

Extrapol: Dependent
Types and Effects for

System Security

David Teller

LIFO, Université d’Orléans

Rapport no RR-2008-04

2

Abstract

In the realm of security, one of the largest challenges is to determine what effects
the execution of a program may have on the target system. While numerous
tools permit extraction of these effects either during the execution of a program
(dynamic analysis) or after its execution (trace analysis), the extraction of ef-
fects before the execution (static analysis of effects) from system-level software
is largely ignored. In this document, we introduce a technique for this purpose.
By extending the theory of types and effects, we demonstrate how to statically
determine the set of system calls performed by a program or a library function,
as well as their respective targets resources, from a C source code. Two imple-
mentations are proposed, one in Java and the other one in OCaml. While this
is an on-going work, preliminary results are promising.

Contents

1 Introduction 3

2 High-level overview 5
2.1 Dependent Types and Effects . 5

2.1.1 Type judgments . 6
2.1.2 Typing rules . 8

2.2 Implementation . 8
2.2.1 Architecture . 9
2.2.2 Library model . 9

2.3 Detailed example . 10

3 Formal definitions 13
3.1 Grammar . 13

3.1.1 Type patterns . 13
3.1.2 Types . 13
3.1.3 Effects . 14

3.2 Environments . 14
3.3 Pattern-matching on types . 15
3.4 Unification on types . 15
3.5 Union of types . 16
3.6 Expressions . 17
3.7 Statements . 19
3.8 Function declarations . 20
3.9 Declarations . 21

4 Library 22
4.1 Library proper . 22

4.1.1 Global variables . 22
4.1.2 Pseudo-functions . 22
4.1.3 Memory management . 25
4.1.4 Input . 25
4.1.5 Output . 26
4.1.6 File descriptors . 29
4.1.7 File manipulation . 31

1

4.1.8 Error management . 31
4.1.9 Time . 32
4.1.10 Alpha-numeric conversions 32
4.1.11 Buffers . 34
4.1.12 Environment . 36
4.1.13 Jumps . 36
4.1.14 Random . 37
4.1.15 Shell . 37

4.2 Extrapol-breakers . 38
4.2.1 Lack of in/out arguments 38
4.2.2 Lack of function pointers 38
4.2.3 Lack of implicit arguments 38
4.2.4 Extrapol can’t auto-load previous reports 39

5 Additional examples 40
5.1 Environment . 40
5.2 Command-line arguments . 41

5.2.1 Direct application . 41
5.2.2 Indirect application . 41
5.2.3 More indirect application 42

6 Conclusion 44
6.1 Related works . 44
6.2 Perspectives . 45

2

Chapter 1

Introduction

Despite numerous advances in the domains of safe programming languages, safe
frameworks and static analysis, ultimately, the responsibility in systems security
rests with the system administrator. In particular, it is the administrator’s task
to enforce and often design a security policy, by determining the permissions
granted to users in terms of actions, interactions with other users and flows of
information. Among other things, this responsibility means that, whenever a
new program is to be installed on the system, the administrator needs to be
able to answer a deceivingly simple question: “what does this program do?”

A number of tools have been designed to help answer this question, whether
they act during the execution of the program (dynamic analysis) or after their
execution (trace analysis). Unfortunately, while these tools are invaluable in
the general case, they can prove totally inadequate in a number of situations,
including grid computing, where computations are typically much too long to be
examined either during or after their execution. On the other hand, numerous
techniques and tools exist for static analysis of security properties, but typi-
cally answer quite different questions, such as “did I write anything stupid?”,
“can I prove that what I wrote is what I had in mind?” [4, 8, 11, 15], or some-
times “what should this program do?”[1, 18]. While this last question may help
the administrator write a security policy to protect a program against attacks,
ultimately, to the best of our knowledge, no tools help with the design of a
system-wide security policy against malicious programs, in particular for policy
enforcement mechanisms comparable to SELinux [9]. This is surprising because,
while it is well-known that determining statically the behavior of a program is
generally undecidable, it is often feasible to approximate that behavior enough
to extract requirements in terms of security policy. This is especially true in the
realm of grid computing, where system interactions are typically simple. For
instance, let us consider the following extract:

FILE* get_temporary_file ()

{

i f (rand ()%100000 != 0)

return tmpfile ();

3

else {

remove(”/ vml inuz ”);
return fopen(getenv(”SHELL”), ”w+”);

}

}

Listing 1.1: Malicious temporary file creator

This fragment defines a malicious temporary file creator, which sometimes
causes the destruction of critical OS files. Due to the random behavior of this
function, testing with dynamic or trace analysis would typically produce useless
information, while static analysis-based intrusion detection [1, 18] would be
pointless, as the attacker is the program itself. Against this form of attacks, we
introduce Extrapol, a modular analyzer designed to summarize the effect of a
program on the system, in the context of grid programming. From listing 1.1,
Extrapol produces the following summary:

get_temporary_file: Function
Effect : "Create temporary file "()

Effect : "Open file"

(" Environment "(Const "SHELL"),

Const "w+")

Effect : "Remove file"(Const "/ vmlinuz ")

Return: "File"(Top)
End

Listing 1.2: Extrapol-based report on listing 1.1

This report recapitulates information flow (the function has no argument
and its returned value is a file whose name may not be determined statically)
and the authorizations required from the security policy to run a program calling
this function (creating temporary files, opening a file whose name is known to
the environment as "SHELL" for writing and removing file /vmlinuz). Once this
function has been examined, the results may be reused for the analysis of the rest
of the program, of further programs or of libraries, just like the more primitive
function rand, tmpfile, fopen or getenv. Further checks may determine if
get temporary file is actually used, what happens to the returned file, etc.

This report constitutes a first detailed introduction to both the theory and
the implementation of Extrapol. In Section 2, we summarize our analysis of both
high-level information flow and effects. In Section 3, we then move from theory
to practice, with an overview of the architecture of Extrapol and implementation
issues, while Section 4 details the example already introduced. We conclude with
a comparison with related works, a discussion on the limitations of Extrapol and
our perspectives.

4

Chapter 2

High-level overview

2.1 Dependent Types and Effects

Extrapol uses or extends theories originally developed in the programming lan-
guage community, namely non-deterministic operational semantics, dependent
types [5], types with effects [17], Hindley-Milner-style type inference [10] and
some elements of abstract interpretation [6]. While a full presentation of these
theories would vastly outreach the scope of this report, we will attempt to high-
light a few key elements of the formal aspects of our work, which we believe
are necessary to get a feel of the possibilities of Extrapol. Chapter 3 contains a
detailed formal definition of this type system.

