
have distinct colours. These two edges are thus distinct and we get the result.

�

7 Complexity

The following result of Akiyama et al.[1] can be also obtained by an algorithmic
way (see [9]).

Theorem 7.1 Let G be a cubic multigraph on n ≥ 4 vertices each of whose
components are distinct from Θ (the cubic multigraph on two vertices and three
parallel edges). One can construct a linear partition L = (LB, LR) of G in
time-complexity O(n2).
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Let us recall that for any cubic graph G, la1(G) = 3 or 4 (note that it is an NP-
complete problem for a given cubic graph G to decide if G is 3-edge colourable
[21]), la2(G) = 3, for k ∈ {3, 4} 2 ≤ lak(G) ≤ 3 and for k ∈ [5, n − 1]
lak(G) = la(G) = 2 (Thomassen [28]). Since it is an NP-complete problem to
decide whether a cubic graph is a Jaeger’s graph (Schaefer [26]), it is easy to
prove that deciding whether la3(G) = 2 or 3 is an NP-complete problem (see
[5]). As previously said (see Subsection 4.3, Problem 4.11), determining whether
la4(G) = 2 or 3 is an open problem.

7.1 An NP-complete problem

By Theorem 2.8, for a cubic graph G on n = 2k vertices (k even) to decide
whether G has a linear partition L = (LB, LR) such that l(LB) = l(LR) = 3
is an NP-complete problem. If LB and LR are isomorphic forests then, by
Proposition 3.6, for c ∈ {B, R}, 3 ≤ l(Lc) ≤ k + 1. This suggests the following
decision problem:

Instance : A cubic graph G of order n = 2k and an integer q such
that 3 ≤ q ≤ k + 1.

Question : Does there exists a linear partition (LB, LR) of G such that
l(LB) = l(LR) = q?

complexity of which is not known in general. However we show below that this
problem is NP-complete when q = k + 1.

Lemma 7.2 Let G be a cubic graph of order n = 2k. Let P and Q be two
edge-disjoint paths of G such that l(P ) = l(Q) = k + 1, then P and Q have
exactly 4 common vertices and V (P ) ∪ V (Q) = V (G) .

Proof Set p = |V (P ) ∩ V (Q)|. Since G is a cubic graph, it is clear that
0 ≤ p ≤ 4 . We have |V (Q)| ≤ |V (G)| − |V (P )| + |V (P ) ∩ V (Q)|. Thus,
|V (Q)| ≤ 2k − (k + 2) + p , that is p ≥ |V (Q)| − k + 2 = 4. Hence, p = 4 and
V (P ) ∪ V (Q) = V (G) as claimed.

�

Lemma 7.3 Let G be a cubic graph on n = 2k vertices with a linear partition
L = (LB, LR) such that l(LB) = l(LR) = k + 1. Then LB and LR are two
isomorphic linear forests. Each of them contains exactly one path of length
k + 1, k is even, and the set of the remaining paths is a matching of k−2

2 edges.

Proof Let us suppose that G has a linear partition L = (LB, LR) such that
l(LB) = l(LR) = k + 1 (with n = 2k). By Lemma 7.2, LB has a unique longest
path P0 and LR has a unique longest path Q0, with l(P0) = l(Q0) = k + 1,
V (G) = V (P0) ∪ V (Q0) and |V (P0) ∩ V (Q0)| = 4. Then every path of LB

distinct from P0 is an edge end vertices of which belong to V (Q0) and ev-
ery vertex of Q0 \ P0 is end vertex of a path of LB. Since |V (Q0)| = k + 2,
|V (P0) ∩ V (Q0)| = 4 and LB is a spanning forest, k is even and LB \ E(P0) is
a matching on k−2

2 edges. By symmetry, LR \E(Q0) is also a matching on k−2
2

edges. Hence LB and LR are isomorphic forests. �
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Definition 7.4 Let G and G′ be two disjoint cubic graphs. Assume that P =
(a, b, c, d) is a path of length 3 in G and Q = (b′, d′, a′, c′) is a path of length 3
in G′. We get a new cubic graph H = PQ(G, G′) ( PQ-construction for short)
by deleting the edges ab, bc, cd of P and b′d′, d′a′, a′c′ of Q and identifying
vertices a and a′, b and b′, c and c′, d and d′ (see figure 6).

b

a

c

d

G G’

a’

b’

c’

d’

P

H = PQ(G, G’)

d

c

b

a

Q

Figure 6: PQ − Construction

A natural question arises: how to obtain a linear partition of H = PQ(G, G′)
from linear partitions of G and G′?

Proposition 7.5 Let G and G′ be two disjoint cubic graphs. Assume that G
has a linear partition L = (LB, LR) containing a path P of length 3 in LR and
that G′ has a linear partition L′ = (L′

B, L′
R) containing a path Q of length 3 in

L′
B. Then L′′ = (L′′

B, L′′
R), with

L′′
B = LB + (L′

B − Q)

L′′
R = (LR − P ) + L′

R

is a linear partition of H = PQ(G, G′).

