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On odd and semi-odd linear partitions of ubigraphsJ.L. Fouquet, H. Thuillier , J.M. VanherpeL.I.F.O., Faulté des Sienes, B.P. 6759Université d'Orléans, 45067 Orléans Cedex 2, FRandA.P. WojdaWydzial Matematyki Stosowanej Zaklad Matematyki DyskretnejA.G.H., Al. Mikiewiza 30, 30-059 Kraków, PLJuly 26, 2007AbstratA linear forest is a graph whose onneted omponents are hordlesspaths. A linear partition of a graph G is a partition of its edge set intolinear forests and la(G) is the minimum number of linear forests in a linearpartition.In this paper we onsider linear partitions of ubi simple graphs forwhih it is well known that la(G) = 2. A linear partition L = (LB , LR) issaid to be odd whenever eah path of LB∪LR has odd length and semi-oddwhenever eah path of LB (or eah path of LR) has odd length.In [2℄ Aldred and Wormald showed that a ubi graph G is 3-edgeolourable if and only if G has an odd linear partition. We give heremore preise results and we study moreover relationships between semi-odd linear partitions and perfet mathing1 Introdution.As usually, for any undireted graph G, we denote by V (G) the set of its vertiesand by E(G) the set of its edges and we onsider, as usual, that |V (G)| = n and
|E(G)| = m. If F ⊆ E(G) then V (F ) is the set of verties whih are inidentwith some edges of F . For any path P we shall denote by l(P ) the length of P ,that is to say the number of its edges. A vertex of a path P distint from anend-vertex is said to be an internal vertex. If u and v are verties of a path Pthen P [u, v] denotes the subpath of P whose end-verties are u and v. A strongmathing C in a graph G is a mathing C suh that there is no edge of E(G)onneting any two edges of C, or, equivalently, suh that C is the edge-set ofthe subgraph of G indued by the vertex-set V (C). A 2-fator of G is a spanningsubgraph whose omponents are yles. If every yle of a 2-fator has an evenlength then we say that this 2-fator is an even 2-fator.A linear-k-forest is a forest whose omponents are paths of length at most
k. The linear-k-arboriity of an undireted graph G is de�ned in [5℄ as the2



minimum number of linear-k-forests needed to partition the set E(G). Thelinear-k-arboriity is a natural re�nement of the linear-arboriity introdued byHarary [7℄ (orresponding to linear-(n − 1)-arboriity). The linear-k-arboriitywill be denoted by lak(G).Let χ
′

(G) be the lassial hromati index (minimum edge olouring) and let
la(G) be the linear arboriity of G. We learly have:

la(G) = lan−1(G) ≤ lan−2(G) ≤ ... ≤ la2(G) ≤ la1(G) = χ
′

(G) .We know by Vizing's Theorem [11℄ that la1(G) ≤ ∆(G) + 1 (where ∆(G) is themaximum degree of G). For any k ≥ 2, we have (lower bound omes from [6℄and upper bound from [3℄)
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≤ lak(G) ≤ ∆(G) .In this paper we onsider ubi graphs, that is to say �nite simple 3-regulargraphs. Sine in a ubi graph G we have 3n = 2m, by the previous formula weobtain:
la2(G) = 3 and for any k ≥ 3, 2 ≤ lak(G) ≤ 3 .It was shown by Akiyama, Exoo and Harary [1℄ that la(G) = 2 when G isubi. In [3℄ Bermond et al. onjetured that la5(G) = 2. Thomassen [10℄proved the onjeture, whih is best possible sine, in view of la4(K3,3) = 3 and

la4(PR3) = 3, 5 annot be replaed by 4.A partition of E(G) into two linear forests LB and LR will be alled a linearpartition and we shall denote this linear partition L = (LB, LR) . An odd linearforest is a linear forest in whih eah path is a path of odd length. A semi-oddlinear partition is a linear partition L = LB ∪LR suh that LB or LR is an oddlinear forest. An odd linear partition is a partition of E(G) into two odd linearforests. For i ∈ {B, R} let ω(Li) be the number of omponents (or maximalpaths) of Li. Sine every vertex of G is either end-vertex of a maximal path of
LB or end-vertex of a maximal path of LR, we have

