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Abstract

This paper deals with overlapping clustering, a trade off between crisp and
fuzzy clustering. It has been motivated by recent applications in various domains
such as Information Retrieval or biology. We show that the problem of finding
a suitable coverage of data by overlapping clusters is not a trivial task and we
propose the algorithm OKM that generalizes the k-means algorithm combining
a new objective criterion coupled with an optimization heuristic. Experimen-
tal results in the context of document clustering show that OKM first generates
suitables overlaps between classes and then outperforms the overlapping clusters
derived from fuzzy approaches (e.g. fuzzy-k-means).

1 Introduction
Clustering is a field of research belonging to both data analysis and machine learning
major domains. Because new challenges appear permanently, new approaches have to
be developed to deal with large amount of data, heterogeneous in nature (numerical,
symbolic, spatial, etc.) and to produce several types of clustering schemes (crisp,
overlapping or fuzzy partitions and hierarchies).

Many methodologies have been proposed in order to organize, to summarize or to
simplify a dataset into a set of clusters such that data belonging to a same cluster are
similar and data from different clusters are dissimilar. The clustering process is usually
based on a proximity measure or, in a more general way, on the properties that data
share. We can mention three major types of clustering processes according to the way
they organize data: hierarchical, partitioning and mixture model methods [13, 3].

Most of the clustering methods have been developed in these frameworks in the
last decades and allow a large amount of application fields. Nevertheless, some fields
which led to recent attentions are still inefficiently processed. This is all the more
true when the natural classes of data are neither disjoint nor fuzzy but clearly overlap.
This situation occurs in important fields of applications such that Information Retrieval
(several thematics for a single document), biological data (several metabolic functions
for one gene). The present study aims at proposing a new theoretical framework cou-
pled with an algorithmic solution for the task of structuring a dataset into suitable
classes which overlap.

This paper is organized as follows: Section 2 describes related works which give
only partial solutions to the overlapping clustering problem. Section 3 and Section
4 present respectively a new theoretical formalization and a first algorithmic solution
(OKM) to this problem. The two last sections are dedicated to first experiments, vari-
ants (spherical-OKM) and discussions about the proposed approach with both theoret-
ical and applied points of view.

2 Related works on overlapping clustering
A first way to produce overlapping classifications has been introduced by Jardine and
Sibson [14]. They first proposed the k-ultrametrics which led more recently to the k-
weak hierarchies [4], generalizing the previous pyramidal model introduced by Diday
[9]. Even if these models are interesting because of the (visual) representation they
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produce, the overlapping schemes they allow are limited because in a pyramid each
class can only overlaps with two other classes and a k-weak hierarchy have the fol-
lowing limitation: “the intersection of (k+1) arbitrary clusters must be reduced to the
intersection of some k of these clusters”.

Another type of methods appears recently in order to deal with textual data particu-
larly. CBC [16] and POBOC [7] for instance are based on heuristics and do not rely on
criterion-based optimization. Furthermore, these methods are not free of thresholding
problems. For example CBC requires four parameters, that are difficult to determine
since the algorithm is very time consuming and proscribe multiple runs.

We can also mention an approach frequently used in practical situations: it consists
in running well-known algorithms (k-means, fuzzy-k-means, EM, etc.) and modifying
the result obtained to produce overlapping clusters. Modifications are performed by
means of a threshold deciding whether an object belongs to a cluster or not, according
to its proximity with the center of the cluster. This approach appears to be natural but it
outlines two fundamental problems: first, the algorithm initially used does not take into
account in the definition of the centers the fact that classes will overlap; secondly, the
choice of a suitable (global) threshold, denoted above as the “thresholding problem”,
remains unsolved.

In case of using a partitioning algorithm first, the underlying hypothesis (h) as-
sumed by the last approach is that “we can reach a good overlapping scheme by
extending a good partitioning scheme”. We will show theoretically in the next sec-
tion that this hypothesis is not satisfied generally; a new track so being necessary. In
addition, we will show empirically that the second alternative which consists in the
restriction of fuzzy classifications obtains worse results than an overlapping clustering
model.

