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B.P. 6759, F-45067 ORLÉANS Cedex 2.

Abstract. Abstract geometrical computation (AGC) naturally arises
as a continuous counterpart of cellular automata. It relies on signals (di-
mensionless points) traveling and colliding. It can carry out any Turing
computation, but since it works with continuous time and space, some
analog computing capability exists. In Abstract Geometrical Computa-
tion and the Linear BSS Model (CiE 2007, LNCS 4497, p. 238-247), it
is shown that AGC without any accumulation has the same computing
capability as the linear BSS model.
An accumulation brings infinitely many time steps in a finite duration.
This has been used to implement the black-hole model of computation
(Fundamenta Informaticae 74(4), p. 491-510). It also makes it possible
to multiply two variables, thus simulating the full BSS. Nevertheless a
BSS uncomputable function, the square root, can also be implemented,
thus proving that the computing capability of AGC with isolated accu-
mulations is strictly beyond the one of BSS.

Key-words. Abstract geometrical computation, Accumulations, Ana-
log computation, BSS model, Signal machine.

1 Introduction

There is no agreed continuous/analog/R counterpart of the Church-Turing the-
sis. Relating the numerous models is crucial to understand the differences be-
tween their computing capabilities. For example, Bournez et al. [BH04,BCGH06]
as well as others [Kaw05] have related Moore’s recursion theory on R [Moo96],
computable analysis [Wei00] and the general purpose analog computer [PE74].
The aim of the present paper is to relate two models. One, abstract geometrical
computation (AGC) deals with regular and automatic drawing on the Euclidean
plane, while the second, the Blum, Shub and Smale model [BCSS98] relies on
algebraic computations over R. Bournez [Bou99] has already provided some re-
lations between linear BSS and Piecewise constant derivative systems which also
generates Euclidean drawings. In [DL07], AGC without accumulation was proved
equivalent to the linear BSS model (i.e. BSS restricted to multiplication only by
constants) with an unbounded number of variables. In the present paper, the
full BSS is related to AGC with isolated accumulations.
⋆ http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose,
Jerome.Durand-Lose@univ-orleans.fr



Let us note that AGC relies on intersection of lines (to find the collisions),
another model considers also intersections with circles [Huc89,Huc91]; AGC con-
siders all collisions while in Huckenbeck’s geometrical machines the programs
chooses which geometric object to build and to consider.

Abstract geometrical computation (ACG) arises from the common use in
cellular automata (CA) literature of Euclidean settings to explain an observed
dynamics or to design a CA for a particular purpose. While CA operate in
discrete time over discrete space, Euclidean geometry deals with both continuous
time and space. This switch of context is justified by the scaling invariance of CA
and relates to our preference and ability for thinking in continuous rather than
discrete terms. Abstract geometrical computation works in a continuous setting:
discrete signals/particles are dimensionless points; the local function of CA –
computing the next state of a cell according to the states of neighbouring cells–
is replaced by collision rules: which signals emerge from a collision of signals.
Signals and rules define signal machines (SM).

This recent model, restricted to rational numbers, is able to carry out any
(discrete) Turing-computation [DL05b]; even with the additional restriction of
reversibility and conservativeness [DL06c]. With continuous time, comes Zeno
effect (infinitely many discrete steps during a finite duration): not only are ac-
cumulations possible, but they can be used to decide recursively enumerable
problems by using the black-hole scheme [DL05a,DL06a]. Although accumula-
tions can easily be generated, they can hardly be foreseen [DL06b].

In the Blum, Shub and Smale model (BSS), machines compute over any ring.
Roughly speaking, polynomial functions can be performed on variables as well as
tests (according to some order) for branching. The dimension of the input is not
bounded, a shift operator is provided in order to access any variable (finitely
many variables are considered since only finitely many are accessed in finite
time).

In [DL07], AGC (without accumulation) and linear (multiplying two variables
is forbidden) BSS over R with an unbounded number of variables are proved
equivalent. This is done through linear real number unlimited register machines
(the arguments of [Nov95] for the equivalence of URM and BSS translate to the
linear case).