ω(LB) + ω(LR) =
|V (G)|

2
.2 Jaeger's graphsA speial lass of ubi graphs will be onsidered (Jaeger's graphs in the sequel)and we shall see that these graphs have nie properties leading to new questions(to be developed into forthoming setions) for the whole set of ubi simplegraphs.De�nition 2.1 We shall say that a ubi graph G is a Jaeger's graph whenever

G ontains a perfet mathing union of two disjoint strong mathings. Let usall a Jaeger's mathing a perfet mathing whih is the union of two strongmathings.In his thesis [9℄ Jaeger alled these ubi graphs equitable and pointed out thatthe above two oloring of their verties indued by a Jaeger's mathing leads toa balaned olouring as de�ned by Bondy [4℄.3



When G is a ubi graph having a 2-fator of C4's, say F , we onsider theauxiliary 2-regular graph G′ de�ned as follows : every C4 of F is replaed withits omplementary graph (whih is a 2K2).Theorem 2.2 Let G be a onneted ubi graph having a 2-fator of squares,say F and let p be the number of yles of G′. Then there are 2p−1 Jaeger'smathings whih interset F .Proof We �rst prove that there are at most two types of Jaeger's mathingsin G.Claim Let M = MB ∪ MR be a Jaeger's mathing of G, if M intersets Fthen every C4 of F ontains an edge of MB and an edge of MR.Proof of Claim Reall that MB and MR are strong mathings. Without lossof generality we may assume that there is some edge say ab of some C4 in F ,say abcd whih belongs to MB. Sine M is a perfet mathing and MB is astrong mathing the verties c and d must be the endpoint of some edge(s) of
MR. Sine MR is a strong mathing we have cd ∈ MR. Let a′b′c′d′ be another
C4 of F whih is onneted to abcd by some edge say aa′. The edge aa′ is notan edge of M (M is a mathing), sine a′ must be an endpoint of an edge of
MR, MR intersets a′b′c′d′. Consequently, G being onneted we have that MBand MR interset all yles of F . �It follows that a Jaeger's mathing of G is either ontained into F or disjointfrom F .We now establish a orrespondene between the orientations of the yles of G′and the Jaeger's mathings of G whih interset F .Let us give an orientation of the yles of G′. Going bak now to G, eah C4 of
F has an edge onneted to two out-going edges and an edge onneted to twoin-going edges. Let MB be the set of edges onneted to two out-going edgesover all the C4's of F while MR ontains the edges onneted to two in-goingedges. It's an easy task to hek that MB ∪ MR is a Jaeger's mathing of G.Conversely let us onsider a Jaeger's mathing M = MB ∪ MR of G whihintersets F . By the above Claim, eah C4 of F ontains an edge of MB andan edge of MR. For any C4 of F and for any vertex v of this C4 we denote evthe edge of E(G)\E(F) that is adjaent to v. We know that v is an endpoint ofan edge in MB or in MR. We give an orientation to the edge ev in suh a waythat ev is an out-going edge (that is v is the origin) if and only if v is endpointof an edge of MB. Sine every edge of E(G)\E(F) is onneted to two C4's of Fthose edges are oriented twie ; more preisely : when aa′ is an edge onnetingtwo yles of F , say abcd and a′b′c′d′, if aa′ = ea is an out-going edge for theyle abcd then aa′ = ea′ must be an in-going edge for a′b′c′d′ for otherwise MBwould no be a strong mathing. Consequently the given orientation of all edges
ev (v ∈ V (G)) extends to an orientation of the yles of G′.We have 2p possible orientations of the yles of G′. A given orientation ofeah yle of G′ and the opposite orientations of these yles yield to the samepartition of M , onsequently, there are 2p−1 Jaeger's mathings interseting the4



