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Abstract

A normal partition of the edges of a cubic graph is a partition into trails (no repeated
edge) such that each vertex is the end vertex of exactly one trail of the partition.
We investigate this notion and give some results and problems.
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1 Introduction and notations

Let G = (V,E) be a cubic graph (loops and multiple edges are allowed) and
let T = {T1, T2 . . . , Tk} be a partition of E(G) into trails (no repeated edge).
Every vertex v ∈ V (G) is either an end vertex three times in the partition and
we shall say that v is an eccentric vertex, or an end vertex exactly once, and
we shall say that v is a normal vertex. To each vertex v we can associate a
set ET (v) containing the end vertices of the unique trail with v as an internal
vertex, when such a trail exists in T . When v is eccentric we obviously have
ET (v) = ∅. It must be clear that we can have v ∈ ET (v) since we consider
a partition of trails. In Figure 1 we have drawn K4 with the trail partition
T = {bdabc, dc, ac}. The vertex c is an eccentric vertex while a, b and d are
normal vertices.

cb

d

a

Fig. 1. Normal and eccentric vertices
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De�nition 1.1 A partition T = {T1, T2 . . . , Tk} of E(G) into trails is normal
when every vertex is normal.

When T is a normal partition, we can associate to each vertex the unique
edge with end v which is the end edge of a trail of T . We shall denote this
edge by eT (v) and it will be convenient to say that eT (v) is the marked edge
associated to v. When it will be necessary to illustrate our purpose by a �gure
the marked edge associated to a vertex will be �gurate by a ` close to this
vertex.

Our purpose, in this paper, is to investigate this new notion of normal parti-
tion. In particular we shall see that normal odd partitions can be associated in
a natural way to perfect matchings. We shall introduce the notion of compati-
ble normal partitions (to be de�ned later) leading to a property that could be
veri�ed by every bridgeless cubic graph (including the so called snarks) and
we shall give some results in that direction.

De�nition 1.2 A partition T = {T1, T2 . . . , Tk} of E(G) into trails is odd
when every trail in T is odd.

De�nition 1.3 A partition T = {T1, T2 . . . , Tk} of E(G) where each trail is
a path will be called a path partition.

De�nition 1.4 A partition P = {P1, P2 . . . , Pk} of V (G) into paths is a per-
fect path partition when every vertex of G is contained in P (let us note that
k ≤ n

2
). A perfect matching is thus a perfect path partition where each path

has length 1.

Notations: Following Bondy [1], a walk in a graph G is sequence W :=
v0e1v1 . . . ekvk, where v0, v1, . . . , vk are vertices of G, and e1, e2 . . . , ek are edges
of G and vi−1 and vi are the ends of ei, 1 ≤ i ≤ k. The vertices v0 and vk are the
end vertices and e1 and ek are the end edges of this walk, while v1, . . . , vk−1 are
the internal vertices and e2, . . . , ek−1 are the internal edges. The length l(W )
of W is the number of edges (namely k). The walk W is odd whenever k is
odd and even otherwise.

The walk W is a trail if its edges e1, e2, . . . , ek are distinct and a path if its
vertices v0, v1, . . . , vk are distinct. If W := v0e1v1 . . . ekvk, is a walk of G,
W ′ := viei+1 . . . ejvj (0 ≤ i ≤ j ≤ k) is a subwalk of W (subtrails and subpaths
are de�ned analogously).

If v is an internal vertex of a walk W with ends x and y, W (x, v) and W (v, y)
are the subwalks of W obtained by cutting W in v. Conversely if W1 and W2

have a common end v, the concatenation of these two walks on v gives rise
to a new walk (denoted by W1 + W2) with v as an internal vertex. When no
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confusion, is possible, it will be convenient to omit the edges in the description
of a walk, that is W := v0e1v1 . . . ekvk will be shorten in W := v0v1 . . . vk.

When F ⊆ E(G), V (F ) is the set of vertices which are incident with some
edge of F and G − F is the graph obtained from G by deleting the edges of
F . A strong matching C in a graph G is a matching C such that there is no
edge of E(G) connecting any two edges of C, or, equivalently, such that C is
the edge-set of the subgraph of G induced on the vertex-set V (C).

2 Elementary properties

Proposition 2.1 Let G be a cubic graph. Then we can �nd a normal partition
of E(G) within a linear time.

Proof We can easily obtain a partition T = {T1, T2 . . . , Tk} of E(G) into
trails via a greedy algorithm. If every vertex is normal then T is normal and
we are done. If v is an eccentric vertex then v is the end vertex of two distinct
trails T1 and T2. Let T ′ be the trail obtained by concatenation of T1 and T2

on v. Then v is an internal vertex of T ′ and T −{T1, T2}+ T ′ is a partition of
E(G) into trails with one eccentric vertex less (namely v). This operation can
be repeated as long as the current partition into trails has an eccentric vertex
and we end with a normal partition in at most O(n) steps. ¤

Proposition 2.2 A partition T of a cubic graph G is normal if and only if
|T | = n

2
.

Proof Assume that T is normal, then every vertex is the end of exactly one
trail. Hence |T | = n

2
.

Conversely let T be a partition of the edge set of G into trails. Assume that
|T | = n

2
and T is not normal. Then, performing the operation described in

Proposition 2.1 on eccentric vertices leads to a normal partition T ′ such that
|T ′| < n

2
, since the concatenation of two trails on a vertex decreases the num-

ber of trails in the partition, a contradiction. ¤

We shall denote by ni
T the number of trails of length i and by µ(T ) the average

length of trails in a partition T .