With a reasonable handling of accumulations, restrictions on multiplication
can be lifted thus achieving the full BSS computing capability. They are handled
in the following way: there is no second (or higher) order accumulation; only
finitely many signals leave any accumulation; and one signal appears where an
accumulation takes place. Multiplication is embedded in the same context and
the same encoding of real numbers as in [DL07], so that addition, multiplication
by constants and test do not have to be implemented again. Only the basis is
recalled: a real number is encoded as the distance between two signals.

Multiplication of two real numbers, x and y, is done by producing the bi-
nary extension of y and according to yn adding or not x2n. With integers, n is
increasing from 0, with real numbers, n goes down to −∞ which explains the
use of an accumulation. Each iteration divides x by 2, computes the next bit of



y and updates the partial product accordingly. All the values are geometrically
decreasing to zero and so are the time and space used by an iteration, so that
there is an accumulation. The signal left by the accumulation is located exactly
at the value of the product.

To prove that AGC with accumulation is, as expected, strictly more powerful
than the BSS model, it is explained how to implement the square root. Each
iteration only uses addition and multiplication by constants.

Since the reader might be more familiar with BSS than with ACG, more care
and illustrations are given to ACG. Section 2 provides all the needed definitions.
Section 3 recalls basic encoding and geometric constructions for BSS simulation.
Section 4 provides the multiplication between variables. Section 5 explains how
to build a signal machine able to compute the square root with an accumulation.
Conclusion, remarks and perspectives are gathered in Section 6.

2 Definitions

Abstract geometrical computation. In this model, dimensionless objects are
moving on the real axis. When a collision occurs they are replaced according to
rules. This is defined by the following machines:

Definition 1 A signal machine with accumulation is defined by (M, S, R, µa)
where M (meta-signals) is a finite set, S (speeds) a function from M to R, R
(collision rules) a partial function from the subsets of M of cardinality at least
two into subsets of M (all these sets are composed of signals of distinct speed)
and µa is a meta-signal, the one that comes out of any accumulation.

Each instance of a meta-signal is a signal. The function S assigns speeds to
meta-signals. They correspond to the inverse slopes of the segments in space-time
diagrams. The collision rules, denoted ρ−→ρ+, define what emerge (ρ+) from
the collision of two or more signals (ρ−). Since R is a function, signal machines
are deterministic. The extended value set, V , is the union of M and R plus two
symbols: one for void, ⊘, and one for accumulation ❊. A configuration, c, is a
total function from R to V such that the set { x ∈ R | c(x) 6= ⊘} is finite.

A signal corresponding to a meta-signal µ at a position x, i.e. c(x) = µ, is
moving uniformly with constant speed S(µ). A signal can only start in a collision,
except for µa that can also be generated by an accumulation. A signal can only
end in a collision or an accumulation. This corresponds to condition 2 in Def. 2.
At a ρ−→ρ+ collision signals corresponding to the meta-signals in ρ− (resp.
ρ+) must end (resp. start) and no other signal should be present (condition
3). Condition 4 deals with accumulations, the first line implies that sufficiently
close to the accumulation, outside of the light cone, there is nothing but a µa

signal leaving the accumulation. The second line expresses that there is indeed
an accumulation (this is not formalized since it would be too ponderous).

Let Smin and Smax be the minimal and maximal speeds. The causal past,
or backward light-cone, arriving at position x and time t, J−(x, t), is defined by
all the positions that might influence the information at (x, t) through signals,
formally:

J−(x, t) = { (x′, t′) | x− Smax(t−t′) ≤ x′ ≤ x− Smin(t−t′) } .