Finally, a (first) recent Model for Overlapping Clustering (MOC) has been pro-
posed by Banerjee et al. [2]. It can be considered has a generalization of the EM
algorithm. The main drawback for this kind of model-based approach is the multiple
parameters to estimate (three matrices in MOC), making difficult large dataset process-
ing. The present study follows an approach similar to MOC, and proposes a model able
to deal with more data in a more simple way.

3 Theoretical framework
3.1 Definitions and notations
We introduce here the main definitions and notations used in the rest of the paper. We
denote by X the set of data {x1, x2, . . . , xn}.

Definition 3.1 Let R={R1, . . . , Rk} be a set of classes over X , R forms a coverage
of X if

∀x ∈ X, ∃Rj ∈ R | x ∈ Rj

One can notice that definition 3.1 formalizes the notion of coverage in a broad
sense since it allows nested and/or empty classes.
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Definition 3.2 Let P={P1, . . . , Pk} be a set of classes over X , P forms a partition of
X if

∀x ∈ X, ∃!Pj ∈ P | x ∈ Pj

We can notice that with the previous definitions, a partition is also a specific cov-
erage.

In the following, we denote by CP the set of coverages obtained by extension of a
partition P . P and PQ (resp. R and RQ) denote the set of all partitions (resp. cover-
ages) and the set of all optimal partitions (resp. coverages) according to a criterion Q
respectively.

3.2 Objective Criterion
The problem of finding an optimal partition according to an objective criterion Q is
NP-hard because of the size of the search space. Indeed, even if the number k of
classes is fixed there exists kn ways to organize n data into k classes at the most.
MacQueen was the first to propose a heuristic (k-means) to find a “locally” optimal
solution starting from an arbitrary initial partition [15]. The success of the k-means
algorithm is first due to its performance and also to its simple and intuitive underlying
reasoning. Indeed, k-means is a linear time-complexity method and the process con-
sists in iterating two steps: (1) computation of class centers (centers of gravity) and (2)
assignment of each data to its nearest center. We can show that this process minimizes
an intuitive criterion: the intra-class inertia (also called square error criterion) defined
by

Q(P) =
∑

Pj∈P

∑

xi∈Pj
d2(xi, zj)

with Z = {z1, . . . zk} the centers of gravity for the classes P1, . . . , Pk respectively.
The final partition is only a local optimum because it depends on the initial parti-

tion considered. Main critics about the k-means method concern the problem of choos-
ing a suitable initialisation and a suitable number of classes (k). Several solutions have
been proposed, also applicable in our context [5, 17, 11].

The problem of finding a “good” coverage is also NP-hard since the search space
is bigger again: there exists 2k.n ways to organize n data into k overlapping classes
at most. Furthermore the criterion Q(.) used in the k-means approach is no longer
suitable for coverages; we can actually show that Q(R) ≥ Q(P) for all extension
R of P (R ∈ CP ). According to this objective criterion, a good coverage must be a
partition. Then, a first step to address the overlapping clustering problem is to define a
new objective criterion that allows to detect interesting coverages.

We propose a new objective criterion Q̃ that is an extension of the squarre error
criterion Q. A partition P of X into k classes is actually defined by two sets of param-
eters :

• a set of binary membership values denoted by the matrixW (k×n) withwj,i = 1
if xi ∈ Pj (0 otherwise),
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• a set of k class centers Z = {z1, . . . , zk}.

The criterion Q measures for each data xi, the error made when xi is substituted
by the only1 center zj such that wj,i = 1. Being the representative of the class Pj , zj
is also the representative of xi in P since xi ∈ Pj .

In case of a coverage R of X into k overlapping classes, each data is then substi-
tuted by a set2 of class centers {zj |wj,i = 1}. A natural way to define the representative
of xi in the coverage R is then to consider the center of gravity of this set. In the fol-
lowing this representative is called the “image” of xi inR and is denoted by xi. Finaly
the new objective criterion is defined by

Q̃(W,Z) =
∑

xi∈X
d2(xi, xi)

with xi the center of gravity of the set {zj |xi ∈ Pj}.
Let us notice that Q̃(.) generalizes Q(., .), since in case of partitioning schemes,

xi is exactly the nearest center zj .