Proposition 2.3 Let T be a normal partition of a cubic graph G on n ver-
tices. Then
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• µ(T ) = 3
• ∑i=n+1

i=1 (3− i)ni
T = 0

Proof T being normal, we have |T | = n
2
by Proposition 2.2. Since |E(G)| =

3n
2

we have obviously µ(T ) = 3.

We have
i=n+1∑

i=1

i× ni
T =

3n

2
= 3

i=n+1∑

i=1

ni
T

and hence
i=n+1∑

i=1

(3− i)ni
T = 0

¤

The length of a normal partition T (denoted by l(T )) is the length of the
longest trail in T . Let us note that, by Proposition 2.3, every trail of a normal
partition T of G has length 3 when l(T ) ≤ 3.

Proposition 2.4 A cubic graph G on n vertices has an hamiltonian path if
and only if G has a normal partition T such that l(T ) = n + 1

Proof Assume that P = v1v2 . . . vn is an hamiltonian path of G. We shall
consider that vi is joined to vi+1 by the edge ei in P . Let w1 (wn respectively)
be a vertex adjacent to v1 (w1 respectively) by the edge e′1 (e′n respectively) not
in E(P )( e′1 6= e′n). Let T1 be the trail w1e

′
1v1e1v2e2 . . . en−1vne′nwn. E(G)− T1

is reduced to a matching of size n−2
2

and it can be easily checked that this
matching together with T1 is a normal partition of G of length n + 1.

Conversely let T be a normal partition of G of length n + 1 and let T1 =
w1e1v1e1v2e2 . . . en−1vnenwn be a trail of maximum length in T . Since the only
vertices which can appear twice in T1 are precisely w1 and wn, P = v1v2 . . . vn

is an hamiltonian path of G. ¤

Theorem 2.5 Let G be a cubic graph having a perfect path partition P =
{P1, P2 . . . , Pk} . Assume that the ends of Pi are xi and yi for every i = 1 . . . k.
Then G has a normal partition T = {T1, T2 . . . , Tn

2
} such that Ti is obtained

from Pi by adding one edge incident to xi and one edge incident to yi for
every i = 1 . . . k.

Proof The subgraph of G obtained by deleting the edges of each Pi is a set
of disjoint paths. Let us give an arbitrary orientation to these paths. We get a
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normal partition T by adding the outgoing edge incident to xi and to yi (for
every i = 1 . . . k), the remaining edges being a set of trails of length 1 in T . ¤

Let l1, l2 . . . ln
2
be a set of integers (li ≥ 1) such that

n
2∑

i=1

li =
3n

2
.

Is it possible to �nd a normal partition T = {T1, T2 . . . , Tn
2
} where l(Ti) = li

for every i = 1 . . . n
2
? We do not know the complete answer, however, when G

has an hamiltonian cycle we have the following result (an extension of a result
of [2]):

Theorem 2.6 Let G be a cubic hamiltonian graph. Let l1, l2 . . . ln
2
be a set of

integers such that

• ∑n
2
i=1 li = 3n

2

• li ≥ 1 li 6= 2 ∀i = 1 . . . n
2

Then G has a normal partition T = {T1, T2 . . . , Tn
2
} where l(Ti) = li for every

i = 1 . . . n
2

Proof Let λi = li − 2 and assume that λ1 ≥ λ2 ≥ . . . ≥ λn
2
. The �rst k

values (for some k ≤ n
2
) are greater than 1, and the remaining values are −1,

since li 6= 2 for all i = 1 . . . n
2
. We have

k∑

i=1

λi =
k∑

i=1

(li − 2) =
k∑

i=1

li − 2k

k∑

i=1

li − 2k =
k∑

i=1

li − 2k +

n
2∑

j=k+1

lj − (
n

2
− k)

since ∑k
i=1 li +

∑n
2
j=k+1 lj = 3n

2
we get that

k∑

i=1

λi = n− k

Let C be an hamiltonian cycle of G, we can thus arrange a set P of vertex
disjoint paths Pi of length λi (i = 1 . . . k) along this cycle. P is a perfect
path partition and, applying Theorem 2.5 we have a normal partition of G as
claimed. ¤
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Let T be a normal partition of a cubic graph G and let v be any vertex of G.
ET (v) contains exactly two vertices, namely x and y and one of them, at least,
must be distinct from v (we may assume that v 6= x). Let T1 be the trail with
ends x and y such that v is an internal vertex of T1. Since T is normal, there is
a trail T2 ending in v (with the edge eT (v)). If T ′

1 denotes the trail obtained by
concatenation of T1(x, v) and T2 on v, then T −{T1, T2}+T ′

1+T1(v, y) is a new
normal partition of G. We shall say that the above operation is a switch on
v. When v 6∈ ET (v) two such switchings are allowed (see Figure 2), but when
v ∈ ET (v) only one switching is possible (see Figure 3). A switch on a vertex v
(leading from a normal partition T to the normal partition T ′ = T ∗v) does not
change the edge marked associated to w when w 6= v. That is eT (w) = eT ′(w).
On the other hand the sets ET ′(w) may have changed for vertices of T1 and
T2. When T is a normal odd partition and when T ′ = T ∗ v remains an odd
partition, the switch on v is said to be an odd switch. It is not di�cult to see
that, given a normal odd partition, an odd switch is always possible on every
vertex.