Definition 2 The space-time diagram issued from an initial configuration c0

and lasting for T , is a function c from [0, T ] to configurations (i.e. a function
from R× [0, T ] to V ) such that, ∀(x, t) ∈ R× [0, T ] :
1. ∀t∈[0, T ], { x ∈ R | ct(x) 6= ⊘} is finite,
2. if ct(x)=µ then ∃ti, tf∈[0, T ] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T s.t.:

– ∀t′ ∈ (ti, tf ), ct′(x + S(µ)(t′ − t)) = µ ,
– ti=0 or ( cti(xi) = ρ−→ρ+ and µ ∈ ρ+ ) or ( cti(xi)=❊ and µ=µa )

where xi=x + S(µ)(ti − t) ,
– tf=T or ( ctf

(xf ) = ρ−→ρ+ and µ ∈ ρ− ) or ctf
(xf )=❊

where xf=x + S(µ)(tf − t) ;
3. if ct(x)=ρ−→ρ+ then ∃ε, 0<ε, ∀t′∈[t−ε, t+ε] ∩ [0, T ], ∀x′∈[x− ε, x + ε],

– (x′, t′) 6= (x, t) ⇒ ct′(x′) ∈ ρ−∪ρ+ ∪ {⊘},
– ∀µ∈M , ct′(x′)=µ ⇔ or

{
µ ∈ ρ− and t′ < t and x′ = x + S(µ)(t′ − t) ,

µ ∈ ρ+ and t < t′ and x′ = x + S(µ)(t′ − t) .
4. if ct(x) = ❊ then

– ∃ε > 0, ∀t′∈[t−ε, t+ε] ∩ [0, T ], ∀x′∈[x− ε, x + ε],

(x′, t′) /∈ J−(x, t) ⇒ or

{
ct′(x) = ⊘ and x′ 6= x + S(µa)(t′ − t)
ct′(x) = µa and x′ = x + S(µa)(t′ − t) ,

– ∀ε>0, there are infinitely many collisions in J−(x, t) ∩ R× [t−ε, t].

On space-time diagrams, the traces of signals are line segments whose direc-
tions are defined by (S(.), 1) (1 is the temporal coordinate). Collisions correspond
to the extremities of these segments. This definition can easily be extended to
T = ∞. In the space-time diagrams, time increases upwards. To simplify, the
same name is used for a signal throughout the computation, in fact, there is
a different meta-signal for each speed. As a computing device, the input is the
initial configuration and the output is the final configuration.

Blum, Shub and Smale model. (The reader is expected to be more familiar
with the BSS model than with AGC, so this part is not very detailed.) BSS
machines operate on an unbounded array containing real numbers in exact pre-
cision. The input/output is the content of the array. Apart from start and stop,
the available instructions are: compute a polynomial function (and store the re-
sult), branch according to a sign test and shift. The machine can only access a
finite part of the array at any time, the shift operator allows it to move on the
array (like the head of a Turing machine).

3 Basic construction

Real number encoding. A Real number is encoded as the distance from a
ba signal1 to its pairing val signal. Since signal machines are scaleless, two sca
signals whose distance amounts for a scale are provided as depicted on Fig. 1.
All numbers use the same scale. For the value 0, the superposition of ba and val
is encoded as a single signal nul. This value is never considered in the rest of the
paper; the reader is invited to check that it can be easily covered.
1 xx signal always means that it is an instance of the meta-signal xx.



sca sca

1

val val ba
or nul(0)

val val

−π
−1.5

√
2

e

Fig. 1. Encoding: scale and positions of val for values −π, −1.5, 0,
√

2 and e.

Geometric constructions. The construction of the multiplication, like the
addition and the multiplication by a constant, relies on some basic geometric
constructions. In each picture, the slopes of the line segments are indicated. It
can easily be checked that it is scale invariant and provides the desired effect.
Signals with equal speeds result in parallel segments, the key to many geometric
properties. Figure 2(a) shows how a distance can be halved. This is done by
starting two signals. The first one is going three times slower than the second
one. The time the first one crosses half the way, the second one goes one full way
and half way back, so that they meet exactly in the middle. Doubling is done
the other way round. Figures 2(b) and 2(c) show two ways to halve a distance
while shifting it. They also work with two signals emitted that change speed
or direction at some point and meet at the desired location. Generating simple
shifts is done by modifying only one slope (2

3 by 1
2 for Fig. 2(b) and 5

3 by 1 for
Fig. 2(b)).
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(c) Shifting and halving 2.