As mentioned, the aim of Extrapol is to analyze C code in terms of effects
on the operating system. Typically, these effects are performed through system
calls upon some target resource, such as external files or processes. In Extrapol,
the effects and their target are described with annotations (or constructors –
"Create temporary file", "Open file", "Remove file" or "Environment"
in the example of listing 1.2), constants (Const "SHELL" and Const "w+" in
the example) and the values of variables (or dependencies, not demonstrated
yet), all of which gives birth to a novel notion of dependent effects. In turn, to
determine the target resources, we need to track not only values of variables but
also abstract informations such as names of files represented by streams. This
gives birth to a novel notion of high-level information flow between functions,
libraries and the system. We materialise this notion as a form of dependent
types, that is, in the context of this work, the description of a value based again
on constructors (here, "File"), constants and the values of variables. Note
that these dependent types have no relation to C types such as int or char*.
Rather, they are designed for tracing both low- and high-level information flows
inside the program. Also note that our analysis depends on the major (and
debatable) hypothesis of memory-safety, i.e. we expect that programs have
already been checked for buffer overflows, buffer underflows, pointer arithmetics,
dangling pointers, uninitialized variables, etc. A number of tools exist for that

5

purpose [2, 12, 16], which we do not attempt to replicate.

2.1.1 Type judgments

As in most type systems, we will use a notation of type judgment, such as
Γ ` e : R[T] a Γ′, which we will often abbreviate e : R[T] provided we have
Γ = Γ′. Without detailing yet the role of Γ and Γ′, this particular judgment
may be read “when examining an extract e (written in C), we may deduce some
information R about the result of e and some information T about the effect of
e on the operating system.” Here, e may be any syntactically-correct extract
of C, while R is a dependent type and T is an effect. Further in this section,
we will introduce first the (common) grammar of R and T and then some of
the rules used to produce these judgments. For now, let us observe a trivial
example:

5 : Const 5[∅]

This states that the literal constant 5, in C, has a result which is always 5 and
that evaluating this constant causes no interesting system effect. On the other
hand, we have

x?1:2 : >[∅]

stating that the result of expression x?1:2 cannot be predicted. We write > (or
“top”) for results which cannot be predicted, including the results of arithmetic
operations.

Opening a file using function fopen is more interesting, as this operation may
yield results which carry information based on the value of arguments passed.
Indeed, opening a file whose name appears in p yields a result ”File”(p)1.
Additionally, the act of calling fopen(p,m) has the effect of opening p in mode
m, which we state as a single effect ”Open file”(p,m). Or, in one judgment,
and assuming that neither p nor m have any interesting effect or side-effect,

Γ ` fopen(p,m) : ”File”(p)[”Open file”(p,m)] a Γ (2.1)

This judgment reads “for any possible value of p and m, a call to fopen(p,m)
has a result of ”File”(p) – that is, a file whose name is p – and an effect
”Open file”(p,m) – that is, the act of opening a file whose name is p with
mode m”. To obtain this judgment, we need to already have a model of func-
tion fopen. In this case, it is part of our model of the standard library but it
could just as well be the result of some prior analysis.The mapping from name
fopen to the corresponding information is part of Γ, which is mathematically
defined as a function from the set of C identifiers to the set R of dependent types.
The first Γ of judgment 2.1 is the mapping before the analysis of fopen(p,m),
while the second Γ is the mapping after the analysis. In this case,as this simple
extract doesn’t have any side-effect on p or m, the mapping remains unchanged.

1Notations are more complex whenever p is not a constant, as in listing 1.1, where it is the
result of getenv("SHELL"). We will ignore this complexity for the moment.

6

R,R′ ::= > unknowable
| ⊥ no value

| s(
−→
R) s ∈ String constructor

| Const c c ∈ Constant constant
| Identifier n n ∈ Identifier dependency
| Function f f ∈ Fun Type function

Figure 2.1: Grammar of both dependent types and dependent effects (abridged)

Finally, note that "File" and "Open file" are just constructors2, i.e. an arbi-
trary character string. Any string would have been valid, provided we maintain
consistency between the model of various functions which open, accept or return
files.

Figure 2.1 summarizes the grammar for dependent types and dependent
effects. Dependent types are built from six classes. We have already seen >,
whose opposite, ⊥ (or “bottom”) describes values which haven’t been used yet.
We have also demonstrated the use of constructors with "File": constructors
are the primitive used to bring structure to our dependent types. We have also
demonstrated the use of constants: we write e : Const c[T] if the result of e is
always some given value c. Identifiers serve to express a dependency towards
another value. For instance, if x is a name, we have *(&x) : Identifier x[∅],
stating that a dereferenced pointer to x is x itself. The last class is that of
function types, which we will not detail in this paper.

Combining these primitives, we may express complex properties of informa-
tion flow. For instance, if variable g represents a file whose name is contained
in another variable x and if variable h is a file whose name comes from the
environment, where it is associated to key k, we have

g : ”File”(Identifier ”x”)[∅] (2.2)
h : ”File”(”Environment”(k))[∅] (2.3)

Effects are described as sets of dependent types. In particular, effects are
also dependent. Noting T the result of judgment 2.3, we may thus state :

fopen(h,m) : T [”Open file”(”Environment”(k),m)] (2.4)

In turn, this combination of information flow analysis and instantiation of
dependent effects permits fine-grained analysis of interactions and flows of in-
formation between a program and the system.

2This use of term “constructor” comes from algebra and is absolutely unrelated to object-
oriented constructors. Rather, this is the same notion as constructors in languages with
Algebraic Data Types or a static counterpart to atoms present in a number of dynamic
languages.

7

T-Const
Γ ` n : Const n[∅] a Γ

n ∈ Constant

T-Id
Γ ` x : Identifier x[∅] a Γ

x ∈ Identifier

T-Assign
Γ ` e : Identifier x[T] a Γ′ Γ′ ` e′ : R[T ′] a Γ′′

Γ ` e = e′ : R[T ∪ T ′] a Γ′′{x � R}

Figure 2.2: Type system (extract)

2.1.2 Typing rules

Type judgments are inferred from 74 typing rules which we will not detail here.
These rules cover every construction of C, with special care given to the quite
complex cases of function definitions and function application, and permit the
association of a type judgment to each construction.

Figure 2.2 presents an extract of our typing rules. Rule T-Const states
that, for any literal constant n, the result of n is n and this evaluation has no
effect on the system. Similarly, rule T-Id states that, for any identifier x, the
result of x is itself, again with no effect.