We shall say that T and T ′ are switching equivalent (resp. odd switching equiv-
alent) whenever T ′ can be obtained from T by a sequence of switchings (resp.
odd switchings). The switching class (resp. odd switching class) of T is the
set of normal partitions which are switching equivalent (resp. odd switching
equivalent) to T .

V

U1x U2 U3U1

T1
T2

T’2
T’1

x U2 U3

V

Fig. 2. Switching on v with two distinct trails
V

T’1T1

U1 U3U2 U2 U3U1

V

Fig. 3. Switching on v with one trail
Theorem 2.7 Let G be a cubic graph and let T and T ′ be any two normal
(resp. odd) partitions. Then T ′ can be obtained from T by a sequence of (resp.
odd) switchings of length at most 2n.

Proof Let AT T ′ = {v| v ∈ V (G), eT (v) = eT ′(v)} and assume that V (G)−
AT T ′ 6= ∅ (otherwise we obviously have T = T ′). We want to pick a vertex
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in V (G)− AT T ′ and try to switch the normal partition T on this vertex (or
T ′) in order to increase the size of AT T ′ (formally we have changed T into T1

and T ′ into T ′
1 and we consider the set AT1T ′1 ). We can suppose that T and T ′

are not switching equivalent and, moreover, among the switching equivalent
normal partitions of T and those of T ′, AT T ′ has maximum cardinality.

Let v 6∈ AT T ′ and let e1, e2 and e3 be the edges adjacent to v. Assume that
eT (v) = e1 and eT ′(v) = e2. Recall that in both partitions a switch (resp. odd
switch) is always possible on v.

Consider �rst a possible switch (resp. odd switch) on v in T , we get hence
a new normal partition T ∗ v. If eT ∗v = e2 then AT ∗v,T ′ = AT ,T ′ ∪ {v}, a
contradiction. If by switching (resp. odd switching) T ′ on v we have eT ′∗v = e1

then AT ,T ′∗v = AT ,T ′∪{v}, a contradiction. Finally, if eT ∗v 6= e2 and eT ′∗v 6= e1

that means that eT ∗v = e3 and eT ′∗v = e3, thus AT ∗v,T ′∗v = AT ,T ′ ∪ {v}, a
contradiction.

Hence any two normal partitions are switching equivalent (resp. odd switch-
ing equivalent). In order to increase the size of AT T ′ , we have seen that we
eventually are obliged to proceed to two switchings on the same vertex (one
with T and one with T ′). It is clear that we need at most 2n such switchings
on the road leading to T ′ from T . ¤

Fig. 4. No normal partitions associated to the `

In Figure 4, we can see that it is not possible to �nd a normal partition of K4

for which the set of marked edges is given by those having a ` at one end. Since
the set of edges with no end marked contains a cycle the following question is
thus natural. Given a set of edges F = {ev|v ∈ V (G)}, where each vertex of
V (G) appears exactly once as the end of an edge of F , under which condition
can we say that this set of edges is the set of marked edges associated to a
normal partition?

Theorem 2.8 Let F be a set of edges of G, where each vertex of V (G) appears
exactly once as the end of an edge of F . Then there exists a normal partition
T such that F is the set of marked edges associated to T if and only if F is
a transversal of the cycles of G.

Proof Let T be a normal partition, the set of marked edges {eT (v)|v ∈ V (G)}
is obviously a transversal of the cycles of G, since T is partitioned into trails.
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Conversely, assume that F = {ev|v ∈ V (G)} is a transversal of the cycles of
G.

Then the spanning subgraph G−F is a set of paths {P1, P2, . . . , Pk} (some of
them being eventually reduced to a vertex). Let ui and vi be the end vertices
of Pi (1 ≤ i ≤ k) (when Pi is reduced to a single vertex, we have ui = vi). We
add to each path Pi the edges of F which are incident to ui and vi and distinct
from eui

and evi
. We get a set of trails T = {T1, T2, . . . , Tk} which partition

the edge set. We claim that T is a normal partition. Indeed, let v be any vertex
of G. The vertex v is contained in some path Pi of G−F and Ti must contain
the two edges incident to v and distinct from the unique edge associated to v
in F . Hence v must be an internal vertex of Ti which implies that v is normal. ¤

3 On compatible normal partitions

De�nition 3.1 Two partitions T = {T1, T2 . . . , Tk} and T ′ = {T ′
1, T

′
2 . . . , T ′

k} of
E(G) into trails are compatible when eT (v) 6= eT ′(v) for every vertex v ∈ V (G).

Theorem 3.2 Let G be a cubic graph. Then the three following statements
are equivalent.

i) G has a perfect matching
ii) G has an odd normal partition
iii) G has two compatible normal partitions of length 3

Proof

Let M be a perfect matching in G. Then G −M is a 2−factor of G. Let us
give any orientation to the cycles of this 2−factor and for each vertex v let
us denote the outgoing edge o(v). For each edge e = uv ∈ M , let Puv be
the trail of length 3 obtained by concatenation of o(u), uv and o(v). Then
T = {Puv|uv ∈ M} is a normal odd partition (of length 3) of G. We obtain a
second normal partition T ′ of length 3, compatible with T , when we choose
the other orientation on each cycle. Hence (i) implies (ii) and (iii).

