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tA linear forest is a graph whose 
onne
ted 
omponents are 
hordlesspaths. A linear partition of a graph G is a partition of its edge set intolinear forests and la(G) is the minimum number of linear forests in a linearpartition.In this paper we 
onsider linear partitions of 
ubi
 simple graphs forwhi
h it is well known that la(G) = 2. A linear partition L = (LB , LR) issaid to be odd whenever ea
h path of LB∪LR has odd length and semi-oddwhenever ea
h path of LB (or ea
h path of LR) has odd length.In [2℄ Aldred and Wormald showed that a 
ubi
 graph G is 3-edge
olourable if and only if G has an odd linear partition. We give heremore pre
ise results and we study moreover relationships between semi-odd linear partitions and perfe
t mat
hing1 Introdu
tion.As usually, for any undire
ted graph G, we denote by V (G) the set of its verti
esand by E(G) the set of its edges and we 
onsider, as usual, that |V (G)| = n and
|E(G)| = m. If F ⊆ E(G) then V (F ) is the set of verti
es whi
h are in
identwith some edges of F . For any path P we shall denote by l(P ) the length of P ,that is to say the number of its edges. A vertex of a path P distin
t from anend-vertex is said to be an internal vertex. If u and v are verti
es of a path Pthen P [u, v] denotes the subpath of P whose end-verti
es are u and v. A strongmat
hing C in a graph G is a mat
hing C su
h that there is no edge of E(G)
onne
ting any two edges of C, or, equivalently, su
h that C is the edge-set ofthe subgraph of G indu
ed by the vertex-set V (C). A 2-fa
tor of G is a spanningsubgraph whose 
omponents are 
y
les. If every 
y
le of a 2-fa
tor has an evenlength then we say that this 2-fa
tor is an even 2-fa
tor.A linear-k-forest is a forest whose 
omponents are paths of length at most
k. The linear-k-arbori
ity of an undire
ted graph G is de�ned in [5℄ as the2



minimum number of linear-k-forests needed to partition the set E(G). Thelinear-k-arbori
ity is a natural re�nement of the linear-arbori
ity introdu
ed byHarary [7℄ (
orresponding to linear-(n − 1)-arbori
ity). The linear-k-arbori
itywill be denoted by lak(G).Let χ
′

(G) be the 
lassi
al 
hromati
 index (minimum edge 
olouring) and let
la(G) be the linear arbori
ity of G. We 
learly have:

la(G) = lan−1(G) ≤ lan−2(G) ≤ ... ≤ la2(G) ≤ la1(G) = χ
′

(G) .We know by Vizing's Theorem [11℄ that la1(G) ≤ ∆(G) + 1 (where ∆(G) is themaximum degree of G). For any k ≥ 2, we have (lower bound 
omes from [6℄and upper bound from [3℄)
max

(⌈

∆(G)

2

⌉

,

⌈

m(k + 1)

kn

⌉)

≤ lak(G) ≤ ∆(G) .In this paper we 
onsider 
ubi
 graphs, that is to say �nite simple 3-regulargraphs. Sin
e in a 
ubi
 graph G we have 3n = 2m, by the previous formula weobtain:
la2(G) = 3 and for any k ≥ 3, 2 ≤ lak(G) ≤ 3 .It was shown by Akiyama, Exoo and Harary [1℄ that la(G) = 2 when G is
ubi
. In [3℄ Bermond et al. 
onje
tured that la5(G) = 2. Thomassen [10℄proved the 
onje
ture, whi
h is best possible sin
e, in view of la4(K3,3) = 3 and

la4(PR3) = 3, 5 
annot be repla
ed by 4.A partition of E(G) into two linear forests LB and LR will be 
alled a linearpartition and we shall denote this linear partition L = (LB, LR) . An odd linearforest is a linear forest in whi
h ea
h path is a path of odd length. A semi-oddlinear partition is a linear partition L = LB ∪LR su
h that LB or LR is an oddlinear forest. An odd linear partition is a partition of E(G) into two odd linearforests. For i ∈ {B, R} let ω(Li) be the number of 
omponents (or maximalpaths) of Li. Sin
e every vertex of G is either end-vertex of a maximal path of
LB or end-vertex of a maximal path of LR, we have

ω(LB) + ω(LR) =
|V (G)|

2
.2 Jaeger's graphsA spe
ial 
lass of 
ubi
 graphs will be 
onsidered (Jaeger's graphs in the sequel)and we shall see that these graphs have ni
e properties leading to new questions(to be developed into forth
oming se
tions) for the whole set of 
ubi
 simplegraphs.De�nition 2.1 We shall say that a 
ubi
 graph G is a Jaeger's graph whenever