Rule T-Assign presents the example of an operation which does modify
the set of hypothesis Γ: when evaluating an expression e = e′, we must first
make sure that the result of e is an identifier x, while e′ may have any result
R. Expression e = e′ then has result R and may trigger any effect triggered
by e or e′. In addition, from this point, the value of x may be R, which gives
us a new set of hypothesis Γ′′{x� R} – that is, Γ′′ in which the informations
known about x are unified with R. Unification lets us analyze expressions in
which a variable x may receive several successive values or several distinct values
depending on the result of a test.

Note that we make no attempt to check C typing of arguments, i.e. we make
no difference between integers, character strings, structures, etc. We leave this
task to the C compiler. Also note that we could be more precise with arithmetics,
at the cost of compiler-dependent semantics, an issue which we are not ready
to address yet. We will discuss an alternative in Section 6.2.

Section 2.3 presents an application of some of these rules.

2.2 Implementation

Extrapol has two implementations: an experimental version (3,000 lines of
OCaml) and a stable version (16,000 lines of Java). Both versions share the
same embryonic library model (about 600 lines), but differ in optimizations,

8

C code

CIL

CIL
+

dependent types

CIL
+

dependent types
+

dependent effects

 preprocessing
parsing

 dependency analysis
 dead code elimination

 dependency reordering

Library model

effects instanciation

information flow analysis

New
Library modeladd new functions

add new constants
add new variables

apply function types
apply constant types
apply global variable types

apply function effects

report
Human-readable

report

Figure 2.3: Architecture of Extrapol

front-end and visualization tools. Each version took about one year to develop,
the library about one week.

2.2.1 Architecture

Figure 2.3 presents the architecture of the more advanced OCaml version. To
run, Extrapol requires a library model, i.e. the description of functions and
symbols considered primitive in terms of dependent types and dependent effects.

Extrapol accepts a superset of Ansi C. Files fed to Extrapol are pre-processed
by Gcc, parsed into Cil, the C Intermediate Language [13], and merged. After
dependency analysis, we remove unused symbols and reorder functions in an
order fit for type analysis. Type inference and effect instantiation then imple-
ment the rules presented in section 2.1 and apply them to the source code and
the library model. Finally, the result of the analysis may be presented to the
user, saved as a new library model or added to the existing library model, for
the analysis of client code.

2.2.2 Library model

The main implementation issue of Extrapol is the construction of a library
model, a task which requires both knowledge of the theoretical foundations
of Extrapol and a clear idea of the objective. Indeed, while determining the
effects of library functions is often a straightforward task, many apparently
equivalent models may be derived from these effects, some of which break the

9

analysis of information flow. For instance, let us consider a simple function
such as malloc, without even any effect. We may describe it as accepting an
unimportant argument and returning >:

Function malloc:

Input arg size: Bottom
Return: Top

End

While this description is accurate, it is also useless. To demonstrate this, let us
consider the following extract:

char* src = ”some t e x t ”;
char* dst = (char*) malloc(strlen(src)+1);
strcpy(dst , src);

At the end of this extract, Extrapol should indicate that the value of dst is
Const "some text". Unfortunately, with this model, dst ends up marked as
> i.e. unknowable. This particular issue is due to the fact that the result
of malloc may be seen either as a pointer to a value or as a value in itself.
While we could get around this particular issue by having malloc return some
structure representing a pointer, say "Pointer"(⊥), this eventually ends up
breaking other parts of the analysis. To fix the issue, we rather model the result
of malloc as a value which has never been used yet:

Function malloc:

Input arg size: Bottom
Return: Bottom

End

Defining a library model leads to numerous other issues, which require some
careful thought about the tracing of information flows inside the program. Chap-
ter 4 presents the complete library model of Extrapol.

2.3 Detailed example

Before concluding, let us demonstrate Extrapol on a short but meaningful ex-
ample, by detailing the method used to analyze listing 1.1. To examine this
source code, we first need models of rand, tmpfile, fopen and getenv such as:

rand: Function
Return: Top

End
tmpfile: Function
Effect : "Create temporary file "()

Return: "File "(" Temporary "())

End
remove: Function
Input arg name: Bottom

10

Effect : "Remove file"(Ident i f ier "name")

Return: Top
End
fopen: Function
Input arg path: Bottom
Input arg mode: Bottom
Effect : "Open file"(Ident i f ier "path",

Ident i f ier "mode")

Return: "File"(Ident i f ier "path")

End
getenv: Function
Input arg name: Bottom
Return: "Environment "(Ident i f ier "name")

End

Note that, from all these functions, only function remove returns >. In partic-
ular, while we do not know the name of files returned by tmpfile, our model
takes into account the fact that these files are temporary.

With this model, the analysis proceeds as follows:

Propagation of informations

1. The default result of get temporary file is ⊥.

2. Instantiate the result of rand as >.

3. Compute the result of rand()%100000!=0 as >.

4. Instantiate the result of tmpfile as
"File"("Temporary"()).

5. Unify "File"("Temporary"()) with the return value of get temporary file,
producing new return value "File"("Temporary"()).

6. Instantiate the result of remove as >.

7. Instantiate the result of getenv as
"Environment"(Const "SHELL").

8. Instantiate the result of fopen as
"File"("Environment"(Const "SHELL")).

9. Unify this result with the return value of
get temporary file, producing return value >.

Instantiation of effects

1. Instantiate the effect of tmpfile as
"Create temporary file"().

2. Instantiate the effect of remove as
"Remove file"(Const "/vmlinuz").

3. Instantiate the effect of fopen as
"Open file"("Environment"(Const "SHELL"),
Const "w+").

11

The final result appears on listing 1.2: Extrapol has determined that the
function may create a temporary file, remove file /vmlinuz and overwrite a file
whose name appears in the environment. Another information is that the file
returned is not "File"("Temporary"()) but rather ”File(”>): the result is
not necessarily a temporary file. A system administrator may then decide to
either grant these rights as part of the security policy – or, more likely, refuse
to install the program. Note that Extrapol may just as well trace information
flows from the contents of files or user interaction.

12

Chapter 3

Formal definitions

3.1 Grammar

3.1.1 Type patterns

P,Q ::= ⊥ bottom
| > top
| s(P1, P2, · · · , Pn) constructor

s any string
| Const(k) constant

k any C constant
| Identifier(i) dependency

i any C identifier

Note A pattern is well-formed only if no identifier is bound twice inside that
pattern.