2-fator F of G. This �nishes the proof. �By Theorem 2.2 every ubi graph having a 2-fator of squares has at leastone Jaeger's mathing. Hene we onlude this subsetion with the followingorollary.Corollary 2.3 A ubi graph having a 2-fator of squares is a Jaeger's graph.Furthermore, we an derive from Theorem 2.2 a simple linear time algorithmfor �nding a Jaeger's mathing in a onneted ubi graph whih have a 2-fatorof squares.It an be notied that every ubi graph with a perfet mathing M an betransformed into a Jaeger's graph by using the transformation (square exten-sion) depited in �gure 1 on eah edge of M . Indeed, the resulting graph has a
2-fator of squares and we an apply Theorem 2.2

Figure 1: Square ExtensionCorollary 2.4 A onneted ubi graph is 3-edge olourable if and only if thereis a perfet mathing N suh that the ubi graph obtained in using a squareextension on eah edge of N leads to a Jaeger's graph having an odd number (atleast 3) of Jaeger's mathings.Proof Let G be a ubi graph suh that G′, obtained from G by squareextensions on eah edge of N , has an odd number of Jaeger's mathings. Let
F be the 2-fator of C4's of G′ obtained by these square extensions. Sine G′has an odd number of Jaeger's mathings, Theorem 2.2 says that there is aJaeger's mathing M of G′ whih avoids all the edges of F . Clearly, there is abijetion between M and the 2− fator E(G) \ N . Sine M is the union of thestrong mathings MB and MR, going bak to G the edges of MB ∪MR give riseto an even 2-fator E(G) \ N of G whih, together with N , leads to a 3−edgeolouring of G.Conversely, assume that G is 3−edge olourable. Then extending eah edge of agiven olour in a 3−edge olouring of G leads to a graph G′ whih has a 2-fatorof squares. We an hoose the square of G′ extending an edge of G of the givenolour in suh a way that any of the two other olours indues a strong math-ing. Indeed, the edges of the two other olours give rise to a Jaeger's mathingin G′ avoiding every square so onstruted and Theorem 2.2 applies. �3 Semi-odd linear partitionsTheorem 3.1 Let G be ubi graph having a perfet mathing M . Then thereexists a set F ⊆ E(G) − M interseting eah yle of the 2-fator G − M suh5



that F + M is an odd linear forest.Proof Let {C1, C2, · · · , Ck} be the yles of G−M (with k ≥ 1). Clearly if e isan edge of C1 then the set M ∪{e} indues an odd linear forest of G (made of apath of length 3 and a mathing). Let us suppose that k ≥ 2 and let i suh that
1 ≤ i < k. We suppose that for every j with 1 ≤ j ≤ i we have hosen an edge
ej of Cj suh that Fi + M is an odd linear forest (with Fi = {e1, e2, · · · , ei}).Let xy be an edge of Ci+1. If Fi + M + xy ontains a yle then xy belongs tothis yle. Thus, Fi + M ontains a path P having x and y as end verties. Let
z be the neighbour of y on Ci+1 distint from x. Then, Fi +M + yz ontains noyle (if it ontains a yle, then Fi + M ontains a path P ′ having y and z asend verties, ontraditing the existene of P ). So, Ci+1 ontains an edge, say
ei+1, suh that Fi + ei+1 + M is an odd linear forest. Let us denote Fi + ei+1by Fi+1. The results follows by indution. �De�nition 3.2 For every odd path P = [a0, a1, · · · , a2l+1], with l ≥ 0, wesay that the edges {a0a1, a2a3, · · · , a2la2l+1} are at even distane from the endverties of P .Theorem 3.3 A ubi graph has a perfet mathing if and only if it has asemi-odd linear partition.Proof If M is a perfet mathing then by Theorem 3.1 the graph has a set ofedges F interseting every yle of the 2-fator suh that F +M is an odd linearforest G − M . Set LB = F + M and LR = G − F − M Then, L = (LB, LR) isa semi-odd linear partition.Conversely, if the graph has a semi-odd linear partition L = (LB, LR) , wesuppose without loss of generality that LB is an odd linear forest. Let M bethe set of edges of LB at even distane from the end verties of the maximalpaths of LB. It is a routine matter to hek that M is a mathing. Sine LB isa spanning forest, M is a perfet mathing. �For any ubi graph G having a perfet mathing we denote by ρ(G) the min-imum number of even maximal paths appearing in a semi-odd linear partition.If ρ(L) denotes the number of even maximal paths of a semi-odd linear partition
L = (LB, LR) , then ρ(G) = Min{ρ(L)|L is a semi − odd linear partition of G}For any ubi graphG having a 2-fator we denote by o(G) the minimum numberof odd yles appearing in a 2-fator of G (we note that o(G) is an even number).Theorem 3.4 Let G be a ubi graph having a 2-fator (or, equivalently, aperfet mathing M). Then ρ(G) = o(G).Proof Let {C1, C2, · · · , Ck} be a 2-fator of G having o(G) odd yles, andlet M be the perfet mathing assoiated to this 2-fator. By Theorem 3.1 wean hoose a set of edges F (one by yle) suh that F + M is an odd linearforest LB. The set E(G)−E(LB) indues a linear forest LR and we onsider thesemi-odd linear partition L = (LB, LR) . The number ρ(L) of even maximal6