G 
ontains a perfe
t mat
hing union of two disjoint strong mat
hings. Let us
all a Jaeger's mat
hing a perfe
t mat
hing whi
h is the union of two strongmat
hings.In his thesis [9℄ Jaeger 
alled these 
ubi
 graphs equitable and pointed out thatthe above two 
oloring of their verti
es indu
ed by a Jaeger's mat
hing leads toa balan
ed 
olouring as de�ned by Bondy [4℄.3



When G is a 
ubi
 graph having a 2-fa
tor of C4's, say F , we 
onsider theauxiliary 2-regular graph G′ de�ned as follows : every C4 of F is repla
ed withits 
omplementary graph (whi
h is a 2K2).Theorem 2.2 Let G be a 
onne
ted 
ubi
 graph having a 2-fa
tor of squares,say F and let p be the number of 
y
les of G′. Then there are 2p−1 Jaeger'smat
hings whi
h interse
t F .Proof We �rst prove that there are at most two types of Jaeger's mat
hingsin G.Claim Let M = MB ∪ MR be a Jaeger's mat
hing of G, if M interse
ts Fthen every C4 of F 
ontains an edge of MB and an edge of MR.Proof of Claim Re
all that MB and MR are strong mat
hings. Without lossof generality we may assume that there is some edge say ab of some C4 in F ,say abcd whi
h belongs to MB. Sin
e M is a perfe
t mat
hing and MB is astrong mat
hing the verti
es c and d must be the endpoint of some edge(s) of
MR. Sin
e MR is a strong mat
hing we have cd ∈ MR. Let a′b′c′d′ be another
C4 of F whi
h is 
onne
ted to abcd by some edge say aa′. The edge aa′ is notan edge of M (M is a mat
hing), sin
e a′ must be an endpoint of an edge of
MR, MR interse
ts a′b′c′d′. Consequently, G being 
onne
ted we have that MBand MR interse
t all 
y
les of F . �It follows that a Jaeger's mat
hing of G is either 
ontained into F or disjointfrom F .We now establish a 
orresponden
e between the orientations of the 
y
les of G′and the Jaeger's mat
hings of G whi
h interse
t F .Let us give an orientation of the 
y
les of G′. Going ba
k now to G, ea
h C4 of
F has an edge 
onne
ted to two out-going edges and an edge 
onne
ted to twoin-going edges. Let MB be the set of edges 
onne
ted to two out-going edgesover all the C4's of F while MR 
ontains the edges 
onne
ted to two in-goingedges. It's an easy task to 
he
k that MB ∪ MR is a Jaeger's mat
hing of G.Conversely let us 
onsider a Jaeger's mat
hing M = MB ∪ MR of G whi
hinterse
ts F . By the above Claim, ea
h C4 of F 
ontains an edge of MB andan edge of MR. For any C4 of F and for any vertex v of this C4 we denote evthe edge of E(G)\E(F) that is adja
ent to v. We know that v is an endpoint ofan edge in MB or in MR. We give an orientation to the edge ev in su
h a waythat ev is an out-going edge (that is v is the origin) if and only if v is endpointof an edge of MB. Sin
e every edge of E(G)\E(F) is 
onne
ted to two C4's of Fthose edges are oriented twi
e ; more pre
isely : when aa′ is an edge 
onne
tingtwo 
y
les of F , say abcd and a′b′c′d′, if aa′ = ea is an out-going edge for the
y
le abcd then aa′ = ea′ must be an in-going edge for a′b′c′d′ for otherwise MBwould no be a strong mat
hing. Consequently the given orientation of all edges
ev (v ∈ V (G)) extends to an orientation of the 
y
les of G′.We have 2p possible orientations of the 
y
les of G′. A given orientation ofea
h 
y
le of G′ and the opposite orientations of these 
y
les yield to the samepartition of M , 
onsequently, there are 2p−1 Jaeger's mat
hings interse
ting the4



2-fa
tor F of G. This �nishes the proof. �By Theorem 2.2 every 
ubi
 graph having a 2-fa
tor of squares has at leastone Jaeger's mat
hing. Hen
e we 
on
lude this subse
tion with the following
orollary.Corollary 2.3 A 
ubi
 graph having a 2-fa
tor of squares is a Jaeger's graph.Furthermore, we 
an derive from Theorem 2.2 a simple linear time algorithmfor �nding a Jaeger's mat
hing in a 
onne
ted 
ubi
 graph whi
h have a 2-fa
torof squares.It 
an be noti
ed that every 
ubi
 graph with a perfe
t mat
hing M 
an betransformed into a Jaeger's graph by using the transformation (square exten-sion) depi
ted in �gure 1 on ea
h edge of M . Indeed, the resulting graph has a
2-fa
tor of squares and we 
an apply Theorem 2.2