Fig. 2. Basic geometric constructions.

4 Multiplication

4.1 Algorithm

The multiplication of two real numbers x and y uses the (possibly) infinite binary
extension of y. This is done in two steps: normalization and then an infinite loop.

The first step starts by considering signs and special cases (i.e. multiplication
by zero). Then, while y is greater than 2, x is multiplied by 2 and y divided by
2 (so that the product remains constant).

The second step carries out the multiplication. The binary extension y =
y0.y1y2y3 . . . (the initialization ensures that 0 < y < 2) is generated bit by bit.



The underlying formula is:

xy =
∑
0≤i

yi

( x

2i

)
.

This is computed iteratively with the updating on Table 1. The two last cases
correspond to yn = 1 and yn = 0 respectively. It is started with: p0 = 0 (prod-
uct), b0 = 1 (bit test), x0 = x and 0 < y0 = y < 2b0 = 2. The following invariants
are satisfied:
– bn = 2−n,
– 0 ≤ yn < 2bn,
– xn = x2−n, and
– xy = pn + xnyn

bn
.

The last invariant is trivially true for n = 0 and preserved by the loop. Since
xn

yn

bn
< 2xn and xn = x2−n, from the last invariant comes that lim

n→∞ pn = xy.

Table 1. Potentially infinite loop to compute the product.

pn+1 xn+1 yn+1 bn+1

if yn = 0 stop

else if bn < yn pn + xn xn/2 yn − bn bn/2

else pn xn/2 yn bn/2

4.2 Initialisation

With our encoding, detecting whether x or y is zero is trivial. Detecting the
signs and computing the sign of the product is also very easy. The following only
deals with multiplication of positive values, the other cases are generated using
absolute values and symmetry if the product is negative.

The above algorithm should be started with 0 < y0 < 2b0 = 2. So that there
is a loop that multiplies x by 2 and divides y by 2 until y is small enough. This is
illustrated on Fig. 3 (the first two space-time diagrams go one above the other).

The algorithm is sequential: signals for base (ba ), bit testers (b ), x
(x ) and y (y ) are fix unless set on movement by some bouncing initializa-
tion signals (ini). All distances are from ba and are measured according to the
“official” scale (not represented). The b signal stays at position 2 for testing the
end of the loop (i.e. y < 2). The signal ini comes from the left. If it meets y
before b, this means that the loop is finished (Fig. 3(c)). Otherwise it has to half
y, to double x and to test again (figures 3(a) and 3(b)).

At the end of initialization (which is always achieved in finite time and finitely
many collisions), the b at position 2 is set at position 1 (halved as usual). The
signal p amounting for p is generated. Since p is 0 at start, it is set on ba (this
corresponds to a different meta-signal). And finally, ini turns to mul that handles
the second step of the multiplication. Everything is depicted on Fig. 3(c).
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(a) First iteration.
ba ini b y x

(b) Another iteration.

p

mul

ba ini y b x
(c) Loop end.

Fig. 3. Preparing the data for multiplication.

4.3 Main loop

The multiplication follows the (possibly) infinite loop defined in Table 1. Basi-
cally, the things to do are additions, subtractions, divisions by 2 and tests. These
are easy implementable inside signal machines. But, since the loop is infinite, a
correct accumulation have to be generated. By correct, it is understood as at the
right location and there is indeed an accumulation. The second point is not to
be underestimated since, for example, if at each iteration some constant distance
would have to be crossed, then there would be an infinite duration process but
no accumulation.

The algorithm is driven by a mul signal that bounces between p and other
signals. First of all, mul has to test to know which case to consider. This is done
easily: going away from ba, if b is encountered before y this means that bn < yn

otherwise yn < bn (when they are met simultaneously, i.e. they are equal, this
leads to the end of the loop at the next iteration).