Let T = {T1, T2 . . . , Tn
2
} be a normal odd partition of G. For each trail Ti ∈ T

let us say that an edge e of Ti is odd whenever the subtrails of Ti obtained by
deleting e have odd lengths (an even edge being de�ned in the similar way).
Any vertex v ∈ V (G) is internal in exactly one trail of T . The edges of this
trail being alternatively odd and even, v is incident to exactly one odd edge.
Hence the odd edges so de�ned induce a perfect matching of G and (ii) implies
(i).
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Since (iii) implies obviously (ii), the proof is complete. ¤

De�nition 3.3 A Perfect Path Double Cover (PPDC for short) is a collec-
tion P of paths such that each edge of G belongs to exactly two members of
P and each vertex occurs exactly twice as an end path of P .

This notion has been introduced by Bondy (see [1]) who conjectured that
every simple graph admits a PPDC. This conjecture was proved by Li [9].
When dealing with two compatible normal path partitions P and P ′ in a cubic
graph, we have a particular PPDC. Indeed every edge belongs to exactly one
path of P and one path of P ′ and every vertex occurs exactly once as an end
vertex of a path in P and a path in P ′. The qualifying adjective compatible
says that the two end edges are distinct for each vertex.

As a re�nement of the notion of PPDC we can de�ne a CPPDC for a simple
graph:

De�nition 3.4 A Compatible Perfect Path Double Cover (CPPDC for short)
is a collection P of paths such that each edge of G belongs to exactly two
members of P and each vertex occurs exactly twice as an end path of P and
these two ends are distinct.

A natural question is thus to know which graphs admits a CPPDC. If we
restrict ourself to connected graphs, we immediately can see that as soon as a
graph has a pendent edge, a CPPDC does not exist. We need thus to consider
graphs with a certain connectivity condition. As an easy result we see that a
minimal 2−edge connected graph has CPPDC.

Proposition 3.5 Let G ba a minimal 2−edge connected simple graph. Then
G admits a CPPDC.

Proof By induction on the number of vertices. The assertion can be veri�ed
on the complete graph with three vertices, so assume that G has at least four
vertices. It is well known (see Halin [6]) that G contains a vertex v whose
degree is 2. Let v1 and v2 be the two neighbors of v.

case 1: v1v2 ∈ E(G).

Let G′ be the graph obtained from G by deleting v and the edge v1v2. Since
G is minimal 2−edge connected, G′ has 2 connected component Ci (i = 1, 2),
with vi ∈ Ci. We can see that these subgraphs are minimal 2−edge connected.
We can thus �nd a CPPDC Ti (i = 1, 2) for each of them. Let Qi, Ri ∈ Ti

(i = 1, 2) be the two paths with end vertices vi. Let T1 = Q1 + v1v2v and
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T2 = Q2 + v2v1v. Then T = T1−Q1 +T2−Q2 +{T1, T2}+ v1vv2 is a CPPDC
of G.

case 2: v1v2 6∈ E(G) and G− v is not minimal 2−edge connected.

Let G′ be the graph obtained from G by adding the edge v1v2 and deleting
the vertex v.

Assume that G′ is still a minimal 2−edge connected. Then let T ′ be a CPPDC
of G′ and let T ′

1, T
′
2 ∈ T ′ be the two paths using the edge v1v2. We can

transform this CPPDC of G′ in a CPPDC of G when we consider T =
T ′−{T ′

1, T
′
2}+{T 1

1 , T 2
1 , T2} where T2 is obtained from T ′

2 by inserting v between
v1 and v2 and T 1

1 , T 2
1 are obtained from T ′

1 by deleting the edge v1v2 and adding
the edge v1v to the subpath of T ′

1 containing v1 (respectively, the edge v2v to
the subpath of T ′

2 containing v2).

When G′ is not a minimal 2−edge connected graph, there is an edge of G′

whose deletion preserves the 2−edge connectivity. In fact, we can check that
the only edge with that property must be the edge v1v2 (otherwise G itself is
not minimal 2−edge connected). A contradiction since we have supposed that
G− v is not minimal 2−edge connected.

case 3: v1v2 6∈ E(G) and G− v is minimal 2−edge connected.

Let G′ = G− v and let T ′ be a CPPDC of G′. Let Qi, Ri ∈ T ′ (i = 1, 2) be
the two paths with end vertices vi. We can consider that Q1 and Q2 are two
distinct paths of T ′. Then, let T = T ′−{Q1, Q2}+ {T1, T2}+ v1vv2 where Ti

is obtained by concatenation of Qi and viv (i = 1, 2). We can check that T is
a CPPDC of G.

¤

We propose as an open Problem

Problem 3.6 Every 2-edge connected simple graph admits a CPPDC.

Remark 3.7 Assume that a connected graph G admits CPPDC. In doubling
every edge e in e′ and e′′ (let G2 the graph so obtained), this CPPDC leads
to an euler tour of G2. This euler tour is compatible (in the sense given by
Kotzig [8]) with the set of transitions de�ned by e′ and e′′ in each vertex.
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4 On three compatible normal partitions

We shall say that G has three compatible normal partitions T , T ′ and T ′′

whenever these partitions are pairwise compatible.

NB: As usual N(v) denotes the set of vertices adjacent to v.

Theorem 4.1 A cubic graph G has three compatible normal partitions if and
only if G has no loop.