paths of LR is equal to the number o(G) of odd yles in {C1, C2, · · · , Ck}.Thus, ρ(G) ≤ o(G).Let L = (LB, LR) be a semi-odd linear partition suh that LB is an odd lin-ear forest. As in Proof of Theorem 3.3, let M be the perfet mathing made ofthe edges of LB at even distane from the end verties of the maximal paths of
LB, and let {C1, C2, · · · , Ck} be the 2-fator G−M . Every path of LB of length
≥ 3 intersets this 2-fator and we see that E(LB)∩(E(C1)∪E(C2) · · ·∪E(Ck))is a mathing. Now onsider any yle Ci of this 2-fator. Clearly, E(LB) inter-sets E(Ci). Let {e1, e2, · · · , er} = E(LB)∩E(Ci). We see that E(Ci)−E(LB)indues a set of elementary paths {P1, P2, · · · , Pr} whih are preisely maximalpaths of LR. If P1, P2, · · · , Pr have odd lengths then |E(Ci)| = r +

∑j=r

j=1
l(Pj)is even. Thus, if Ci is an odd yle then at least one of these paths has aneven length. Then, ρ(L) is greater or equal to the number of odd yle in

{C1, C2, · · · , Ck}. Hene, ρ(L) ≥ o(G). By hoosing L suh that ρ(L) = ρ(G),we obtain ρ(G) ≥ o(G). �Corollary 3.5 (see [2℄) Let G be a ubi graph having a perfet mathing.Then the follwing properties are equivalent:1. ρ(G) = 02. G is 3-edge olourable (that is χ′(G) = 3).3. G an be fatored into two odd linear forests4 Odd linear partitionsLet G be a ubi graph. Assume that L = (LB, LR) is a linear partition of itsedge set. By olouring alternately the edges of the maximal paths in LB with
α and γ and those of LR with β and δ, we get a 4-edge olouring. Aldred andWormald [2℄ proved that a ubi graph G an be fatored into two odd linearforests if and only if G is 3-edge oloured (i.e. χ′(G) = 3).Assume that G is a ubi 3-edge olourable graph and let Φ be a 3-edgeolouring of G. For any edge e, let us denote the olour of e by Φ(e) . Let
α and β be any two distint olours of Φ and let γ be the third olour. Thesubset of the edges of G oloured with α or with β indues an even 2-fator Inthe following the 2-fator indued by any two distint olours α and β will bedenoted by Φ(α, β). Any yle of Φ(α, β) is said to be an αβ-yle. Sine α and
β are arbitrary olours it is lear that the onneted omponents of a 3-edgeolourable ubi graph are 2-onneted subgraphs.4.1 Aldred and Wormald 's theoremFor the sake of ompleteness (and also for the reason that in the following wewill re�ne their tehnique), we give here the proof of Aldred and Wormald'stheorem.Theorem 4.1 [2℄ Let G be a ubi graph. Then G an be fatored into two oddlinear forests if and only if χ′(G) = 3. 7