The simpler case is when yn < bn. There is nothing to do but to halve bn

and xn, that is halve the distance from b and x to ba. Signals p and y are left
untouched. This is done as depicted on the lower part of Fig. 4(b).

The other case bn < yn is depicted on Fig. 4(a) and on the upper part of
Fig. 4(b). The addition of xn to pn is done by moving p to the location of x,
meanwhile x is moved on the right by half the distance it has from p. The signal
b is also moved on the right, at a distance from the new p that is half the previous
distance. The signal y is moved to the right, at a distance from the new p that
is equal to its original distance from b.

To ensure accumulation, all lengths are geometrically scaled down and all the
computations take place by p and are shifted according to the moves of p. This
can be seen on Fig. 4. Each iteration leads to halving the distance between ba
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Fig. 4. Multiplication.

and both x and b. Since the distance from ba to y is at most twice the distance to
b, this ensures that all distances are bounded by some Ms

2n at the nth iteration.
Clearly the duration of an iteration is bounded proportionally to the maximum
distance between the signals. Thus it is also bounded by some Mt

2n at the nth
iteration. There is no time lag between two consecutive iterations, so that there
is indeed an accumulation.

5 Square root

In this section, it is briefly argued why it is possible to compute the square root
with an accumulation and how. Let a be any positive real number. The construc-
tion follows the digit by digit approximation algorithm constructing a sequence
bn such that:

b2
n ≤ a <

(
bn + 1

2n

)2
.

At each stage it should be tested whether
(
bn + 1

2n+1

)2 ≤ a. If it is the case
then bn+1 = bn + 1

2n+1 otherwise bn+1 = bn. Using the sequences: dn = a − b2
n,

en = bn

2n and fn = 1
4n+1 , the test corresponds to computing the sign of

a− (
bn + 1

2n+1

)2 = a− b2
n − bn

2n − 1
4n+1 = dn − en − fn .

The updating of all these sequences is shown on Table 2 (plus another helpful
sequence gn = 1

2n+1 ). The only operations used are additions, multiplications by
constants and tests. Again the size of the computing part is decreasing geomet-
rically and computation can be done by the signal encoding the value of bn and
shifted with it.

The algorithm starts by a pretreatment that finds the initial value for n. This
value might be negative (e.g. n = −11 for a = 220 + 1).



Table 2. Infinite loop to compute the square root.

bn+1 dn+1 en+1 fn+1 gn+1

if dn − en − fn = 0 stop

else if 0 < dn − en − fn bn + gn dn − en − fn en/2 + fn fn/4 gn/2

else bn dn en/2 fn/4 gn/2

6 Conclusion

In the present paper, AGC with accumulation is proved to be strictly more
powerful than basic BSS. This is not very surprising because it is already known
to decide in finite time any recursively enumerable problem (in the classical
discrete setting). It would be natural to extends the structure BSS works with
(i.e. R as a ring) with square rooting but many functions are computable with
an accumulation. It would be interesting to identify them. Considering

√
2, an

accumulation point of a rational signal machine can be irrational.
If the computation is stopped before the accumulation happens, then an ap-

proximation is generated. Computable analysis relies on the idea of an infinite
approximating sequence both for representing real numbers and for computing
(type-2 Turing machine needs an infinite number of iterations to compute a
function on real numbers). The next step would be to relate these two models
(the spirit of [CH99]). One problem would be to miniaturize and to ensure the
generation of an accumulation. Another one is that computable analysis only
provides continuous functions, while in ACG, there is, for example, the sign
function which is clearly not continuous. On the other side, Moore’s recursion
theory allows non continuous functions (even the characteristic function of ra-
tional numbers).

There might be many accumulations to simulate BSS, but none is of or-
der two. Another issue is to consider nth order accumulation and connect with
infinite Turing machines and ordinals [Ham07].
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