Proof Let G be a cubic graph with three compatible normal partitions T ,
T ′ and T ′′ . Assume that G contains a loop vv, let w 6= v be the vertex
adjacent to v. Then one of these normal partitions, say T , would be such that
eT (v) = vw. In that case vv would be the trail containing v as an internal
vertex, impossible.

Conversely, assume that G has no loop and G can not be provided with three
compatible normal partitions. We can suppose that G has been chosen with
the minimum number of vertices for that property. Figure 5 shows that G has
certainly at least 4 vertices.

u v

T2u vvu T1

T3

Fig. 5. Cubic graph on 2 vertices with three compatible normal partitions

Claim 1 If u and v are joined by two edges e1 and e2, then there is a third
vertex w adjacent to u and v.

Proof Assume that u is adjacent to u′ and v to v′ with u′ 6= u and v′ 6= v.
Let G′ be the cubic graph obtained from G by deleting u and v and joining
u′ and v′ by a new edge. G′ is obviously a cubic graph with no loop and
|V (G)| < |V (G′)|. We can thus �nd three compatible normal partitions T , T ′

and T ′′ in G′.

The edge u′v′ of G′ is contained into T ∈ T , T ′ ∈ T ′ and T
′′ ∈ T ′′ . For

convenience, T1 and T2 will be the subtrails of T we have obtained by deleting
u′v′, with u′ an end of T1 and v′ an end of T2. Following the same trick we
get T ′

1 and T ′
2, T

′′
1 and T

′′
2 when considering T ′ and T

′′ . It can be noticed that
some of these subtrails may have length 0, which means that, following the
cases, uv is the marked edge associated to u or (and) v in T , T ′ or T ′′ .
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Let P1 = T1 + u′u, P2 = T2 + v′ve1ue2v and Q = T − P + {P1, P2}. We can
easily check that Q is a normal partition of G where eQ(x) = eT (x) ∀x 6= u, v
and eQ(u) = uu′, eQ(v) = e2.

In the same way, let P ′
1 = T ′

1 + u′ue2ve1u, P ′
2 = T ′

2 + v′v and Q′ = T ′ − P ′ +
{P ′

1, P
′
2}. Then eQ′(x) = eT ′(x) ∀x 6= u, v and eQ′(u) = e′1, eQ′(v) = vv′. Hence

Q′ is a normal partition compatible with Q.

Finally, let P
′′
1 = T

′′
1 +u′ue1v, P

′′
2 = T ′

2+v′ve2u and Q′′
= T ′′−P

′′
+{P ′′

1 , P
′′
2 }.

Then eQ′′ (x) = eT ′′ (x) ∀x 6= u, v and eQ′′ (u) = e2, eQ′′ (v) = e1. Hence Q, Q′

and Q′′ are three compatible normal partitions of G, a contradiction. ¥

Claim 2 if uv ∈ E(G) then |N(u)| = 2 or |N(v)| = 2

Proof Assume that |N(u)| = 3 and |N(v)| = 3 and let u′ and u
′′ the two

neighbors of u and v′ and v
′′ those of v. Let G′ be the graph obtained from

G by deleting u and v and joining u′ and u
′′ by a new edge as well as joining

v′ and v
′′ . G′ is obviously a cubic graph with no loop and |V (G)| < |V (G′)|.

We can thus �nd three compatible normal partitions T , T ′ and T ′′ in G′.

The edge u′u
′′ of G′ is contained into T ∈ T , T ′ ∈ T ′ and T

′′ ∈ T ′′ and we
denote, as in the previous claim by T1, T2, T

′
1, T

′
2, T

′′
1 and T

′′
2 the subtrails of

T, T ′ and T
′′ obtained by deleting u′u

′′ (with u′ an end of trails with subscript
1 and u

′′ an end of trails with subscript 2). If R ∈ T , R′ ∈ T ′ and R
′′ ∈ T ′′

are the trails using v′v
′′ , we can de�ne also R1, R2, R

′
1, R

′
2, R

′′
1 and R

′′
2 .

We are going to construct three normal partition Q, Q′ and Q′′ of G by
transforming locally T , T ′ and T ′′ in such a way that eQ(x) = eT (x) eQ′(x) =
eT ′(x) and eQ′′ (x) = eT ′′ (x) ∀x 6= u, v. The veri�cation of this point, left to
the reader, is immediate.

Let P
′′
1 = T

′′
1 + u′uu

′′
+ T

′′
2 , P

′′
2 = R

′′
1 + v′vv

′′
+ R

′′
2 and P

′′
3 = uv. Q′′ is then

T ′′−{P ′′
, R

′′}+{P ′′
1 , P

′′
2 , P

′′
3 }. We can remark that we have subdivided P

′′ and
R
′′ an we have added a trail of length one (uv). We have hence, eQ′′ (u) = uv

and eQ′′ (v) = uv.