Figure 1: Square ExtensionCorollary 2.4 A 
onne
ted 
ubi
 graph is 3-edge 
olourable if and only if thereis a perfe
t mat
hing N su
h that the 
ubi
 graph obtained in using a squareextension on ea
h edge of N leads to a Jaeger's graph having an odd number (atleast 3) of Jaeger's mat
hings.Proof Let G be a 
ubi
 graph su
h that G′, obtained from G by squareextensions on ea
h edge of N , has an odd number of Jaeger's mat
hings. Let
F be the 2-fa
tor of C4's of G′ obtained by these square extensions. Sin
e G′has an odd number of Jaeger's mat
hings, Theorem 2.2 says that there is aJaeger's mat
hing M of G′ whi
h avoids all the edges of F . Clearly, there is abije
tion between M and the 2− fa
tor E(G) \ N . Sin
e M is the union of thestrong mat
hings MB and MR, going ba
k to G the edges of MB ∪MR give riseto an even 2-fa
tor E(G) \ N of G whi
h, together with N , leads to a 3−edge
olouring of G.Conversely, assume that G is 3−edge 
olourable. Then extending ea
h edge of agiven 
olour in a 3−edge 
olouring of G leads to a graph G′ whi
h has a 2-fa
torof squares. We 
an 
hoose the square of G′ extending an edge of G of the given
olour in su
h a way that any of the two other 
olours indu
es a strong mat
h-ing. Indeed, the edges of the two other 
olours give rise to a Jaeger's mat
hingin G′ avoiding every square so 
onstru
ted and Theorem 2.2 applies. �3 Semi-odd linear partitionsTheorem 3.1 Let G be 
ubi
 graph having a perfe
t mat
hing M . Then thereexists a set F ⊆ E(G) − M interse
ting ea
h 
y
le of the 2-fa
tor G − M su
h5



that F + M is an odd linear forest.Proof Let {C1, C2, · · · , Ck} be the 
y
les of G−M (with k ≥ 1). Clearly if e isan edge of C1 then the set M ∪{e} indu
es an odd linear forest of G (made of apath of length 3 and a mat
hing). Let us suppose that k ≥ 2 and let i su
h that
1 ≤ i < k. We suppose that for every j with 1 ≤ j ≤ i we have 
hosen an edge
ej of Cj su
h that Fi + M is an odd linear forest (with Fi = {e1, e2, · · · , ei}).Let xy be an edge of Ci+1. If Fi + M + xy 
ontains a 
y
le then xy belongs tothis 
y
le. Thus, Fi + M 
ontains a path P having x and y as end verti
es. Let
z be the neighbour of y on Ci+1 distin
t from x. Then, Fi +M + yz 
ontains no
y
le (if it 
ontains a 
y
le, then Fi + M 
ontains a path P ′ having y and z asend verti
es, 
ontradi
ting the existen
e of P ). So, Ci+1 
ontains an edge, say
ei+1, su
h that Fi + ei+1 + M is an odd linear forest. Let us denote Fi + ei+1by Fi+1. The results follows by indu
tion. �De�nition 3.2 For every odd path P = [a0, a1, · · · , a2l+1], with l ≥ 0, wesay that the edges {a0a1, a2a3, · · · , a2la2l+1} are at even distan
e from the endverti
es of P .Theorem 3.3 A 
ubi
 graph has a perfe
t mat
hing if and only if it has asemi-odd linear partition.Proof If M is a perfe
t mat
hing then by Theorem 3.1 the graph has a set ofedges F interse
ting every 
y
le of the 2-fa
tor su
h that F +M is an odd linearforest G − M . Set LB = F + M and LR = G − F − M Then, L = (LB, LR) isa semi-odd linear partition.Conversely, if the graph has a semi-odd linear partition L = (LB, LR) , wesuppose without loss of generality that LB is an odd linear forest. Let M bethe set of edges of LB at even distan
e from the end verti
es of the maximalpaths of LB. It is a routine matter to 
he
k that M is a mat
hing. Sin
e LB isa spanning forest, M is a perfe
t mat
hing. �For any 
ubi
 graph G having a perfe
t mat
hing we denote by ρ(G) the min-imum number of even maximal paths appearing in a semi-odd linear partition.If ρ(L) denotes the number of even maximal paths of a semi-odd linear partition
L = (LB, LR) , then ρ(G) = Min{ρ(L)|L is a semi − odd linear partition of G}For any 
ubi
 graphG having a 2-fa
tor we denote by o(G) the minimum numberof odd 
y
les appearing in a 2-fa
tor of G (we note that o(G) is an even number).Theorem 3.4 Let G be a 
ubi
 graph having a 2-fa
tor (or, equivalently, aperfe
t mat
hing M). Then ρ(G) = o(G).Proof Let {C1, C2, · · · , Ck} be a 2-fa
tor of G having o(G) odd 
y
les, andlet M be the perfe
t mat
hing asso
iated to this 2-fa
tor. By Theorem 3.1 we
an 
hoose a set of edges F (one by 
y
le) su
h that F + M is an odd linearforest LB. The set E(G)−E(LB) indu
es a linear forest LR and we 
onsider thesemi-odd linear partition L = (LB, LR) . The number ρ(L) of even maximal6