3.3 Coverage vs. Extended Partition
Considering the new objective criterion Q̃(., .), we will show in this section that the
hypothesis (h) mentioned in Section 2 is not satisfied. The hypothesis (h) assumes that

“we can reach a good overlapping scheme by extending a good partitioning scheme”.
With the notations introduced in this section, (h) can be formalized as

(h) P ∈ PQ̃ ⇒ ∃R ∈ CP | R ∈ RQ̃

As an example, we consider X = {x1, . . . , x6} in (R2, d) with d the Manhattan
distance. Figure 1 provides the positions of the points and presents a partition P of
X into 2 classes which minimizes the objective criterions Q(P) = Q̃(W,Z) = 12.0
with W the membership matrix matching with Figure 1 and Z the centers of gravity
of each class (P ∈ PQ̃).

Figure 1: Example of a 2-class partition, optimal according to Q̃.

1In case of a partition, this center is unique because ∀i, Pj wj,i = 1.
2In case of a coverage, ∀i, Pj wj,i ≥ 1.
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Figure 2: Example of the 2-class coverage, optimal according to Q̃.

An optimal coverage R∗ on X according to Q̃ is defined by Ŵ and Ẑ which
minimize Q̃(W,Z):

R∗ = (Ŵ , Ẑ) ∈ RQ̃ ⇔ Q̃(Ŵ , Ẑ) ≤ Q̃(W,Z) ∀(W,Z)

On this small size example we can observe only one optimal coverage R∗ pre-
sented in Figure 2 (memberships, class centers and the center of gravity of the two
centers). This coverage obtains a score Q̃(Ŵ , Ẑ) = 6.0. By the way, we have shown
with the previous counterexample that hypothesis (h) is not satisfied. Then, methods
which consist in searching for an overlapping scheme starting from a partition reduce
the search space with the risk that the considered subspace does not contains any good
solution.

Figure 3: Partitions and coverages search spaces.

Figure 3 illustrates this phenomena, showing two situations: P1
Q̃

can reach an
optimal coverage because some of its extensions are optimal and P2

Q̃
reaches only

non-optimal coverages. In the following of this paper, we propose a search strategy
in the global set of coverages to approximate optimal coverage by searching suitable
parameters W and Z.
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4 The algorithm OKM

We present in this section the algorithm OKM (Overlapping k-means) as a heuristic
to approximate optimal coverages according to the generalized square error criterion
Q̃(., .). The global process for OKM is similar to the k-means algorithm. A first
initialisation step is followed by the iteration of two steps: computation of class centers
and assignments, until a stable coverage is obtained (Figure 4).

Initialisation: t=0
choose arbitrary k centers Z t = {zt1, zt2, . . . , ztk} from X ,
For each xi ∈ X: Assign(xi,Zt) (build W t

.,i),
Build a first coverageRt = (W t, Zt).

Do

t=t+1
• Update(Zt−1,W t−1) (build Zt),
• For each xi ∈ X: Assign(xi,Zt) (build W t

.,i),
While ( W t 6= W t−1 or Q̃(W t−1, Zt−1)− Q̃(W t, Zt) < ε)

Figure 4: Pseudo-code of OKM.

The main differences with k-means concern the way to assign each data to one or
several classes (multi-assignment) and the method used to update class centers. These
two steps must ensure the decrease of Q̃(., .) in order to make the algorithm converge,
and that the classes they lead to are of quality (classes of similar data).

Assign(xi,Z):
Initialisation :

Let z∗ be the nearest center from xi in Z (∀zj ∈ Z, d(xi, z
∗) ≤ d(xi, zj)):

A = {z∗} (with A the list of assignments for xi),
Z = Z \ {z∗}.

Do
Let xiA denoting the center of gravity of A:
Let z∗ be the nearest center from xi in Z,

if d(xi, xi
A∪{z∗}) < d(xi, xi

A) then A← A ∪ {z∗} and Z = Z \ {z∗}
While a new assignment is performed

Final decision:
Let A′ be the old assignments for xi,

if d(xi, xi
A) < d(xi, xi

A′) then assign xi to the centers from A,
else keep the old assignment A′.

Figure 5: Assignment process in OKM.
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Let Z = {z1, z2, . . . , zk} be a set of class centers and xi a data to assign to one or
several classes. The assignment process for xi is described in Figure 5. It consists in
scrolling through the list of centers from the nearest to the farthest, and assigning xi
while its image xi is improved (d(xi, xi) decreases). The new assignment is conserved
only if it is better than the old one. The final decision enables to ensure that the
objective criterion does not increase during the assignment steps.