It must be clear that we may have T = R in T , which means that u′u
′′ and v′v

′′

are contained in the same trail of T . But we certainly have either T1 6= R1 or
T1 6= R2 since R1 and R2 are two disjoint trails. Let us consider the following
partitions of the edge set of G:

Q1 = T − {T1, T2}+ {T1 + u′uvv′ + R1, T2 + u
′′
u,R2 + v

′′
v}

Q2 = T − {T1, T2}+ {T1 + u′uvv
′′

+ R2, T2 + u
′′
u,R2 + v′v}
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Q3 = T − {T1, T2}+ {T1 + u′u,R1 + v′vuu
′′

+ T2, R2 + v
′′
v}

Q4 = T − {T1, T2}+ {T1 + u′u,R1 + v′v, T2 + u
′′
uvv

′′
+ R2}

Q1 is a normal partition of G as soon as T1 6= R1 and we can check, in that
case, that Q2, Q3 and Q4 are normal partitions of G. In the same way, Q2 is
a normal partition of G as soon as T1 6= R2 and we can check, in that case,
that Q1, Q3 and Q4 are normal partitions of G. Q3 is a normal partition of
G as soon as T2 6= R1 and, in that case, Q1, Q2 and Q4 are normal partitions
of G. Q4 is a normal partition of G as soon as T2 6= R2 and, in that case, Q1,
Q2 and Q3 are normal partitions of G.

We can de�ne analogously Q′
1, Q′

2, Q′
3 and Q′

4 when considering T ′.

We can check moreover that these normal partitions (when they are well de-
�ned) Q1, Q2, Q3, Q4, Q′

1, Q′
2, Q′

3 and Q′
4 are compatible with Q′′ since

eQi
(u) = uu′ or eQi

(u) = uu
′′

i = 1, 2, 3, 4

eQi
(v) = vv′ or eQi

(v) = vv
′′

i = 1, 2, 3, 4

eQ′i(u) = uu′ or eQ′i(u) = uu
′′

i = 1, 2, 3, 4

eQ′i(v) = vv′ or eQ′i(v) = vv
′′

i = 1, 2, 3, 4

We can verify that in each case to be considered with T (T1 = R1 and
T2 6= R2, T2 = R2 and T1 6= R1, T1 = R2 and T2 6= R1, T2 = R1 and
T1 6= R2, T1, T2, R1, R2 all distinct) together with the similar cases for T ′ we
can choose a normal partition Q in {Q1,Q2,Q3,Q4} and a normal partition
Q′ in {Q′

1,Q′
2,Q′

3,Q′
4} which are compatible and hence three normal parti-

tions compatible Q,Q′ and Q′′ for G, a contradiction. ¥

Assume that u and v are joined by two edges in G, then, from Claim 1,
there is unique new vertex w joined to u and v. This vertex is adjacent to
x 6= u, v which have itself a neighbor z 6= u, v. Since |N(w)| = 2, by Claim 2,
N(x) = {w, z}. The vertices x and z being joined by two edges, x and z must
have a common neighbor by Claim 1, impossible. Hence G does not exist and
the proof is complete. ¤

Proposition 4.2 Let G be a cubic graph having three compatible normal par-
titions then every edge e ∈ E(G) veri�es exactly one of the followings

• e is an internal edge in exactly one partition
• e is an internal edge in exactly two partitions

Moreover, in the second case, the edge e itself is a trail of the third partition.
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Proof Let e = xy be any edge of G and let T , T ′ and T ′′ be three compatible
normal partitions. If e is not an internal edge in T , T ′ nor T ′′ then e is an
end edge for a trail of T , T ′ and T ′′ . In x or y we should have two partitions
(say T and T ′) for which eT (x) = eT ′(x) (eT (y) = eT ′(y) respectively), a
contradiction. So let us suppose that e is an internal edge in T , T ′ and T ′′ .
Let a and b the two other neighbors of x. We should have then

• eT (x) = xa or xb
• eT ′(x) = xa or xb
• eT ′′ (x) = xa or xb

which is impossible since the three partitions are compatible. Assume now
that e is an internal edge of a trail in T and in T ′ and let a and b the two
other neighbors of x. Up to the names of vertices we have

• eT (x) = xa
• eT ′(x) = xb

From the third partition T ′′ , we must have eT ′′ (x) = xy. In the same way we
should obtain eT ′′ (y) = yx. Hence the trail containing e = xy is reduced to e,
as claimed. ¤

It can be noticed that whenever a cubic graph can be provided with three
compatible normal partitions at least one edge is the internal edge in exactly
one partition.

Proposition 4.3 Let G be a cubic graph having three compatible normal par-
titions. Then at least one edge e ∈ E(G) is the internal edge in exactly one
partition.

Proof Let T , T ′ and T ′′ be three compatible normal partitions of G. The set
of trails of length 1 in T is a matching of G which means that T has at most
n
2
such trails. If each edge of G is the internal edge in exactly two partitions

we must have

|E(G)| = n1
T + n1

T ′ + n1
T ′′ ≤ 3

n

2
= |E(G)|

Hence the set of edges which are trails of length 1 in T is a perfect matching
M of G. In that case, the set of marked edges associated to T is precisely
this set M , which is not transversal of the cycles of G, a contradiction with
Theorem 2.8. ¤

Theorem 4.4 Let G be a simple 3-edge colourable cubic graph then G has
three compatible normal partitions T , T ′ and T ′′ such that
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• T is odd
• T ′ has length 3
• T ′′ has length 4

Proof In [4], it is proved that, given a 3-edge colouring of G with α,β and γ
then there exists a strong matching intersecting every cycle belonging to the 2-
factor induced by the two colours (α and β). Assume that C = {C1, C2, . . . Ck}
is such a 2−factor (G− C is a perfect matching) and let F = {uivi ∈ Ci| 1 ≤
i ≤ k) (minimal for the inclusion) be a strong matching intersecting each cycle
of this 2−factor.