paths of LR is equal to the number o(G) of odd 
y
les in {C1, C2, · · · , Ck}.Thus, ρ(G) ≤ o(G).Let L = (LB, LR) be a semi-odd linear partition su
h that LB is an odd lin-ear forest. As in Proof of Theorem 3.3, let M be the perfe
t mat
hing made ofthe edges of LB at even distan
e from the end verti
es of the maximal paths of
LB, and let {C1, C2, · · · , Ck} be the 2-fa
tor G−M . Every path of LB of length
≥ 3 interse
ts this 2-fa
tor and we see that E(LB)∩(E(C1)∪E(C2) · · ·∪E(Ck))is a mat
hing. Now 
onsider any 
y
le Ci of this 2-fa
tor. Clearly, E(LB) inter-se
ts E(Ci). Let {e1, e2, · · · , er} = E(LB)∩E(Ci). We see that E(Ci)−E(LB)indu
es a set of elementary paths {P1, P2, · · · , Pr} whi
h are pre
isely maximalpaths of LR. If P1, P2, · · · , Pr have odd lengths then |E(Ci)| = r +

∑j=r

j=1
l(Pj)is even. Thus, if Ci is an odd 
y
le then at least one of these paths has aneven length. Then, ρ(L) is greater or equal to the number of odd 
y
le in

{C1, C2, · · · , Ck}. Hen
e, ρ(L) ≥ o(G). By 
hoosing L su
h that ρ(L) = ρ(G),we obtain ρ(G) ≥ o(G). �Corollary 3.5 (see [2℄) Let G be a 
ubi
 graph having a perfe
t mat
hing.Then the follwing properties are equivalent:1. ρ(G) = 02. G is 3-edge 
olourable (that is χ′(G) = 3).3. G 
an be fa
tored into two odd linear forests4 Odd linear partitionsLet G be a 
ubi
 graph. Assume that L = (LB, LR) is a linear partition of itsedge set. By 
olouring alternately the edges of the maximal paths in LB with
α and γ and those of LR with β and δ, we get a 4-edge 
olouring. Aldred andWormald [2℄ proved that a 
ubi
 graph G 
an be fa
tored into two odd linearforests if and only if G is 3-edge 
oloured (i.e. χ′(G) = 3).Assume that G is a 
ubi
 3-edge 
olourable graph and let Φ be a 3-edge
olouring of G. For any edge e, let us denote the 
olour of e by Φ(e) . Let
α and β be any two distin
t 
olours of Φ and let γ be the third 
olour. Thesubset of the edges of G 
oloured with α or with β indu
es an even 2-fa
tor Inthe following the 2-fa
tor indu
ed by any two distin
t 
olours α and β will bedenoted by Φ(α, β). Any 
y
le of Φ(α, β) is said to be an αβ-
y
le. Sin
e α and
β are arbitrary 
olours it is 
lear that the 
onne
ted 
omponents of a 3-edge
olourable 
ubi
 graph are 2-
onne
ted subgraphs.4.1 Aldred and Wormald 's theoremFor the sake of 
ompleteness (and also for the reason that in the following wewill re�ne their te
hnique), we give here the proof of Aldred and Wormald'stheorem.Theorem 4.1 [2℄ Let G be a 
ubi
 graph. Then G 
an be fa
tored into two oddlinear forests if and only if χ′(G) = 3. 7



Proof Suppose that L = (LB, LR) is an odd partition of G. Colour the edgesof the paths in LB alternately with α and γ so that ea
h path in LB has its�rst and last edges 
oloured with α. Similarly, 
olour the edges of the paths in
LR alternately with β and γ so that ea
h path in LR has its �rst and last edges
oloured with β. This yields a proper 3-edge 
olouring of G.Conversely let us suppose that χ′(G) = 3 and that we have a proper 3-edge
olouring using α, β and γ as 
olours. From ea
h 
y
le of Φ(α, γ) pi
k an edge,and let F be the set of these edges. Remark that the subgraph of G formedby F and the perfe
t mat
hing R indu
ed by 
olour β has 
onne
ted 
ompo-nents whi
h are odd paths and, possibly, even 
y
les. We 
an break ea
h even
y
le by 
hoosing an edge 
oloured with β (let F ′ be this set of edges). It isa routine matter to 
he
k now that LR = R + F − F ′ is a set of odd paths aswell as LB = Φ(α, γ)−F +F ′, leading to the odd partition L = (LB, LR) of G. �The remarkable point here is that F is a minimal transversal of the 
y
les of
Φ(α, γ) where ea
h edge of F has been 
hosen at random. In the next subse
tionswe shall see that when suitably 
hoosing edges in F we are led to more pre
iseresults.4.2 Redu
tionsWe need some spe
i�
 de�nitions for this se
tion. We 
onsider a 
ubi
 3-edge
olourable graph G and a 3-edge 
olouring Φ of G.De�nition 4.2 Let α and β be any two distin
t 
olours of Φ. In the following
SMG(α, β) will denote a strong mat
hing of G interse
ting every αβ-
y
le (whensu
h a strong mat
hing exists).De�nition 4.3 Let α and β be any two distin
t 
olours of Φ. Let xy be anedge of G and let x′ and x′′ (respe
tively y′ and y′′) be the (distin
t) neighboursof x (of y, respe
tively) distin
t from y (respe
tively x) su
h that x′ 6= y′′ or
x′′ 6= y′ and suppose that x′y′ and x′′y′′ are not edges of G. Let us supposethat Φ(xy) = α, Φ(xx′) = Φ(yy′) = β and Φ(xx′′) = Φ(yy′′) = γ. If x′ 6= y′′or x′′ 6= y′ then the edge xy is said to be an α-free edge. Note that edge
x′y′′ (respe
tively x′′y′) may exist, and in this 
ase Φ(x′y′′) = α (respe
tively
Φ(x′′y′) = α). We noti
e that, without loss of generality, there are two 
ases:

• Case 1 : x′ 6= y′′ and x′′ 6= y′

• Case 2 : x′ = y′′ and x′′ 6= y′The 3-edge 
oloured 
ubi
 graph G′ on (n − 2) verti
es obtained from G bydeleting verti
es x and y and their in
ident edges and adding the edges x′y′and x′′y′′, 
oloured respe
tively by β and γ, is said to be obtained from G byredu
tion of an α-free edge. Situations are depi
ted on �gures 2 and 3. Clearly, if
G 
ontains a triangle (a 
y
le of length 3) T su
h that the three edges 
onne
ting
T to G−T are independent then every edge of T is a free edge (i.e. α-free edgeif its 
olour is α).Remark 4.4 Following the notations of De�nition 4.3, if xy is an α-free edgeof G, the αβ-
y
le of G 
ontaining xy gives the αβ-
y
le of G′ 
ontaining the
β-
oloured edge x′y′ of the graph G′ obtained from G by redu
tion of the α-freeedge xy. The others αβ-
y
les, if they exist, are identi
al in G and in G′.8
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tion - Case 2De�nition 4.5 Following the notations of De�nition 4.3, let us suppose that

x′ = y′′ and x′′ = y′ (that is xy is a 
hord of the subgraph indu
ed on
{x, x′, y, y′}) and suppose that the 
omponent of G 
ontaining {x, x′, y, y′}is distin
t from K4. Let z (respe
tively z′) be the neighbour of x′ (respe
tively
y′) distin
t from x and y. We note that z 6= y′ and z′ 6= x′. Sin
e any 
om-ponent of G is 2-
onne
ted , z and z′ are distin
t verti
es. The subgraph Dindu
ed on {x , x′, y , y′} is usually 
alled a diamond. The edge xy is 
alled the
entral edge of D. Clearly, the 
entral edge of D and the two edges of the 2-
ut
onne
ting D to the rest of G have the same 
olour. A diamond whose 
entraledge have 
olour α is said to be an α-diamond. There are two 
ases a

ordingto zz′ /∈ E(G) (Case 1) or zz′ ∈ E(G) (Case 2). In Case 1, an α-diamond issaid to be an α-free diamond. The 3-edge 
oloured 
ubi
 graph G′ on (n − 4)verti
es obtained from G by deleting D and its in
ident edges and adding theedge zz′ 
oloured with α is said to be obtained from G by redu
tion of an α-freediamond. See �gure 4.
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αFigure 4: α-free diamond and redu
tionIn Case 2 we denote by u (respe
tively u′) the neighbour of z (respe
tively z′)distin
t from x′ and z′ (respe
tively y′ and z). We note that u and u′ aredistin
t verti
es (re
all that every 
omponent of G is 2-
onne
ted). A

ordingto the 
olour β or γ of the edge zz′, there are two sub-
ases, Case 2.1 andCase 2.2. We 
onsider the 
ubi
 graph G′ on (n − 2) verti
es obtained from
G by deleting the edge zz′ and repla
ing the paths uzx′ and u′z′y′ by ux′ and
u′y′ respe
tively. In Case 2.1 we 
onsider the 3-edge 
olouring Φ1 of G′ su
hthat Φ1(xy) = Φ1(x