Then, in the updating step, the new center zj for a class Rj is defined in OKM by

zj,v =
1

∑

xi∈Rj

1

δ2
i

×
∑

xi∈Rj

1

δ2
i

.x̂i
j
v (1)

In (1), zj,v denotes the vth component of the vector zj , δi is the number of classes
to which xi belongs (δi =

∑k
j=1wj,i) and x̂ijv denotes the vth component of the center

zj “ideal” according to xi, i.e. the center zj such that d(xi, xi) = 0. This last point is
computed in the following way: x̂ijv = δi.xi,v − (δi − 1).xiv

A\{zj} where A is the set
of classes to which xi is assigned. We can propose a more intuitive definition of a new
center zj of a class Rj noting that zj is the center of gravity of {(x̂ij , 1

δ2 )|xi ∈ Rj}
which is the set of “ideal” points where each point is weighted such that the more
classes a data is member to, the less it impacts the new center position. We show below
that new centers thus updated not only ensure that the objective criterion decreases but
also enables to optimize (minimize) Q̃(., .).
Proof
Let X be a dataset into (Rp, d) where d is the euclidean distance, and R a coverage
of X into k classes defined by memberships W and centers Z = {z1, . . . , zk} respec-
tively.

Since OKM considers each class successively and separately during the updating
step, it is sufficient to show that Q̃(., .) is minimized for each center zj .

Decomposing X into two subsets according to whether data are members of Rj or
not we obtain:

Q̃(W,Z) =
∑

xi /∈Rj
d2(xi, xi) +

∑

xi∈Rj
d2(xi, xi)

For a data which is not member of Rj , its image is independent of zj . Then, in the
previous expression the left term is a constant (denoted as α in the following) relative
to zj .
We can rewrite xi in the right term to bring a quadratic function relative to zj :

Q̃(W,Z) = α+
∑

xi∈Rj

p∑

v=1

[
xi,v −

1

δi
(zj,v + (δi − 1).xi

A\{zj}
v )

]2

Then, Q̃(W,Z) is minimized for a derivative equal to zero

∂Q̃(W,Z)

∂zj
= 0⇔

∑

xi∈Rj

1

δ2
i

p∑

v=1

[
zj,v − δi.xi,v + (δi − 1).xi

A\{zj}
v

]
= 0
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On each component v the optimal center zj is then defined by the following ex-
pression (equiv. to definition (1)):

zj,v =
1

∑

xi∈Rj

1

δ2
i

×
∑

xi∈Rj

1

δ2
i

[
δi.xi,v − (δi − 1).xi

A\{zj}
v

]

�.

To close this presentation of the algorithm, we must notice that OKM can be seen
as a generalization of the k-means algorithm. Indeed, if we decide to limit the as-
signments to only one (∀i, δi =

∑k
j=1wj,i = 1) we can notice that the new centers

computed correspond to centers of gravity. An other important remark is to specify
that OKM is non-deterministic because it depends on the initialisation (in the same
way that k-means is non-deterministic) but also on the order the centers are computed
during the updating step.

5 Experiments
Validation of classifications remains a difficult problem for unsupervised methodolo-
gies. Recent advances enable to distinguish three types of measures for cluster quality
evaluation: relative, internal and external criteria [12]. The two first measures are
mainly useful for comparing different partitions, different hierarchies and possibly
different coverages, but they are clearly inefficient when the schemes that have to be
compared are different in nature (e.g. partition vs. coverage).

Since we aim at evaluating the interest of overlapping schemes with respect to
both crisp partitions and other overlapping schemes, we have decided to conduct ex-
periments on datasets allowing external evaluations. External evaluation consists in
comparing a set of classes obtained using a totally unsupervised process with a prede-
fined organization on the same dataset. In this section we briefly observe the behavior
of OKM on the well-known “Iris” dataset before to experiment OKM on the corpus
“Reuters”, that is one of the target practical domains (document clustering).