For each uivi ∈ F , xi is the vertex in the neighborhood of ui which is not one
of its neighbor (predecessor or successor) on Ci while yi is de�ned similarly
for vi (note that xi and yi may be vertices of Ci or not). Let Ti be the trail
obtained from Ci by adding the edge uixi and considering that this trail ends
with viui (Note that ui is an internal vertex of Ti).

Let T be the trail partition containing every trail Ti (1 ≤ i ≤ k) and all the
edges of the perfect matching G− C which are not in some Ti. We can check
that T is a normal odd partition for which the following holds

• eT (ui) = uivi

• eT (xi) = xiui

• eT (v) is the edge of G− C for each vertex v 6= ui, vi

We construct now the trail partition T ′. Let us give the orientation to each
cycle of C. This orientation is such that the successor of ui is vi. For each vertex
v, o(v) denotes the successor of v in that orientation and p(v) its predecessor.
As in the proof of Theorem 3.2 we get hence a normal partition T ′ where each
trail is a path of length 3. Moreover eT ′(v) = vp(v) for every vertex v.

Before constructing T ′′ , we construct T ′′′ by using the reverse orientation on
each cycle of C. This normal partition of length 3 is such that eT ′′′(v) = vo(v).

For each vertex v 6= ui 1 ≤ i ≤ k we have eT (v) 6= eT ′(v) 6= eT ′′′(v).

For v = ui 1 ≤ i ≤ k, we have eT (ui) = uivi, eT ′(ui) = uip(ui)) (where
p(ui) 6= vi) and eT ′′′(ui) = uivi. Since eT (ui) = eT ′′′ (ui), T and T ′′′ are not
compatible.

Our goal now is to proceed to switchings on T ′′′ in each vertex ui in order to
get T ′′ where these incompatibilities are dropped. For this purpose, we extend
every path of length 3 of T ′′′ ending with viui with the edge uip(ui). We get
hence of path of length 4 and, since F is a strong matching, we are sure that
we cannot extend this path in the other direction. The path of T ′′′ ending with
uip(ui) is shorten by deleting the edge uip(ui), we get hence of path of length
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2 ending with xiui, and we are sure that this path cannot be shorten at the
other end, since F is a strong matching. Let T ′′ be the partition so obtained.
T ′′′ being normal and T ′′ having the same number of trails T ′′ is also normal
by Proposition 2.2.

For each vertex v 6= ui 1 ≤ i ≤ k, eT ′′′(v) = eT ′′ (v) and we have thus
eT (v) 6= eT ′(v) 6= eT ′′ (v). For v = ui 1 ≤ i ≤ k, we have eT (ui) = uivi,
eT ′(ui) = uip(ui) and eT ′′ (ui) = uixi.

T , T ′ and T ′′ are thus compatible ,T is odd, T ′ has length 3 and T ′′ has
length 4 as claimed.

¤

In fact we can extend the result to cubic graphs with multiple edges.

Theorem 4.5 Let G be a 3-edge colourable cubic graph then G has three
compatible normal partitions T , T ′ and T ′′ such that

• T is odd
• T ′ has length 3
• T ′′ has length at most 4

Proof By induction on the number of vertices of G. In Figure 5 we can see
that the result holds for the cubic graph with two vertices and three edges.
If G is simple, we are done by Theorem 4.4. So assume that G has at least 4
vertices and let u and v be two vertices joined by two edges e1 and e2. Let x be
the third vertex adjacent to u and y the one adjacent to v. Let G′ be the graph
obtained from G by deleting u and v and adding a new edge e between x and
y. From the hypothesis of induction, let Q, Q′ and Q′′ be three compatible
normal partitions of G′. We have to discuss three cases following the fact that
e is in Q, Q′ or Q′′

case 1: e is an internal edge of a trail Q ∈ Q

In that case e is an end edge of a trail Q′ ∈ Q′ as well as an end edge of a
trail Q

′′ ∈ Q′′ . Without loss of generality, we assume that eQ′(x) = xy and
eQ′′ (y) = yx. Hence Q′ and Q

′′ end both with the edge xy. Let T be the trail
obtained from Q by deleting the edge xy and adding the path xue1vy (the
notation ue1v means that we use explicitly the edge e1 in order to connect
u and v). Let T ′ be the trail obtained from Q′ by deleting the edge xy and
adding the edge yv. Let T

′′ be the trail obtained from Q
′′ by deleting the

edge yx and adding the edge xu. Then we can construct T , T ′ and T ′′ three
compatible normal partitions of G in the following way:
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• T = Q−Q + T + ue2v
• T ′ = Q′ −Q′ + T ′ + xue2ve1u
• T ′′

= Q′′ −Q
′′

+ T
′′

+ yve2ue1v

We can check that the conditions on the lengths are veri�ed for T , T ′ and T ′′ .

case 2: e is an internal edge of a trail Q′ ∈ Q′

In that case e is an end edge of a trail Q ∈ Q as well as an end edge of a
trail Q

′′ ∈ Q′′ . Without loss of generality, we assume that eQ(y) = xy and
eQ′′ (x) = yx. Hence Q and Q

′′ end both with the edge xy. Let us recall that
Q′ has length 3. Let zx and ty be the end edges of Q. Let T

′′ be the trail
obtained from Q

′′ by deleting the edge yx and adding the edge yv. Let T be
the trail obtained from Q by deleting the edge xy and adding the path xue1vy

Then we can construct T , T ′ and T ′′ three compatible normal partitions of
G in the following way:

• T = Q−Q + T + xue1ve2u
• T ′ = Q′ −Q′ + zxue2v + tyve1u
• T ′′

= Q′′ −Q
′′

+ T
′′

+ yve2ue1v

We can check that the conditions on the lengths are veri�ed for T , T ′ and T ′′ .

case 3: e is an internal edge of a trail Q
′′ ∈ Q′′

A similar technique can be used to solve this case.