Proof Suppose that L = (LB, LR) is an odd partition of G. Colour the edgesof the paths in LB alternately with α and γ so that eah path in LB has its�rst and last edges oloured with α. Similarly, olour the edges of the paths in
LR alternately with β and γ so that eah path in LR has its �rst and last edgesoloured with β. This yields a proper 3-edge olouring of G.Conversely let us suppose that χ′(G) = 3 and that we have a proper 3-edgeolouring using α, β and γ as olours. From eah yle of Φ(α, γ) pik an edge,and let F be the set of these edges. Remark that the subgraph of G formedby F and the perfet mathing R indued by olour β has onneted ompo-nents whih are odd paths and, possibly, even yles. We an break eah evenyle by hoosing an edge oloured with β (let F ′ be this set of edges). It isa routine matter to hek now that LR = R + F − F ′ is a set of odd paths aswell as LB = Φ(α, γ)−F +F ′, leading to the odd partition L = (LB, LR) of G. �The remarkable point here is that F is a minimal transversal of the yles of
Φ(α, γ) where eah edge of F has been hosen at random. In the next subsetionswe shall see that when suitably hoosing edges in F we are led to more preiseresults.4.2 RedutionsWe need some spei� de�nitions for this setion. We onsider a ubi 3-edgeolourable graph G and a 3-edge olouring Φ of G.De�nition 4.2 Let α and β be any two distint olours of Φ. In the following
SMG(α, β) will denote a strong mathing of G interseting every αβ-yle (whensuh a strong mathing exists).De�nition 4.3 Let α and β be any two distint olours of Φ. Let xy be anedge of G and let x′ and x′′ (respetively y′ and y′′) be the (distint) neighboursof x (of y, respetively) distint from y (respetively x) suh that x′ 6= y′′ or
x′′ 6= y′ and suppose that x′y′ and x′′y′′ are not edges of G. Let us supposethat Φ(xy) = α, Φ(xx′) = Φ(yy′) = β and Φ(xx′′) = Φ(yy′′) = γ. If x′ 6= y′′or x′′ 6= y′ then the edge xy is said to be an α-free edge. Note that edge
x′y′′ (respetively x′′y′) may exist, and in this ase Φ(x′y′′) = α (respetively
Φ(x′′y′) = α). We notie that, without loss of generality, there are two ases:

• Case 1 : x′ 6= y′′ and x′′ 6= y′

• Case 2 : x′ = y′′ and x′′ 6= y′The 3-edge oloured ubi graph G′ on (n − 2) verties obtained from G bydeleting verties x and y and their inident edges and adding the edges x′y′and x′′y′′, oloured respetively by β and γ, is said to be obtained from G byredution of an α-free edge. Situations are depited on �gures 2 and 3. Clearly, if
G ontains a triangle (a yle of length 3) T suh that the three edges onneting
T to G−T are independent then every edge of T is a free edge (i.e. α-free edgeif its olour is α).Remark 4.4 Following the notations of De�nition 4.3, if xy is an α-free edgeof G, the αβ-yle of G ontaining xy gives the αβ-yle of G′ ontaining the
β-oloured edge x′y′ of the graph G′ obtained from G by redution of the α-freeedge xy. The others αβ-yles, if they exist, are idential in G and in G′.8
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x′ = y′′ and x′′ = y′ (that is xy is a hord of the subgraph indued on
{x, x′, y, y′}) and suppose that the omponent of G ontaining {x, x′, y, y′}is distint from K4. Let z (respetively z′) be the neighbour of x′ (respetively
y′) distint from x and y. We note that z 6= y′ and z′ 6= x′. Sine any om-ponent of G is 2-onneted , z and z′ are distint verties. The subgraph Dindued on {x , x′, y , y′} is usually alled a diamond. The edge xy is alled theentral edge of D. Clearly, the entral edge of D and the two edges of the 2-utonneting D to the rest of G have the same olour. A diamond whose entraledge have olour α is said to be an α-diamond. There are two ases aordingto zz′ /∈ E(G) (Case 1) or zz′ ∈ E(G) (Case 2). In Case 1, an α-diamond issaid to be an α-free diamond. The 3-edge oloured ubi graph G′ on (n − 4)verties obtained from G by deleting D and its inident edges and adding theedge zz′ oloured with α is said to be obtained from G by redution of an α-freediamond. See �gure 4.
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Claim 1 G has neither α-free edge nor β-free edge.Proof By symmetry between α and β it su�es to prove that G has no
α-free edge. Suppose, for ontradition, that xy is an α-free edge of G. Byminimality of G, the graph G′ obtained from G by redution of the α-free edge
xy has a strong mathing SMG′(α, β) interseting every αβ-yle of G′. ByRemark 4.4, every αβ-yle of G′ is either an αβ-yle of G or is obtainedby redution from an αβ-yle of G ontaining xy. In the last ase, let {e} =
SMG′(α, β)∩E(C). If e 6= x′y′ then SMG′(α, β) is a strong mathing SMG(α, β)of G. If e = x′y′ (oloured with β) then either x′′ and y′′ are not inident to
SMG′(α, β), and we put