′u) = Φ1(y
′u′) = γ, Φ1(xx′) = Φ1(yy′) = α, Φ1(x

′y) =
Φ1(xy′) = β and Φ1(e) = Φ(e) for any other edge. See �gure 5.9
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β γ βFigure 6: Case 2.2Remark 4.6 Following notations of De�nition 4.5, if xy is the 
entral edge ofan α-free diamond D (Case 1) then an αβ-
y
le 
ontaining xy gives an αβ-
y
leof G′ 
ontaining the α-
oloured edge zz′ of the graph G′ obtained from G byredu
tion of the α-free diamond D. If D is an α-diamond that is not α-free(Case 2), then in Case 2.1 the αβ-
y
le of G 
ontaining xy gives the αβ-
y
le
{x , x′, y , y′} of G′ and in Case 2.2 an αβ-
y
le 
ontaining xy (α-
oloured in G)gives an αβ-
y
le of G′ 
ontaining xy (β-
oloured in G′). The others αβ-
y
les,if there exist, are identi
al in G and in G′.4.3 Choosing a strong mat
hing as a transversalAs pointed out before, we are interested in �nding a parti
ular transversal of
Φ(α, β) when α and β are any two distin
t 
olours of a 3-edge 
olouring.Theorem 4.7 Let G be a 3-edge 
oloured 
ubi
 graph and let Φ be a 3-edge
olouring of G. Let α and β be any two distin
t 
olours of Φ. Then there existsa strong mat
hing SMG(α, β) interse
ting every 
y
le belonging to the 2-fa
tor
Φ(α, β)Proof It is easily seen that the theorem is true for graphs with at most 8verti
es. Let us suppose that Theorem 4.7 is false and let G be a smallest 
oun-terexample. Without loss of generality we 
an suppose that G is 
onne
ted. Let
α and β be two 
olours su
h that there is no strong mat
hing of G interse
tingevery αβ-
y
le of G. 10



Claim 1 G has neither α-free edge nor β-free edge.Proof By symmetry between α and β it su�
es to prove that G has no
α-free edge. Suppose, for 
ontradi
tion, that xy is an α-free edge of G. Byminimality of G, the graph G′ obtained from G by redu
tion of the α-free edge
xy has a strong mat
hing SMG′(α, β) interse
ting every αβ-
y
le of G′. ByRemark 4.4, every αβ-
y
le of G′ is either an αβ-
y
le of G or is obtainedby redu
tion from an αβ-
y
le of G 
ontaining xy. In the last 
ase, let {e} =
SMG′(α, β)∩E(C). If e 6= x′y′ then SMG′(α, β) is a strong mat
hing SMG(α, β)of G. If e = x′y′ (
oloured with β) then either x′′ and y′′ are not in
ident to
SMG′(α, β), and we put

SMG(α, β) = SMG′(α, β) − x′y′ + xyor else
• in Case 1, a

ording to x′′ or y′′ is in
ident to SMG′(α, β) we put

SMG(α, β) = SMG′(α, β) − x′y′ + yy′or we put
SMG(α, β) = SMG′(α, β) − x′y′ + xx′

• in Case 2 we put SMG(α, β) = SMG′(α, β) − x′y′ + yy′.In any 
ase, it is a routine matter to 
he
k that SMG(α, β) so obtained is astrong mat
hing interse
ting every αβ-
y
le of G, a 
ontradi
tion. Thus, G hasno α-free edge. �Claim 2 G has neither α-diamond nor β-diamond.Proof By symmetry between α and β it su�
es to prove that G has no
α-diamond. By minimality of G, the graph G′ obtained from G by redu
tionof an α-free diamond D (Case 1, see �gure 4) or by suppression of the edge
zz′ (Cases 2.1 and 2.2, see �gures 5 and 6) has a strong mat
hing SMG′(α, β)interse
ting every αβ-
y
le of G′.

• In Case 1, if zz′ 6∈ SMG′(α, β) then set SMG(α, β) = SMG′(α, β) else set
SMG(α, β) = SMG′(α, β) − zz′ + xy.

• In Cases 2.1 and 2.2 , let uv be the edge of SMG′(α, β) 
ontained in the
αβ-
y
le of G′ using {x , x′, y , y′} set SMG(α, β) = SMG′(α, β)−uv+ xy.By Remark 4.6 SMG(α, β) is a strong mat
hing of G interse
ting every αβ-
y
leof G, but there is no su
h strong mat
hing of G. Thus, G has no α-diamond. �Claim 3 Every αβ-
y
le C of G of length ≥ 6 has no 
hord.Proof Suppose that xy is a 
hord of C. Let x′ and x′′ be the neighboursof x distin
t from y, and let y′ and y′′ be the neighbours of y distin
t from x.We suppose that the verti
es x′, x, x′′, y′, y, y′′ appear in that order on C. Let11



x
′
− and x

′′
+ be respe
tively the neighbours of x′ and x′′ on C distin
t from x.We wish to prove that x′x′′ and y′y′′ are not edges. Suppose, for 
ontradi
tion,that x′x′′ is an edge of G. By Claim 1 the verti
es x

′
−, x

′′
+ and y are notthree distin
t verti
es (otherwise x′x and x′′x will be α-free or β-free edges).Sin
e C has length at least 6, verti
es x