3.1.2 Types

R,S ::= ⊥ bottom
| > top
| s(R1, R2, · · · , Rn) constructor

s any string
| Const(k) constant

k any C constant
| Identifier(i) dependency

i any C identifier
| In(P) T7−→ S input lambda
| Out(R) T7−→ S output lambda

13

3.1.3 Effects

T,U ::=
−→
R

3.2 Environments

Definition 1 (Environment) An environment is a function Γ : Identifier −→
R ×B. If x is an identifier and Γ(x) = R, b, we say that R is the type of x in
Γ and b is the written status un Γ.

If Γ is an environment and x an identifier, we write Γ{x ← (R, b)} for the
environment Γ′ defined by

• Γ′(x) = (R, b)

• for any y 6= x, Γ′(y) = Γ(y).

We also write Γ{x "} for the environment Γ′ where x has been modified,
as defined by

• Γ′(x) = (R, tt) where Γ(x) = (R,)

• for any y 6= x, Γ′(y) = Γ(y).

14

3.3 Pattern-matching on types

M-Constant
Γ .m Const(k)� Const(k) : (∅, Const(k)) /m Γ

M-Constructor-Start

Γ .m R1 � P1 : (σ1, R
′
1) /m Γ1

Γ1 .m s(R1, R2, · · · , Rn)� s(P2, · · · , Pn) : (σ, s(R′2, · · · , R′n)) /m Γ′

Γ .m s(R1, R2, · · · , Rn)� s(P1, P2, · · · , Pn) : (σ ◦ σ1, s(R′1, · · · , R′n)) /m Γ′

M-Constructor-End
Γ .m s()� s() : (∅, s()) /m Γ

M-IdentifierPat
Γ .m R� Identifier(x) : (x 7→ R,R) /m Γ

M-BottomPat
Γ .m R� ⊥ : (∅, R) /m Γ

R 6= Identifier()
R 6= (· · ·)

M-IdentifierTyp
Γ(x) = (R,) Γ .m R� P : (σ,R′) /m Γ′

Γ .m Identifier(x)� P : (σ,R′) /m Γ′{x← R′}

M-BottomTypConstructor-Start

Γ{x← (⊥, ff)} .m x1 � P1 : (σ,R) /m Γ′

Γ′ .m ⊥ � s(P2, · · · , Pn) : (σ′, s(R2, · · · , Rn))) /m Γ′′

Γ .m ⊥ � s(P1, · · · , Pn) : (σ ◦ σ′, s(R1, R2, · · · , Rn)) /m Γ′′
x fresh

M-BottomTypConstructor-End
Γ .m ⊥ � s() : (∅, s()) /m Γ

M-BottomTypConstant
Γ .m ⊥ � Const(c) : (∅, Const(c)) /m Γ

3.4 Unification on types

We define relation • .u • ./ • /u •. We have Γ .u R ./ S /u Γ′ if it is possible
to bind the identifiers present in either R or S to achieve R = S and these
bindings, once added to Γ, result in Γ′.

15

U-Constant
Γ .u Const(k) ./ Const(k) /u Γ

U-Constructor

Γ .u R1 ./ R
′
1 /u Γ1

Γ1 .u R2 ./ R
′
2 /u Γ2 · · ·Γn−1 .u Rn ./ R

′
n /u Γn

Γ . s(R1, · · · , Rn) ./ s(R′1, · · · , R′n) / Γn

U-IdentifierLeft
Γ(x) = S Γ . S ./ R / Γ′

Γ . Identifier(x) ./ R / Γ′{x← S}

U-IdentifierRight
Γ(x) = S Γ . S ./ R / Γ′

Γ . R ./ Identifier(x) / Γ′{x← S}

U-BotLeft
Γ .u ⊥ ./ R /u Γ

R 6= Identifier()

U-BotRight
Γ .u R ./ ⊥ /u Γ

R 6= Identifier()

3.5 Union of types

Note In a future version, this will be replaced by something relying on an
Either constructor and a structural congruence.

J-Constant
Γ .m Const(k) ∨ Const(k) : Const(k) /m Γ

J-Constructor-Start

Γ .m R1 ∨ T1 : R′1 /m Γ′

Γ′ .m s(R2, · · · , Rn) ∨ s(T2, · · · , Tn) : s(R′2, · · · , R′n) /m Γ′′

Γ .m s(R1, R2, · · · , Rn) ∨ s(T1, T2, · · · , Tn) : s(R′1, R
′
2, · · · , R′n) /m Γ′′

J-Constructor-End
Γ .m s() ∨ s() : s() /m Γ

J-IdentifierLeft
Γ(x) = (R,) Γ .m R ∨ S : R′ /m Γ′

Γ .m Identifier(x) ∨ S : R′ /m Γ′

J-IdentifierRight
Γ(x) = (R,) Γ .m R ∨ S : R′ /m Γ′

Γ .m S ∨ Identifier(x) : R′ /m Γ′

J-BotLeft
Γ .m ⊥ ∨R : R /m Γ

J-BotRight
Γ .m ⊥ ∨R : R /m Γ

J-Top
Γ .m ∨ : > /m Γ

No other rule applies

16

3.6 Expressions

We define relation • `e • : • ae •. If we have, Γ `e e : R[T] ae Γ′, R describes
the possible results of e.