SMG(α, β) = SMG′(α, β) − x′y′ + xyor else
• in Case 1, aording to x′′ or y′′ is inident to SMG′(α, β) we put

SMG(α, β) = SMG′(α, β) − x′y′ + yy′or we put
SMG(α, β) = SMG′(α, β) − x′y′ + xx′

• in Case 2 we put SMG(α, β) = SMG′(α, β) − x′y′ + yy′.In any ase, it is a routine matter to hek that SMG(α, β) so obtained is astrong mathing interseting every αβ-yle of G, a ontradition. Thus, G hasno α-free edge. �Claim 2 G has neither α-diamond nor β-diamond.Proof By symmetry between α and β it su�es to prove that G has no
α-diamond. By minimality of G, the graph G′ obtained from G by redutionof an α-free diamond D (Case 1, see �gure 4) or by suppression of the edge
zz′ (Cases 2.1 and 2.2, see �gures 5 and 6) has a strong mathing SMG′(α, β)interseting every αβ-yle of G′.

• In Case 1, if zz′ 6∈ SMG′(α, β) then set SMG(α, β) = SMG′(α, β) else set
SMG(α, β) = SMG′(α, β) − zz′ + xy.

• In Cases 2.1 and 2.2 , let uv be the edge of SMG′(α, β) ontained in the
αβ-yle of G′ using {x , x′, y , y′} set SMG(α, β) = SMG′(α, β)−uv+ xy.By Remark 4.6 SMG(α, β) is a strong mathing of G interseting every αβ-yleof G, but there is no suh strong mathing of G. Thus, G has no α-diamond. �Claim 3 Every αβ-yle C of G of length ≥ 6 has no hord.Proof Suppose that xy is a hord of C. Let x′ and x′′ be the neighboursof x distint from y, and let y′ and y′′ be the neighbours of y distint from x.We suppose that the verties x′, x, x′′, y′, y, y′′ appear in that order on C. Let11



x
′
− and x

′′
+ be respetively the neighbours of x′ and x′′ on C distint from x.We wish to prove that x′x′′ and y′y′′ are not edges. Suppose, for ontradition,that x′x′′ is an edge of G. By Claim 1 the verties x

′
−, x

′′
+ and y are notthree distint verties (otherwise x′x and x′′x will be α-free or β-free edges).Sine C has length at least 6, verties x

′
− and x

′′
+ are distint. Without loss ofgenerality we an suppose that x

′′
+ = y, that is y′ = x′′, and that Φ(x′x) = β.Sine x

′
− 6= y, the set {x′

−, x′, x, x′′, y, y′′} indues an α-diamond, ontrary toClaim 2. Thus, x′x′′ is not an edge, and, by symmetry, y′y′′ is not an edge. Let
G′ be the ubi graph obtained from G by deleting x and y and their inidentedges and by adding the edges x′x′′ and y′y′′. The yle C gives a yle C′ in
G′ of length |C| − 2. By olouring the edges of C′ by the olours α and β, andno hange for the other edges (whih are edges of G), we obtain a 3-edge olour-ing of G′. Let SMG′(α, β) be a strong mathing interseting every αβ-yle of
G′. Let us assume that SMG′(α, β) intersets eah αβ-yle of G′ exatly one.Whenever neither x′x′′ nor y′y′′ are ontained in SMG′(α, β) ∩ C then we set
SMG(α, β) = SMG′(α, β). Otherwise, let uv be the edge of SMG′(α, β) ∩ C,then we set SMG(α, β) = SMG′(α, β) − x′x′′ + x′x when uv = x′x′′ or we set
SMG(α, β) = SMG′(α, β) − y′y′′ + y′y when uv = y′y′′. Then SMG(α, β) in-tersets every αβ-yle of G, but G has no suh strong mathing. Hene, xy isnot a hord of C. �Claim 4 Every αβ-yle C of G is a yle of length 4.Proof Let C = (a0, a1, a2, ..., a2k−1) be an αβ-yle of length 2k ≥ 6. Letus onsider respetively a′