5.1 Iris dataset
The purpose of this preliminary experiment is to answer questions about OKM such
as: the speed of convergence, the ability to retrieve the expected classes and to find
interesting overlaps. The Iris dataset [10] is traditionally used as a test basis for a first
evaluation. It is composed of 150 data inR4 tagged according to three non-overlapping
classes (50 data per class). Using the euclidean distance and k = 3 we run OKM and
k-means fifty times (with similar initializations) and we report the best result obtained
according to Q̃(., .).
Figures 6 and 7 reports evolution of the values of the objective criterion during the
iterations and confusion matrix respectively. We observe first that OKM and k-means
have similar convergence speeds. We must notice that OKM (as for k-means), has a
linear complexity on the size of the dataset with a complexity order of O(t.n.k. log k),
with t the number of iterations, k the number of classes and n the number of data. We

9



60
80

100
120
140
160
180
200

2 4 6 8 10 12 14 16 18
Q̃

(.
,.

)
cr

ite
rio

n
Iterations

OKM
��

��

��

��

�	

� � �� �� ��

�� �� �� �� �� ��  ! "# $%

&'

k-means

+

+

+

+
+

+
+

+
+ + +

+

Figure 6: Q̃(., .) optimizations with OKM and k-means.

Tags\Clusters 1 2 3
Setosa 50/50
Versicolour 26/3 50/47 9/0
Virginica 49/36 27/14

Figure 7: Confusion matrix for OKM (bold font) and k-means (italic).

can see on the confusion matrix that both methods are able to retrieve the expected
classes according to the predefined tags.

To give the reader another way to assess overlaps between classes, we propose in
Figure 8 a visualization of the Iris dataset with information about the classes obtained
with OKM. This 3D-visualization comes from projection on the three first proper vec-
tors (PCA). We then observe - on this projection - a natural cluster (top left) founded
by OKM with few overlaps. Since the parameterization forced the algorithm to ex-
tract three classes (k = 3), OKM has extracted two other classes with many overlaps.
Indeed, there is no natural separation between the set of remaining points.

5.2 Text Clustering with OKM

As mentioned in the introduction, Information Retrieval is one of the main target ap-
plication for overlapping clustering. Indeed, a document can belong to several natural
classes, for instance on the basis of the thematics it deals with.

5.2.1 Data preparation

We have performed the second experiment on the benchmark Reuters-215783 which is
considered as one of the main dataset for text clustering or categorization experiments.
This collection contains 21578 articles from press, written in english. Each article have
one or several tags among a set of 114 predefined categories. From this full collection
we have extracted a subset of 2739 documents such that:

3http://www.research.att.com/∼lewis/reuters21578.html
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Figure 8: 3D-visualization of the classes obtained with OKM.

• at least one tag is proposed for the article,

• the body of the article is not empty,

• it appears in the “TEST” subset according to the splitting proposed by [1].

The indexing of documents is performed by using a process traditional in Infor-
mation Retrieval. After tokenization and stemming [18], the p words with higher mu-
tual information computed on the documents×words matrix are selected (tags are not
used)4. Each document di is then indexed with a p-dimensional vector xi such that
each component v matches with a word wv and xi,v is the frequency of the word wv in
document di. We use as proximity measure, the cosine similarity [19] which appeared
to be the most efficient to compare two texts from a lexical analysis.

5.2.2 Spherical-OKM

We have previously proved that OKM converges towards a stable coverage into an
euclidean space. Like for the k-means algorithm, a change is necessary to deal with the
cosine similarity measure. This adaptation, denoted as spherical-k-means [8], consists
in reasoning on the unit hypersphere in order to produce a partition maximizing the
following criterion

QS(P) =
∑

Pj∈P

∑

xi∈Pj
xTi .zj

We notice that QS(.) can be seen as the opposite5 of the square error criterion (to the
normalization) with the cosine similarity measure.

To adapt OKM in the same way that k-means, we propose first to generalize QS(.)
by

4In our experiment 423 words have been selected (multual information ≥ 0.1).
5Considering that similarity is the opposite of distance.
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`````````````̀Algorithms
Nb. classes precision recall F-measure size of the overlaps

k-means 0.61 0.08 0.14 1.00
Fuzzy-k-means (0.30) 0.58 0.08 0.14 1.00
Fuzzy-k-means (0.20) 0.52 0.10 0.17 1.29
Fuzzy-k-means (0.10) 0.55 0.15 0.23 1.51
OKM 0.53 0.18 0.26 1.87

Table 1: Comparison of results of OKM with k-means and Fuzzy-k-means methods
for k=40.