Proof Assume that P = (a, b, c, d) and Q = (b′, d′, a′, c′). Since P ∈ LR the
edges of G incident to the vertices of P are thus in LB. In the same way, the
edges of G′ incident to the vertices of Q are in L′

R. Hence L′′
R = (LR −P )+L′

R

is a linear forest of H as well as L′′
B = LB + (L′

B − Q). �

Under the same hypotheses and notations of Proposition 7.5 we have the fol-
lowing.

Corollary 7.6 If L = (LB, LR) and L′ = (L′
B, L′

R) are isomorphic linear
partitions (respectively isomorphic odd linear partitions) of G and G′ then L′′ =
(L′′

B, L′′
R) is an isomorphic linear partition (respectively isomorphic odd linear

partition) of H = PQ(G, G′).

Proof Since L = (LB, LR) and L′ = (L′
B, L′

R) are isomorphic linear forests,
for any j , with 1 ≤ j ≤ n − 1, LB and LR (L′

B and L′
R, respectively) have the

same number of maximal paths of length j. Thus, for j 6= 3, L′′
B and L′′

R have
the same number of maximal paths of length j. Since we delete a path of length
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3 in LR and a path of length 3 in L′
B, we get also the same number of maximal

paths of length 3 in L′′
B and L′′

R. Thus, L′′ = (L′′
B, L′′

R) is an isomorphic linear
partition (isomorphic odd linear partition, if L and L′ are odd). �

When L and L′ are odd linear partitions, we shall refer to the PQ-construction
described in Proposition 7.5 as an odd PQ-construction.

When G is a cubic hamiltonian graph on k + 2 vertices, we have a natural odd
linear partition L = (LB, LR) with LB as a hamiltonian path obtained from a
hamiltonian cycle with one edge deleted (any edge) and LR as the remaining
edges. In that particular linear partition, we have exactly one path of length 3
in LR (the other paths have length 1).

Proposition 7.7 Let G and G′ be two disjoint cubic hamiltonian graphs on
k + 2 vertices. Let L = (LB, LR) be an odd linear partition of G where LB is
a hamiltonian path and P = (a, b, c, d) is the unique path of length 3 in LR. In
the same way let us consider an odd linear partition L′ = (L′

B, L′
R) of G′ where

L′
R is a hamiltonian path and Q = (b′, d′, c′, a′) is the unique path of length 3 in

L′
B. Then H = PQ(G, G′) is a cubic graph on 2k vertices with an isomorphic

odd linear partition L′′ = (L′′
B, L′′

R) such that l(L′′
B) = l(L′′

R) = k + 1

Proof From Proposition 7.5 we know that L′′ = (L′′
R, L′′

B) (with L′′
R =

(LR − P ) + L′
R and L′′

B = LB + (L′
B − Q)) is an odd linear partition of H .

L′′
R contains one long path, namely the hamiltonian path of G′ which was in L′

R

as well as L′′
B contains the hamiltonian path of G which was in LB. Since these

paths have length k + 1, we have l(L′′
B) = l(L′′

R) = k + 1, as claimed. �

Proposition 7.8 Let G be a cubic graph on 2k vertices with an odd linear
partition L = (LB, LR) such that l(LB) = l(LR) = k + 1. Then G can be
obtained from two cubic hamiltonian graphs on k + 2 vertices by an odd PQ-
construction.

Proof By Lemma 7.3, L = (LB, LR) is an odd isomorphic linear partition
with exactly one path PB of length k + 1 and k−2

2 edges in LB (one path PR

of length k + 1 and k−2
2 edges in LR). Assume that the end vertices of PB are

xB and yB (xR and yR are the end vertices of PR). Let GB be the subgraph
of G, edges of which are the edges of PB and the paths of length 1 in LR (GR

being defined analogously with PR). In GB , xB and yB have degree 1, xR and
yR (as internal vertices of PB) have degree 2 and the remaining vertices have
degree 3. The vertices xB and yB are not adjacent in GB (otherwise PB would
have no internal vertex). Since d(xB) = 1 in GB and xR 6= yR, xB is adjacent
to at most one vertex in {xR, yR}. In the same way, yB is adjacent in GB to at
most one vertex in {xR, yR}, xR (yR, respectively) is adjacent in GR to at most
one vertex in {xB, yB}. We can thus complete GB in order to obtain a cubic
hamiltonian graph G1 by adding the edge xByB and the edges {xBxR, yByR} if
xBxR /∈ E(GB) or the edges {xByR, yBxR} forming thus a path P of length 3
in G1. Applying the same technique to GR leads to a cubic graph G2 together
a path Q of length 3 (with the edges xRyR and the edges {xRxB , yRyB} or
{xRyR, yRxR}. It is a routine matter to check that G is obtained from G1 and
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G2 via an odd PQ-construction. �

Theorem 7.9 The following decision problem is NP-complete:

Instance : A cubic graph G on n = 2k vertices.

Question : Does there exists a linear partition L = (LB, LR) of G such
that l(LB) = l(LR) = k + 1?