0, a
′

1, a
′

2, ..., a
′

2k−1 the neighbours of a0, a1, a2, ..., a2k−1not belonging to C. For every i ∈ {0, ..., 2k − 1} the edge aia
′

i is olouredwith the third olour γ and hene a′

0, a
′

1, a
′

2, ..., a
′

2k−1 are distint verties. ByClaim 3, ai−1ai+2 is not an edge. Sine aiai+1 is neither an α-free nor a β-free edge, a′

ia
′

i+1 ∈ E(G). Thus, {a′

0, a
′

1, a
′

2, ..., a
′

2k−1
} indues an αβ-yle.Hene, G is the union of two hordless αβ-yles C = (a0, a1, a2, ..., a2k−1)and C′ = (a′

0, a
′

1, a
′

2, ..., a
′

2k−1
) onneted by the mathing {a0a

′

0, a1a
′

1, a2a
′

2, ...,
a2k−1a

′

2k−1}. Sine k ≥ 3, it is lear that we an hoose an edge e on C andan edge e′ on C′ suh that {e, e′} is a strong mathing, a ontradition. Thus,
k = 2 and C is a yle of length 4. �Hene the 2-fator Φ(α, β) is redued to a set of squares. By Theorem 2.2 Gwould have a Jaeger's mathing M = MB + MR suh that the strong mathing
MB (or indi�erently MR) interets every square. Thus, G does not exist andTheorem 4.7 is proved. �Corollary 4.8 Let G be a ubi graph. Then G an be fatored into two oddlinear forests L = (LB, LR) suh thati) Eah path in LB has odd length at most 3ii) Eah path in LR has odd length at least 3.if and only if χ′(G) = 3. 12



Proof Assume that G has an odd linear partition L = (LB, LR) with theseproperties. As in Theorem 4.1 we get immediately a 3-edge olouring.Conversely, let α and β be two olours of a 3-edge olouring Φ of G and let
SMG(α, β) be a minimal strong mathing interseting eah yle of Φ(α, β). If
Γ denotes the set of edges oloured by γ then LB = Γ + SMG(α, β) is a set ofodd paths of length at most 3. While LR = Φ(α, β) \ SMG(α, β) is a set of oddpaths of length at least 3 (reall that, G being simple, every bioloured ylehas length at least 4). Hene, (LB, LR) is an odd linear partition satisfyingonditions i) and ii).

�4.4 Unioloured transversalIn this setion we derive from Theorem 4.7 a result on unioloured transversalsof the 2-fators indued by any 3 edge-olouring of ubi graph with hromatiindex 3. Let us �rst state a useful Lemma (folklore).Lemma 4.9 Let G = (V, E) be a multi-graph then it is always possible to givean orientation to its edge set in suh a way that for any vertex v |d+(v) −
d−(v)| ≤ 1 (where d+(v) denotes as usual the outdegree of v and d−(v) itsindegree).Proof Without loss of generality we onsider that G is onneted. Add amathing of extra edges between verties of odd degrees in G (sine there is aneven number of verties with odd degree) in order to get an eulerian graph G′.We orient the edges of G′ following an eulerian tour. It is a routine matter tohek that the orientation indued in G satis�es our requirement. �Theorem 4.10 Let G be a ubi 3-edge olourable graph and let Φ be a 3-edge olouring of G. Let α and β be any two distint olours of Φ and let γ bethe third olour. Then there exists a set Fα of α-edges interseting every ylebelonging to the 2-fator Φ(α, β) suh that the set Fα together with the γ-edgeshas no yle.Proof We know by Theorem 4.7 that there exists a strong mathing SMG(α, β)interseting every yle of the 2-fator Φ(α, β).Let A be the set of α-edges of SMG(α, β) while B is the set of remaining
β-edges of SMG(α, β). We may assume that B is not empty, for otherwise weset Fα = A and we are done.Let A′ be the set of α-edges of G whih are inident to an edge of B. Foreah edge e ∈ A′, the attahment vertex of e will be the vertex inident to theedge of B. B being a strong mathing this attahment vertex is well de�ned.We intend to de�ne Fα as a subset of A∪A′ whih ontains A and thus we fouson the αγ-yles of G whose α-edges belong to A ∪ A′.Claim An αγ-yle of G whose all α-edges belong to A ∪ A′ annot ontainany edge of A. 13