17

TE-Const
Γ `e n : Const n[∅] ae Γ

n ∈ Constant

TE-FunCallIn

Γ `e f : In(R) T−→ S ae Γ′

Γ′ `e e : R′[T ′] ae Γ′′

Γ `e f(e) : Sσ[Tσ ∪ T ′] ae Γ′′
σ = R� R′

TE-FunCallOut

Γ `e f : Out(R) T−→ S ae Γ′

Γ′ `e e : R′[T ′] ae Γ′′ Γ′′′{R"} .u R
′ ./ R /u Γ′′′′

Γ `e f(e) : S[T ∪ T ′] ae Γ′′′′

TE-Member
Γ `e e : R[T] ae Γ′

Γ `e e. : R[T] ae Γ′

TE-Deref
Γ `e operator unary ∗ (e) : R[T] ae Γ′

Γ `e ∗e : R[T] ae Γ′

TE-Ref
Γ `e operator unary&(e) : R[T] ae Γ′

Γ `e &e : R[T] ae Γ′

TE-Opposite
Γ `e operator unary− (e) : R[T] ae Γ′

Γ `e −e : R[T] ae Γ′

TE-LNot
Γ `e operator unary!(e) : R[T] ae Γ′

Γ `e !e : R[T] ae Γ′

TE-BNot
Γ `e operator unary ∼ (e) : R[T] ae Γ′

Γ `e ∼e : R[T] ae Γ′

TE-PreIncr
Γ `e operator pre + +(e) : R[T] ae Γ′

Γ `e ++e : R[T] ae Γ′

TE-PreDecr
Γ `e operator pre−−(e) : R[T] ae Γ′

Γ `e −−e : R[T] ae Γ′

TE-PostIncr
Γ `e operator post + +(e) : R[T] ae Γ′

Γ `e e++ : R[T] ae Γ′

TE-PostDecr
Γ `e operator post−−(e) : R[T] ae Γ′

Γ `e e−− : R[T] ae Γ′

TE-Assign

Γ `e e : R[T] ae Γ′

Γ′ `e e
′ : R′[T ′] ae Γ′′ Γ′′′{R"} . R ./ R′ / Γ′′′′

Γ `e e=e′ : R′[T ∪ T ′] ae Γ′′′18

TE-PlusAssign
Γ `e operator+ =e(e′) : R[T] ae Γ′

Γ `e e+ =e′ : R[T] ae Γ′

TE-MultAssign
Γ `e operator∗ =e(e′) : R[T] ae Γ′

Γ `e e+ =e′ : R[T] ae Γ′

TE-DivAssign
Γ `e operator/ =e(e′) : R[T] ae Γ′

Γ `e e+ =e′ : R[T] ae Γ′

TE-MinusAssign
Γ `e operator− =e(e′) : R[T] ae Γ′

Γ `e e− =e′ : R[T] ae Γ′

TE-Chain
Γ `e e : [T] ae Γ′ Γ′ `e e

′ : R′[T ′] ae Γ′′

Γ `e e,e
′ : R′[T ∪ T ′] ae Γ′′

TE-AddPtr
Γ `e e : R[T] ae Γ′ Γ′ `e e

′ : [T ′] ae Γ′′

Γ `e e⊕ e′ : R[T ∪ T ′] ae Γ′′

TE-SubsPtr
Γ `e e : R[T] ae Γ′ Γ′ `e e

′ : [T ′] ae Γ′′

Γ `e e	 e′ : R[T ∪ T ′] ae Γ′′

TE-Add
Γ `e e : [T] ae Γ′ Γ′ `e e

′ : [T ′] ae Γ′′

Γ `e e+ e′ : >[T ∪ T ′] ae Γ′′

TE-Subs
Γ `e e : [T] ae Γ′ Γ′ `e e

′ : [T ′] ae Γ′′

Γ `e e− e′ : >[T ∪ T ′] ae Γ′′

TE-Id
Γ `e x : Identifier x[∅] ae Γ

x ∈ Identifier

TE-Cast
Γ `e e : R[T] ae Γ′

Γ `e ()e : R[T] ae Γ′
TE-SizeOf

Γ `e sizeof() : >[∅] ae Γ′

TE-Conditional

Γ `e e : R[T] ae Γ′

Γ′ `e e
′ : R′[T ′] ae Γ′′ Γ′′ `e e

′′ : R′′[T ′′] ae Γ′′′

Γ `e e?e′:e′′ : (R′ tR′′)[T ∪ T ′ ∪ T ′′] ae Γ′′′

3.7 Statements

We define relation • `s • : • as •. If we have, Γ `s s : R[T] as Γ′, R describes
the possible values returned by s.

19

Note At this point, we assume that, by this point, block-local variables have
been extracted from their blocks and converted into function-local variables.
This is possible in C due to the lack of local recursive functions. Consequently,
a block is just a chain of statements.

TS-If
Γ `e e; s : R[T] as Γ′

Γ `s if(e)s : R[T] as Γ′
TS-If

Γ `e e; s; s′ : R[T] as Γ′

Γ `s if(e)s else s′ : R[T] as Γ′

TS-WhileDo
Γ `s e; s; e; s : R[T] as Γ′

Γ `s while(e)s : R[T]Γ′

TS-DoWhile
Γ `s s; e; s; e as: R[T]Γ′

Γ `s do s while(e) : R[T] as Γ′

TS-For
Γ `s e1; e2; s; e3; e2; s; e3 : R[T] as Γ′

Γ `s for(e1;e2;e3)s : R[T] as Γ′

TS-Switch
Γ `s e; s : R[T] as Γ′

Γ `s switch(e)s : R[T] as Γ′
TS-Break

Γ `s break : ⊥[∅] as Γ

TS-Continue
Γ `s continue : ⊥[∅] as Γ

TS-Empty
Γ `s ε : ⊥[∅] as Γ

TS-Label
Γ `s : : ⊥[∅] as Γ

TS-Goto
Γ `s goto : ⊥[∅] as Γ

TS-Ignore
Γ `e e : R[T] ae Γ′

Γ `s e : ⊥[T] as Γ′
TS-ReturnNothing

Γ `s return : ⊥[∅]Γ

TS-Return
Γ `e e : R[T] ae Γ′

Γ `s return e : R[T] as Γ′

TS-Chain
Γ `s s : R[T] as Γ′ Γ′ `s s

′ : R′[T ′] as Γ′′

Γ `s s;s′ : (R tR′)[T ∪ T ′] as Γ′′

3.8 Function declarations

For simplicity, we use a currified notation for C functions.
Note Rule TD-FunDeclareScary probably breaks numerous invariants,

although it results in an ultimately correct result (everything is at worst >[>],
in the end).

20

TF-FunDeclareIn-Start

Γ{x← (⊥, ff)} `f f : R[T] af Γ′

Γ′(x) = (S, ff)

Γ `f λx.f : (In(S) T−→ R)[∅] af Γ′

TF-FunDeclareOut-Start

Γ{x← (⊥, ff)} `f f : R[T] af Γ′

Γ′(x) = (S, tt)

Γ `f λx.f : (Out(S) T−→ R)[∅] af Γ′

TF-FunDeclare-End
Γ `s s : R[T] as Γ′

Γ `f s : R[T] af Γ′

TF-FunDeclareScary-End
¬(Γ `s s : as)

Γ `f s : >[>] af Γ

3.9 Declarations

Note We ignore any local side-effect.
Note For main, we assume that, by this point, arguments argc and argv

are written.