Q̃S(W,Z) =
∑

xi∈X
xTi .xi

where xi always denotes the image of xi on the coverage R i.e. the center of
gravity of the set of centers {zj |wj,i = 1}.

Then, the computation of new class centers must also be changed in OKM; we can
show that the center which maximizes the objective criterion is, for each class, a simple
(normalized) center of gravity on the set of data belonging to the class weighted con-
tingently to their number of assignments ({(xi, 1

δi
)|xi ∈ Rj}). This spherical variant

of OKM can then be denoted as spherical -OKM.

5.2.3 Evaluation Framework and Results

On the Reuters dataset we use a relative criterion allowing us to compare: (1) the crisp
classes obtained by a (spherical) k-means, (2) the overlapping classes obtained with a
thresholded (spherical) fuzzy-k-means and (3) the overlapping classes resulting from
(spherical) OKM. The relative criterion we use is a F-measure which combines preci-
sion and recall on the pairs of articles having a same tag in the predefined classification
and the ones belonging to a same cluster in the partitions and coverages obtained.

Precision =
Number of Correctly Identified Linked Pairs

Number of Identified Linked Pairs

Recall =
Number of Correctly Identified Linked Pairs

Number of True Linked Pairs

F-measure =
2× Precision× Recall

Precision + Recall
Figures 9 and 10 and Table 1 report average values on fifty runs with different k.

Each method have the same initialization for each run.
We observe first on Figure 9 that the choice of a suitable assignment threshold is

difficult for fuzzy-k-means, because the sizes of overlaps is very dependant from the
number of classes k. On the other hand we can see that OKM generates reasonable
overlaps (from 1.5 to 2.0) with respect to the actual size of overlaps in the corpus
(1.26), whatever the number k.
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Figure 9: Average number of assignments (log scale) according to the threshold for
fuzzy-k-means.

We selected the threshold 0.2 to be reported on the comparative study (Figure 10
and Table 1). We can then observe that scores decrease when k grows. This phe-
nomena is natural since more classes implies less pairs of data, then a smaller recall.
The main result to notice is that the relative criterion decreases faster for partition-
ing and Fuzzy-k-means overlapping schemes than for overlapping schemes obtained
with OKM. Furthermore, an additional analysis show that the recall decreases in the
same proportions whatever the clustering method. Then, the sensible better results ob-
served with OKM are due to suitable overlaps which enable to associate more pairs of
document with a good precision.

6 Conclusions and Further Works
The present study started from the following observation: clustering methods devel-
oped so far are not suitable to search an organization of data into overlapping clusters.
However, this last type of classification scheme is becoming vital to deal with topical
application domains such as information retrieval or bioinformatic.

We then proposed a new approach which aims at exploring the search space of
possible coverages in order to retrieve a suitable organization into overlapping classes
(or coverage). The approach presented is based first on the definition of an objective
criterion which enables to evaluate overlapping schemes and then on the algorithm
OKM as a heuristic to approach the optimal coverage according to the criterion. Both,
criterion and algorithm must be seen as generalizations of the square error criterion
and the k-means algorithm respectively.

Preliminary experiments showed a consistent behavior of the algorithm OKM (con-
vergence and size of overlaps) and an ability to provide suitable overlaps especially for

13



0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70

F-
m

ea
su

re

Number of classes (k)

Spherical-OKM
Spherical-KM

Spherical-Fuzzy-KM

()

*+

,-

./

01

23

45

67

89

:;

<=

>?

@A

BC

DE

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

Figure 10: F-measure with different clustering methods.

text clustering which corresponds to one of the main target applications of this work.
For this application, we proposed a variant (spherical-OKM).

We plan to progress about this study on two directions. First, we will proceed to
other experiments: qualitative comparisons will be performed between OKM and other
methods (like POBOC [7]) with datasets from other domains.

Secondly, it could be interesting to consider a (local) feature weighting for each
class. This idea is based on [6]’s works and is meaningful in our framework since data
should be assigned to each class on the basis of different features without inducing a
rapprochement of the corresponding classes.

14



References
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