Proof Let C = x0y0x1y1 . . . xkyk be an αγ-yle of G whose all α-edges belongto A∪A′. Assume that xiyi are α-edges while yixi+1 are γ-edges (i being takenmodulo k + 1). Let us suppose that x0y0 ∈ A. The edge x1y1 is ertainly in
A′, otherwise A should not be a strong mathing. The attahement vertex of
x1y1 annot be x1 otherwise A ∪ B is not a strong mathing. Considering now
x2y2, we an say that this edge is not in A (otherwise A ∪ B is not a strongmathing) and its attahment vertex annot be x2 (otherwise B is not a strongmathing). Running through the set of α-edges xiyi we an show in the sameway that these edges are in A′ and their attahment verties are ertainly the
yi's. We obtain thus a ontradition with xkyk sine this edge is in A′ and itsattahment vertex is yk whih is impossible sine yk is adjaent to x0 �Let C be the set of γ-edges whih are inident to an edge of A′ and H be thesubgraph of G whose edge-set is A′ ∪C, obviously the onneted omponents of
H are paths or yles. By Claim every αγ-yle of G whose all α-edges belongto A ∪ A′ is also a yle of H .Every edge of B is inident in G to a onneted omponent of H , thus wede�ne an auxiliary graph, namely H ′, in the following way : the verties of
H ′ are the onneted omponents of H while it's edge-set is B. Sine everyonneted omponent of H ontains at least one edge of A′ there is no isolatedvertex in H ′.Using lemma 4.9, we an �nd an orientation of the edges of H ′ suh thatevery vertex of H ′ of degree at least 2 has an in-going edge and an out-goingedge.For any edge e of B we denote o(e) the endpoint of e with respet of theprevious orientation of H ′ and we de�ne a one-to-one mapping f : B −→ A′ :given an edge e of B, f(e) is the α-edge of A′ whose attahment vertex is o(e).We set Fα = A ∪ {f(e)|e ∈ B}. Observe that Fα is a set of α-edges. Sine
A∪B overs all αβ-yles of G and sine e and f(e) belong to the same αβ-yleof G, Fα overs all αβ-yles of G. Moreover, suppose that C is an αγ-yle of
G whose α-edges are members of Fα. Then C is an αγ-yle of H and has avertex of degree at least 2 in H ′. But now, the α-edge of C whih is inident toan out-going edge of C does not belong to Fα, a ontradition. �Remark 4.11 It is possible to derive a linear time algorithm for the onstru-tion of the unioloured transversal Fα of Theorem 4.10 one the 3-edge olouring
Φ and the strong mathing desribed in Theorem 4.7 are given.Referenes[1℄ J. Akiyama, G. Exoo and F. Harary, "Covering and Paking in graphs III",Cyli and Ayli Invariant, Math. Slovaa, 30, (1980), 405-417.[2℄ R.E.L. Aldred and N.C. Wormald, " More on the linear k-arboriity of reg-ular graphs", Australas. J. Combin. 18, (1998), 97-104.[3℄ J.C. Bermond, J.L. Fouquet, M. Habib, B. Perohe, "On linear k-arboriity",Disrete Math 52, (1984), 123-132.14
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