Proof Let us consider a cubic graph K on p vertices and let xy be an edge
of K. Let {a, b, c, d} be a set of four vertices disjoint from V (K). Let H
be the cubic graph on p + 4 vertices such that V (H) = V (K) ∪ {a, b, c, d}
and E(H) = (E(K) \ {xy}) ∪ {xa, ab, ac, yd, db, dc, bc}. We note that H has a
hamiltonian cycle if and only if K has a hamiltonian cycle containing the edge
xy.
Let P be a path of length 3 in H on {a, b, c, d} (i.e. P = [a, b, c, d] or P =
[a, c, b, d]). Let us consider a disjoint copy H ′ of H and Q the corresponding
copy of P . Let G be the cubic graph on n = 2p + 4 vertices obtained by
PQ-construction (see Definition 7.4 and Figure 7).

a bx x’

y y’d c

K − xyK − xy

Figure 7: G = PQ(H,H’)

Now, let us consider a hamiltonian cycle of K containing xy. Thus, H has a
hamiltonian cycle containing bc and H ′ has a hamiltonian cycle containing b′c′.
We can provide H (respectively, H ′) with a linear partition a forest of which
is a hamiltonian path, the other forest being the union of a matching and a
unique path of length 3, P (respectively, Q). By Proposition 7.7 we obtain a
linear partition L = (LB, LR) of G such that l(LB) = l(LR) = k + 1 (with
k = p + 2 = n

2 ).
Conversely, suppose that G has a linear partition L = (LB, LR) such that l(LB)
= l(LR) = p + 3. Let P be the unique path of length p + 3 of LB (see Lemma
7.3). Suppose, without loss of generality, that P intersects V (H) \ {a, b, c, d}.
If P contains a vertex of V (H ′) \ {a, b, c, d} then P contains one of the four
paths [x, a, b, x′], [x, a, c, y′], [y, d, b, x′] or [y, d, c, y′] (see figure 7). For instance,
suppose that P contains [x, a, b, x′]. Thus, edges ac and bd belongs to LR and,
either [a, c, d, b] is a path of LR or LR contains two distinct paths of length at
least 2 (containing respectively [b, d, y] and [a, c, y′]). Since LR is made of a
path Q of length p + 3 and a matching of p

2 edges, we have a contradiction.
Analogously, we see that the paths [x, a, c, y′], [y, d, b, x′] and [y, d, c, y′] are not
subpath of P . Hence, V (P ) = V (H) = V (K) ∪ {a, b, c, d}. By Proposition 7.8
H is a hamiltonian cubic graph, that is K has a hamiltonian cycle containing
xy.
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So, we have proved that K has a hamiltonian cycle containing xy if and only if
G = PQ(H, H ′) has a linear partition L = (LB, LR) such that l(LB) = l(LR) =
p + 3. It is known that the Hamiltonian Cycle problem remains NP-complete
for cubic graphs (see [17]), and it is easy to see that the "Hamiltonian Cycle
through a given edge in a cubic graph" decision problem is also NP-complete.
The transformation from this last problem to the considered decision problem is
clearly a polynomial-time transformation, and the considered decision problem
is clearly in NP. So, our decision problem is NP-complete. �

7.2 Knowing that a graph is a Jaeger’s graph.

By Shaefer’s result [26], we know that it is NP-complete to recognize a Jaeger’s
graph. Assume that G is a Jaeger’s graph, is it difficult to find a perfect matching
union of two disjoint strong matchings? We do not have, in general, the answer.
However for the particular class of cubic graphs having a 2-factor of squares,
this can be done easily (see the proof of Theorem 2.12).

Proposition 7.10 Let G be a cubic graph with a 2-factor of squares. Then we
can find in O(n) time a matching divided into two strong matchings with the
same size.

8 Optimization

As pointed out in proposition 3.5 we can switch from one linear partition
L = (LB, LR) to another L′ = (L′

1, L
′
2) with a local transformation as soon

as at least one path of LB (respectively LR) has two internal vertices which
are the end vertices of to two distinct paths of LR (respectively LB). Since
it is an easy matter (from the complexity point of view, see Theorem 7.1), to
construct a linear partition, this local exchange suggests to explore the set of
linear partitions in order to maximize some objective function such as l(L) with
a simulated annealing approach.
In [8] experimental results have been obtained in order to get a longest path in
a ”random” cubic hamiltonian graph on at most 500 vertices, showing that this
approximation strategy is efficient.

However, we are faced with a difficult problem:

Question 8.1 Is it true that we can reach any linear partition from any other
one by using the local exchange described in Proposition 3.5?

Unfortunately, the answer to this question is negative as shown by the following
example of Jaeger’s graph described in figure 8. In (a), every path of the linear
forests has length 3 and the two internal vertices of any such path are the end
vertices of another path of length 3 of the linear partition, so we cannot apply
a local transformation. Since there is no local exchange possible from (a), the
two linear partitions (a) and (b) are in distinct equivalent classes (where an
equivalent class is merely the set of all linear partitions which can be obtained
from each other by our local exchange).
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Figure 8: No local exchange
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