′
− and x

′′
+ are distin
t. Without loss ofgenerality we 
an suppose that x

′′
+ = y, that is y′ = x′′, and that Φ(x′x) = β.Sin
e x

′
− 6= y, the set {x′

−, x′, x, x′′, y, y′′} indu
es an α-diamond, 
ontrary toClaim 2. Thus, x′x′′ is not an edge, and, by symmetry, y′y′′ is not an edge. Let
G′ be the 
ubi
 graph obtained from G by deleting x and y and their in
identedges and by adding the edges x′x′′ and y′y′′. The 
y
le C gives a 
y
le C′ in
G′ of length |C| − 2. By 
olouring the edges of C′ by the 
olours α and β, andno 
hange for the other edges (whi
h are edges of G), we obtain a 3-edge 
olour-ing of G′. Let SMG′(α, β) be a strong mat
hing interse
ting every αβ-
y
le of
G′. Let us assume that SMG′(α, β) interse
ts ea
h αβ-
y
le of G′ exa
tly on
e.Whenever neither x′x′′ nor y′y′′ are 
ontained in SMG′(α, β) ∩ C then we set
SMG(α, β) = SMG′(α, β). Otherwise, let uv be the edge of SMG′(α, β) ∩ C,then we set SMG(α, β) = SMG′(α, β) − x′x′′ + x′x when uv = x′x′′ or we set
SMG(α, β) = SMG′(α, β) − y′y′′ + y′y when uv = y′y′′. Then SMG(α, β) in-terse
ts every αβ-
y
le of G, but G has no su
h strong mat
hing. Hen
e, xy isnot a 
hord of C. �Claim 4 Every αβ-
y
le C of G is a 
y
le of length 4.Proof Let C = (a0, a1, a2, ..., a2k−1) be an αβ-
y
le of length 2k ≥ 6. Letus 
onsider respe
tively a′

0, a
′

1, a
′

2, ..., a
′

2k−1 the neighbours of a0, a1, a2, ..., a2k−1not belonging to C. For every i ∈ {0, ..., 2k − 1} the edge aia
′

i is 
olouredwith the third 
olour γ and hen
e a′

0, a
′

1, a
′

2, ..., a
′

2k−1 are distin
t verti
es. ByClaim 3, ai−1ai+2 is not an edge. Sin
e aiai+1 is neither an α-free nor a β-free edge, a′

ia
′

i+1 ∈ E(G). Thus, {a′

0, a
′

1, a
′

2, ..., a
′

2k−1
} indu
es an αβ-
y
le.Hen
e, G is the union of two 
hordless αβ-
y
les C = (a0, a1, a2, ..., a2k−1)and C′ = (a′

0, a
′

1, a
′

2, ..., a
′

2k−1
) 
onne
ted by the mat
hing {a0a

′

0, a1a
′

1, a2a
′

2, ...,
a2k−1a

′

2k−1}. Sin
e k ≥ 3, it is 
lear that we 
an 
hoose an edge e on C andan edge e′ on C′ su
h that {e, e′} is a strong mat
hing, a 
ontradi
tion. Thus,
k = 2 and C is a 
y
le of length 4. �Hen
e the 2-fa
tor Φ(α, β) is redu
ed to a set of squares. By Theorem 2.2 Gwould have a Jaeger's mat
hing M = MB + MR su
h that the strong mat
hing
MB (or indi�erently MR) intere
ts every square. Thus, G does not exist andTheorem 4.7 is proved. �Corollary 4.8 Let G be a 
ubi
 graph. Then G 
an be fa
tored into two oddlinear forests L = (LB, LR) su
h thati) Ea
h path in LB has odd length at most 3ii) Ea
h path in LR has odd length at least 3.if and only if χ′(G) = 3. 12



Proof Assume that G has an odd linear partition L = (LB, LR) with theseproperties. As in Theorem 4.1 we get immediately a 3-edge 
olouring.Conversely, let α and β be two 
olours of a 3-edge 
olouring Φ of G and let
SMG(α, β) be a minimal strong mat
hing interse
ting ea
h 
y
le of Φ(α, β). If
Γ denotes the set of edges 
oloured by γ then LB = Γ + SMG(α, β) is a set ofodd paths of length at most 3. While LR = Φ(α, β) \ SMG(α, β) is a set of oddpaths of length at least 3 (re
all that, G being simple, every bi
oloured 
y
lehas length at least 4). Hen
e, (LB, LR) is an odd linear partition satisfying
onditions i) and ii).