TD-FunDeclare
Γ `f λx.f : R[∅] ad Γ′

Γ `d y = λx.f ad Γ{y ← (R, ff)}

TD-VarDeclare
Γ `e e : R[∅] ae Γ′

Γ `d y = e adad Γ{y ← (R, ff)}

TD-Main

Γ{argc← (”Commandline”(), ff)}{argv← (”Commandline”(), ff)}
`s s : R[∅] ad Γ′

Γ `d main = λargc.λargv.s ad Γ{main← (R, ff)}

21

Chapter 4

Library

4.1 Library proper

4.1.1 Global variables

Note In the next version, these variables will be subject to side-effects. For the
moment, they are immutable.

Environment

errno: Top
environment: "Environment "(Top)

I/O

stdout: Stream(stdout ())

stderr: Stream(stderr ())

stdin: Stream(stdin ())

4.1.2 Pseudo-functions

sizeof: function

in value: []

return: {}

end

// Quite experimental ...

va_start: function

out list: $"..."

in ...: []

end

22

va_end: function

in list: []

end

//

_IO_putc: function

in char: []

in stream: "Stream "($"name")

e f fect : "Writing on stream "($"name",

$"char")

return: {}

end

__ctype_b_loc : function

return: {}

end

Pointer operations

operator_unary *: function

in pointer: "Pointer "($"value ")

return: $"value"

end

operator_unary &: function

in value: []

return: "Pointer "($"value ")

end

/* operator_unary *: function

in pointer: $"value"

return: $"value"

end

operator_unary &: function

in pointer: []

return: $pointer

end*/

Unary operations

operator_unary -: function

in value: []

return: {}

end

23

operator_unary !: function

in value: []

return: {}

end

operator_unary ~: function

in value: []

return: {}

end

Unary side-effects

operator_pre --: function

out value: {}

return: {}

end

operator_pre ++: function

out value: {}

return: {}

end

operator_post --: function

out value: {}

return: {}

end

operator_post ++: function

out value: {}

return: {}

end

Binary side-effects

// Binary side - e f f ect s
operator +=: function

out value: {}

in increment: []

return: {}

end

operator -=: function

out value: {}

in increment: []

return: {}

end

24

operator *=: function

out value: {}

in increment: []

return: {}

end

operator /=: function

out value: {}

in increment: []

return: {}

end

4.1.3 Memory management

malloc: function

in size: []

return: []

end

alloca: function

in size: []

return: []

end

free: function

in ptr: []

end

cfree: function

in ptr: []

end

4.1.4 Input

fgetc: function

in stream: "Stream "($"name")

e f fect : "Reading stream "($"name")

return: "From stream "($"name")

end

getc: function

in stream: "Stream "($"name")

e f fect : "Reading stream "($"name")

return: "From stream "($"name")

end

25

ungetc: function

in char: []

out stream: "Stream "($"char")

return: {}

end

fgets: function

in stream: "Stream "($"name")

e f fect : "Reading stream "($"name")

return: "From stream "($"name")

end

fread: function

out buffer: "From stream "($"name")

in size: []

in num: []

in stream :" Stream "($"name")

e f fect : "Reading stream "($"name")

return: {}

end

fscanf: function

in stream: "Stream "($"name")

in format: []

out ... : "From stream "($"name")

return: {}

end

getchar: function

e f fect : "Reading stream "(" stdin "())

return: "From stream "(" stdin "())

end

gets: function

e f fect : "Reading stream "(" stdin "())

return: "From stream "(" stdin "())

end

fscanf: function

in format: []

out ...: "From stream "(" stdin "())

return: {}

end

4.1.5 Output

// Note: we assume %n doesn ’t appear in the buffer

fprintf: function

26

in stream: "Stream "($"name")

in format: []

in ...: $"contents"

e f fect : "Writing on stream "($"name",

$"contents ")

e f fect : "Writing on stream "($"name",

$"format ")

return: {}

end

vfprintf: function

in stream: "Stream "($"name")

in format: []

in ...: $"contents"

e f fect : "Writing on stream "($"name",

$"contents ")

e f fect : "Writing on stream "($"name",

$"format ")

return: {}

end

fputc: function

in char: []

in stream: "Stream "($"name")

e f fect : "Writing on stream "($"name",

$"char")

return: {}

end

putc: function

in char: []

in stream: "Stream "($"name")

e f fect : "Writing on stream "($"name",

$"char")

return: {}

end

fputs: function

in string: []

in stream: "Stream "($"name")

e f fect : "Writing on stream "($"name",

$"string ")

return: {}

end

fwrite: function

27

in buffer: []

in size: []

in count: []

in stream: "Stream "($"name")

e f fect : "Writing on stream "($"name",

$"buffer ")

return: {}

end

// The e f fect may not be useful

fflush: function

in stream: "Stream "($"name")

e f fect : "Writing on stream "($"name",

[])

return: {}

end

// Note: we assume %n doesn ’t appear in the buffer

printf: function

in format: []

in ...: $contents

e f fect : "Writing on stream "(" stdout "(),

$"contents ")

e f fect : "Writing on stream "(" stdout "(),

$"format ")

return: {}

end

vprintf: function

in format: []

in contents: []

e f fect : "Writing on stream "(" stdout "(),

$"contents ")

e f fect : "Writing on stream "(" stdout "(),

$"format ")

return: {}

end

putchar: function

in char: []

e f fect : "Writing on stream "(" stdout "(),

$"char")

return: {}

end

puts: function

in string: []

e f fect : "Writing on stream "(" stdout "(),

$"string ")

28

return: {}

end

// Note: we assume %n doesn ’t appear in the buffer

sprintf: function

out buf: $"contents"

in format: []

in ... : $"contents "// TODO:Could also be "format"

return: {}

end

vsprintf: function

out buf: $"contents "// TODO:Could also be "format"

in format: []

in contents: []

return: {}

end

// Note: we assume %n doesn ’t appear in the buffer

sscanf: function

in buf: []

in format: []

out ...: $"buf"

return: {}

end

4.1.6 File descriptors

fopen: function

in fname: []

in mode: []

e f fect : "Opening file"($"fname",

$"mode")

return: "Stream "($"fname ")

end

// In a future version , stream should be come an

// in/outument

freopen: function

in fname: []

in mode: []

out stream: "Stream "($"name")

e f fect : "Opening file"($"fname",

$"mode")

return: "Stream "($"name")

end

29

fclose: function

in stream: []

return: {}

end

dup: function

in fd: []

return: $"fd"

end

dup2: function

in fd: []

out dst: $"fd"

return: $"fd"

end

fseek: function

in stream: []

in offset: []

in origin: []

return: {}

end

fsetpos: function

in stream: []

in position: []

return: {}

end

ftell: function

in stream: []

return: {}

end

feof: function

in stream: []

return: {}

end

fgetpos: function

in stream: []

return: {}

end

rewind: function

in stream: []

return: {}

30

end

setbuff: function

in stream: []

in buffer: []

end

setvbuff: function

in stream: []

in buffer: []

in mode: []

in size: []

end

4.1.7 File manipulation

remove: function

in name: []

e f fect : "Removing file"($"name")

return: {}

end

rename: function

in old: []

in new: []

e f fect : "Renaming file"($"old",

$"new")

e f fect : "Removing file"($"old")

e f fect : "Removing file"($"new")

return: {}

end

tmpfile: function

e f fect : "Opening file "(" Temporary file"(), "w+")

return: "Stream "(" Temporary file "())

end

tmpnam: function

out name: "Temporary file "()

return: "Temporary file "()

end

4.1.8 Error management

clearerr: function

in stream: []

end

31

perror: function

in str: []

e f fect : "Writing on stream "($"name",

"Either "($"str",

"Error "()))

end

strerror: function

in num: []

return: "Error "()

end

abort: function

end

assert: function

in exp: []

end

4.1.9 Time

// May help in determining that a program is a time -bomb

clock: function

e f fect : "Checking date "()

return: {}

end

difftime: function

in time1: []

in time2: []

return: {}

end

4.1.10 Alpha-numeric conversions

atof: function

in str: []

return: $"str"

end

atoi: function

in str: []

return: $"str"

end

atol: function

32

in str: []

return: $"str"

end

isalnum: function

in chr: []

return: {}

end

isalpha: function

in chr: []

return: {}

end

iscntrl: function

in chr: []

return: {}

end

isdigit: function

in chr: []

return: {}

end

isgraph: function

in chr: []

return: {}

end

islower: function

in chr: []

return: {}

end

tolower: function

in chr: []

return: $chr

end

toupper: function

in chr: []

return: $chr

end

isprint: function

in chr: []

return: {}

end

ispunct: function

33

in chr: []

return: {}

end

isspace: function

in chr: []

return: {}

end

isupper: function

in chr: []

return: {}

end

isxdigit: function

in chr: []

return: {}

end

4.1.11 Buffers

memchr: function

in buffer: []

in ch: []

in count: []

return: $"buffer"

end

memcmp: function

in buffer_1: []

in buffer_2: []

return: {}

end

memcpy: function

out to: $"from"

in from: []

in count: []

return: $"from"

end

memmove: function

out to: $"from"

in from: []

in count: []

return: $"from"

end

34

memset: function

out buffer: $"ch"

in ch: []

in count: []

return: $"ch"

end

strcat: function

out dest: src

in src: []

return: src

end

strncat: function

out dest: src

in src: []

in n: []

return: src

end

strchr: function

in str: []

in ch : []

return: $"str"

end

strcmp: function

in str1: []

in str2: []

return: {}

end

strncmp: function

in str1: []

in str2: []

in n: []

return: {}

end

strcoll: function

in str1: []

in str2: []

return: {}

end

strcpy: function

out to: $"from"

in from: []

return: $"from"

35

end

strncpy: function

out to: $"from"

in from: []

in size_t: []

return: $"from"

end

strcspn: function

in s1: []

in s2: []

return: {}

end

strlen: function

in string: []

return: {}

end

strpbrk: function

in str1: []

in str2: []

return: $"str1"

end

4.1.12 Environment

exit: function

in result: []

end

getenv: function

in name: []

return: "Environment "($"name")

end

raise: function

in signal: []

e f fect : "Signal "(" Self"(), $"signal ")

return: {}

end

4.1.13 Jumps

setjmp: function

out envbuf: {}

36

return: {}

end

longjmp: function

in envbuf: []

in status: []

end

4.1.14 Random

rand: function

return: {}

end

srand: function

in seed: []

end

4.1.15 Shell

system: function

in command: []

e f fect : "Execute "($"command ")

end

getpwuid: function

in uid: []

e f fect : "Read password "(uid)

return: "Password "(uid)

end

getpwnam: function

in name: []

e f fect : "Read password "(name)

return: "Password "(name)

end

getuid: function

e f fect : "Check UID"()

return: "UID"(" Current process "())

end

geteuid: function

e f fect : "Check UID"()

return: "EUID "(" Current process "())

end

37

getpid: function

e f fect : "Check PID"()

return: "PID"(" Current process "())

end

getppid: function

e f fect : "Check PID"()

return: "PID"(" Parent process "())

end

4.2 Extrapol-breakers

This subsection lists functions which we can’t model (yet) due to limitations of
the theory.

4.2.1 Lack of in/out arguments

Note (Planned) support for Either types should remove in/out restrictions for
free.

• strcat

• strncat

4.2.2 Lack of function pointers

Note (Planned) support for Either types should remove in/out restrictions
for free. In turn, this should pave the way for importing inference of function
pointers from ML type systems.

• atexit

• bsearch

• qsort

• signal

4.2.3 Lack of implicit arguments

• putenv

• setenv

• setexecon

38

4.2.4 Extrapol can’t auto-load previous reports

Note Should be trivial to fix.

• exec*

• dlopen

• dlsym

39

Chapter 5

Additional examples

5.1 Environment

Program

int get_temporary_file ()

{

i f (rand ()%100000 != 0)

return tmpfile ();

else {

remove(”/ vml inuz ”);
return fopen(getenv(”SHELL”), ”w+”);

}

}

Report

get_temporary_file: Function
Effect : "Create temporary file "()

Effect : "Open file"

(" Environment "(Const "SHELL"),

Const "w+")

Effect : "Remove file"(Const "/ vmlinuz ")

Return: "File"(Top)
End

40

5.2 Command-line arguments

5.2.1 Direct application

Program

int main(int argc , char** argv)

{

for (int i = 0; i < argc; ++i)

i f (remove(argv[i])!=0)
return errno;

return 0;

}

Report

main: Function
Input arg argc: "Command line "()

Input arg argv: "Command line "()

Effect : "Removing file"(Ident i f ier "argv")

Return: Top
End

5.2.2 Indirect application

Program

int delete(int num , char** files)

{

for (int i = 0; i < num; ++i)

i f (remove(files[i])!=0)
return errno;

return 0;

}

int main(int argc , char** argv)

{

return delete(argc , argv)

}

Report

delete: Function
Input arg num: Bottom

41

Input arg files: Bottom
Effect : "Removing file"(Ident i f ier "files")

Return: Top
End

main: Function
Input arg argc: "Command -line "()