�4.4 Uni
oloured transversalIn this se
tion we derive from Theorem 4.7 a result on uni
oloured transversalsof the 2-fa
tors indu
ed by any 3 edge-
olouring of 
ubi
 graph with 
hromati
index 3. Let us �rst state a useful Lemma (folklore).Lemma 4.9 Let G = (V, E) be a multi-graph then it is always possible to givean orientation to its edge set in su
h a way that for any vertex v |d+(v) −
d−(v)| ≤ 1 (where d+(v) denotes as usual the outdegree of v and d−(v) itsindegree).Proof Without loss of generality we 
onsider that G is 
onne
ted. Add amat
hing of extra edges between verti
es of odd degrees in G (sin
e there is aneven number of verti
es with odd degree) in order to get an eulerian graph G′.We orient the edges of G′ following an eulerian tour. It is a routine matter to
he
k that the orientation indu
ed in G satis�es our requirement. �Theorem 4.10 Let G be a 
ubi
 3-edge 
olourable graph and let Φ be a 3-edge 
olouring of G. Let α and β be any two distin
t 
olours of Φ and let γ bethe third 
olour. Then there exists a set Fα of α-edges interse
ting every 
y
lebelonging to the 2-fa
tor Φ(α, β) su
h that the set Fα together with the γ-edgeshas no 
y
le.Proof We know by Theorem 4.7 that there exists a strong mat
hing SMG(α, β)interse
ting every 
y
le of the 2-fa
tor Φ(α, β).Let A be the set of α-edges of SMG(α, β) while B is the set of remaining
β-edges of SMG(α, β). We may assume that B is not empty, for otherwise weset Fα = A and we are done.Let A′ be the set of α-edges of G whi
h are in
ident to an edge of B. Forea
h edge e ∈ A′, the atta
hment vertex of e will be the vertex in
ident to theedge of B. B being a strong mat
hing this atta
hment vertex is well de�ned.We intend to de�ne Fα as a subset of A∪A′ whi
h 
ontains A and thus we fo
uson the αγ-
y
les of G whose α-edges belong to A ∪ A′.Claim An αγ-
y
le of G whose all α-edges belong to A ∪ A′ 
annot 
ontainany edge of A. 13



Proof Let C = x0y0x1y1 . . . xkyk be an αγ-
y
le of G whose all α-edges belongto A∪A′. Assume that xiyi are α-edges while yixi+1 are γ-edges (i being takenmodulo k + 1). Let us suppose that x0y0 ∈ A. The edge x1y1 is 
ertainly in
A′, otherwise A should not be a strong mat
hing. The atta
hement vertex of
x1y1 
annot be x1 otherwise A ∪ B is not a strong mat
hing. Considering now
x2y2, we 
an say that this edge is not in A (otherwise A ∪ B is not a strongmat
hing) and its atta
hment vertex 
annot be x2 (otherwise B is not a strongmat
hing). Running through the set of α-edges xiyi we 
an show in the sameway that these edges are in A′ and their atta
hment verti
es are 
ertainly the
yi's. We obtain thus a 
ontradi
tion with xkyk sin
e this edge is in A′ and itsatta
hment vertex is yk whi
h is impossible sin
e yk is adja
ent to x0 �Let C be the set of γ-edges whi
h are in
ident to an edge of A′ and H be thesubgraph of G whose edge-set is A′ ∪C, obviously the 
onne
ted 
omponents of
H are paths or 
y
les. By Claim every αγ-
y
le of G whose all α-edges belongto A ∪ A′ is also a 
y
le of H .Every edge of B is in
ident in G to a 
onne
ted 
omponent of H , thus wede�ne an auxiliary graph, namely H ′, in the following way : the verti
es of
H ′ are the 
onne
ted 
omponents of H while it's edge-set is B. Sin
e every
onne
ted 
omponent of H 
ontains at least one edge of A′ there is no isolatedvertex in H ′.Using lemma 4.9, we 
an �nd an orientation of the edges of H ′ su
h thatevery vertex of H ′ of degree at least 2 has an in-going edge and an out-goingedge.For any edge e of B we denote o(e) the endpoint of e with respe
t of theprevious orientation of H ′ and we de�ne a one-to-one mapping f : B −→ A′ :given an edge e of B, f(e) is the α-edge of A′ whose atta
hment vertex is o(e).We set Fα = A ∪ {f(e)|e ∈ B}. Observe that Fα is a set of α-edges. Sin
e
A∪B 
overs all αβ-
y
les of G and sin
e e and f(e) belong to the same αβ-
y
leof G, Fα 
overs all αβ-
y
les of G. Moreover, suppose that C is an αγ-
y
le of
G whose α-edges are members of Fα. Then C is an αγ-
y
le of H and has avertex of degree at least 2 in H ′. But now, the α-edge of C whi
h is in
ident toan out-going edge of C does not belong to Fα, a 
ontradi
tion. �Remark 4.11 It is possible to derive a linear time algorithm for the 
onstru
-tion of the uni
oloured transversal Fα of Theorem 4.10 on
e the 3-edge 
olouring
Φ and the strong mat
hing des
ribed in Theorem 4.7 are given.Referen
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