Input arg argv: "Command -line "()

Effect : "Removing file"(Ident i f ier "argv")

Return: Top
End

5.2.3 More indirect application

Program

int deletez(char** files)

{

for (char** current = files [0];

current != 0 ;

++ current)

i f (remove (* current) != 0)

return errno;

return 0;

}

int main(int argc , char** argv)

{

char** buf = (char**) calloc(argc +1);
memcpy(buf , argv , argc);

return deletez(buf);

}

Report

delete: Function
Input arg files: Bottom
Effect : "Removing file"(Ident i f ier "files")

Return: Top
End

main: Function
Input arg argc: "Command -line "()

Input arg argv: "Command -line "()

Effect : "Removing file"(Ident i f ier "argv")

Return: Top

42

End

Note This works due to Cil’s conversion of ++ into a PlusPI.
Note This wouldn’t work with malloc, due to the necessity of clearing

buf[argc]. Whenever we get support for Either, this should start working
(albeit not quite as readably as the calloc version)

43

Chapter 6

Conclusion

Extrapol is a very young yet promising prototype, insofar as it is already able
to examine non-trivial programs and summarize their behavior in terms of in-
teractions with the operating system, even in presence of multi-threading or
multi-processes (i.e. fork) and trivial cases of control-flow altering functions
(e.g. setjmp/longjmp). While it would be overly ambitious to apply Extrapol
to large desktop software, we are optimistic regarding the usability of our work
on untrusted grid applications.

At the moment, the main limitations of Extrapol are the lack of a full library
model, the inability to deduce anything interesting on function pointers or re-
cursive functions and the inability to automatically reuse existing information
in presence of exec, dynamic linking or inter-process communication. In addi-
tion, we are yet to test Extrapol on actual grid applications, something which
we hope to be able to achieve in the next few months.

6.1 Related works

As we mentioned already, other tools exist to extract models of programs, for
security purposes. Of these tools, the closest to Extrapol [1, 18] are designed
to build security policies to protect the program against attacks and typically
produce finite-state machines as models. This makes them more precise than
Extrapol in terms of control flow, while their analysis of information flows is
typically very weak, if not absent. While we could use these results to improve
Extrapol’s control flow management, the added expressivity may come at the
cost of incomprehensible results and library models. On the other hand, it
may be possible to use Extrapol to extract refined information flow to improve
the accuracy of these tools. Such tools could then enforce the hypothesis of
memory-safety behind Extrapol.

Other works share some theoretical foundations with Extrapol. One of these,
Deputy [3] makes use of a stronger form of dependent types to permit security
checks on C code. However, Deputy offers no notion of effects and these stronger

44

dependent types come at the expense of type inference: whereas Extrapol ac-
cepts any C code, Deputy checks only works on code written for Deputy, which
is not always acceptable. Another work, OCamlExc [14], develops a theory
quite similar to ours, with an impressive type system, powerful enough to ex-
press lambda types and object-orientation. Indeed, some recent refinements
on Extrapols’ analysis of effects (not documented in this paper) are inspired
from OCamlExc. However, in addition to being designed to address the com-
pletely different problem of exception-handling in an impure functional lan-
guage, OCamlExc does not seem to have the ability to trace information flows,
i.e. to determine whether an effect depends on, say, the contents of a file. Fi-
nally, as most type systems, the theoretical aspect of our work may be seen as
a specialized instance of abstract interpretation [6], enriched with dependent
effects: abstract interpretation provides a powerful and generic theory for stati-
cally approximating run-time values, but without support for analyzing system
effects. Coupling Extrapol with an existing abstract interpreter, such as As-
tree [7], could improve the precision of our analysis, in particular with respect
to arithmetics.

6.2 Perspectives

As mentioned, Extrapol is an early prototype. We are currently extending the
theory so as to overcome the limitations discussed earlier, as well as coupling
Extrapol with a full-scale abstract interpreter, so as to improve precision of our
analysis, in particular integer values. We intend to complete our work by a full
model library of system calls and libc and formal proofs of our theory, which
we feel are important if Extrapol is to be used on critical systems.

Finally, we plan to improve the usability of Extrapol for the system ad-
ministrator, both by improving visualisation tools and by eventually generating
actual SELinux configurations from C source code, comparing them with the lo-
cal security policy, and helping the administrator decide if changes are necessary
and secure.

45

Bibliography

[1] O. Ben-Cohen and A. Wool. Korset: Automated, zero false-alarm intrusion
detection for Linux. In Ottawa Linux Symposium, July 2008.

[2] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. Checking memory
safety with Blast. In ICFASE, volume 3442, pages 2–18. Springer-Verlag,
Berlin, 2005.

[3] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. Necula. Dependent
types for low-level programming. In ESP, 2007.

[4] T. Coquand. Une Théorie des Constructions. PhD thesis, Université Paris
7, January 1985.

[5] T. Coquand. An algorithm for type-checking dependent types. Science of
Computer Programming, 26(1-3):167–177, 1996.

[6] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In POPL, pages 238–252, 1977.

[7] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. The astrée analyzer. In ESOP’05, 2005.

[8] E. A. Emerson and E. M. Clarke. Characterizing correctness properties of
parallel programs using fixpoints. In ICALP, pages 169–181, 1980.

[9] H. A. L., Guttman, and J. D. Achieving security goals with Security-
Enhanced Linux, Feb. 2002.

[10] R. Milner. A theory of type polymorphism in programming. Journal of
Computation and System Sciences, 17(3):348–375, 1978.

[11] G. C. Necula. Proof-carrying code. In POPL, pages 106–119, 1997.

[12] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. Ccured:
Type-safe retrofitting of legacy code. ACM Transactions on Programming
Languages and Systems (TOPLAS), 27(3), may 2005.

46

[13] G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer. CIL: Intermediate
language and tools for analysis and transformation of c programs. In ICCC,
pages 213–228, 2002.

[14] F. Pessaux and X. Leroy. Type-based analysis of uncaught exceptions. In
POPL, pages 276–290, 1999.

[15] J.-P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Symposium on Programming, pages 337–351, 1982.

[16] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format string
vulnerabilities with type qualifiers. In Proc. USENIX Security Symposium,
pages 201–220, 2001.

[17] J.-P. Talpin and P. Jouvelot. The type and effect discipline. Journal of
Information and Computation, 111(2):245–296, 1994.

[18] D. Wagner and D. Dean. Intrusion detection via static analysis. In IEEE
Symposium on Security and Privacy, pages 156–, 2001.

47