¤

Theorem 4.6 Let G be a cubic graph. Then the following statements are
equivalent

i) G can be provided with three compatible normal partitions of length 3
ii) G can be provided with three compatible normal odd partitions where each

edge is an internal edge in exactly one partition
iii) G is bipartite

Proof Assume �rst that G can be provided with three compatible normal
partitions of length 3, say T , T ′ and T ′′ . Since the average length of each par-
tition is 3 (Proposition 2.3), each trail of each partition has length 3. T , T ′ and
T ′′ are thus three normal odd partitions and from Proposition 4.2, each edge
is the internal edge of one trail in exactly one partition. Conversely assume
that G can be provided with three compatible normal odd partitions where
each edge is an internal edge in exactly one partition. Then, by Proposition
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4.2 there is no trail of length 1 in any of these partitions. Since the average
length of each partition is 3, that means that each trail in each partition has
length 3. Hence (i) ≡ (ii).

We prove now that (i) ≡ (iii). Let T , T ′ and T ′′ three compatible normal
partitions of length 3. Following the proof of Theorem 3.2 the internal edges
of trails of T (T ′ and T ′′ respectively) constitute a perfect matching (say M
M ′ and M

′′ respectively).

Let a0a1a2a3 be a trail of T and let b1 and b2 the third neighbors of a1 and a2

respectively. By de�nition, we have eT (a1) = a1b1 and eT (a2) = a2b2.

Since a0a1 and a2a3 must be internal edges in a trail of T ′ or (exclusively) T ′′ ,
without loss of generality we may assume that a0a1 is an internal edge of a
trail T ′

1 of T ′. T ′
1 does not use a1a2 otherwise eT ′(a1) = a1b1, a contradiction

with eT (a1) = a1b1 since T and T ′ are compatible. Hence T ′
1 uses a1b1 and

eT ′(a1) = a1a2.

Assume now that a2a3 is an internal edge of a trail T ′
2 of T ′. Reasoning in the

same way, we get that eT ′(a2) = a2a1. These two results leads to the fact that
a1a2 must be a trail in T ′, which is impossible since each trail has length 3.

Hence, whenever a0a1 is supposed to be an internal edge in a trail of T ′, we
must have a2a3 as an internal edge in a trail of T ′′ . The two internal vertices
of a0a1a2a3 can be thus distinguished, following the fact that the end edge of
T to whom they are incident is internal in T ′ (say red vertices) or T ′′ (say blue
vertices). The same holds for each trail in T (and incidently for each partition
T ′ and T ′′). The edge a1b1 as end-edge of T cannot be an internal edge in T ′

since the trail of length 3 going through a0a1 ends with a1b1. Hence a1b1 is an
internal edge in T ′′ and b1 is a blue vertices. Considering now a0, this vertex
is the internal vertex of a trail of length 3 of T . Since a0a1 ∈ M ′ and M ′ is a
perfect matching, a0 cannot be incident to an other internal edge of a trail in
T ′ and a0 must be a blue vertex. Hence a1 is a red vertex and its neighbors
are all blue vertices. Since we can perform this reasoning in each vertex, G is
bipartite as claimed.

Conversely, assume that G is bipartite and let V (G) = {W,B} be the bipar-
tition of its vertex set. In the following, a vertex in W will be represented by
a circle (◦) while a vertex in B will be represented by a bullet (•). >From
König's theorem [7] G is a 3-edge colourable cubic graph . Let us consider a
coloring of its edge set with three colors {α, β, γ}. Let us denote by α • β ◦ γ
a trail of length 3 which is obtained in considering an edge uv (u ∈ B and
v ∈ W ) colored with β together with the edge colored α incident with u and
the edge colored with γ incident with v. It can be easily checked that the set
T of α • β ◦ γ trails of length 3 is a normal odd partition of length 3. We can
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de�ne in the same way T ′ as the set of β • γ ◦ α trails of length 3 and T ′′ as
the set of γ • α ◦ β trails of length 3.

Hence T , T ′ and T ′′ is a set of three normal odd partitions of length 3. We
claim that these partitions are compatible. Indeed, let v ∈ W be a vertex and
u1, u2 and u3 its neighbors. Assume that u1v is colored with α, u2v is colored
with β and u3v is colored with γ . Hence u1v is internal in a γ • α ◦ β trail
of T ′′ and eT ′′ (v) = vu3. The edge u2v is internal in a α • β ◦ γ trail of T
and eT (v) = vu1. The edge u3v is internal in a β • γ ◦ α trail of T ′ and
eT ′(v) = vu2. Since the same reasoning can be performed in each vertex of G,
the three partitions T , T ′ and T ′′ are compatible.

¤

Theorem 4.7 Let G be a cubic graph with three compatible normal partitions
T , T ′ and T ′′ such that

• T has length 3
• T ′ and T ′′ are odd

Then G is a 3-edge colourable cubic graph.

Proof Since T has length 3, every trail of T has length 3. Hence there is no
edge which can be an internal edge of a trail of T ′ and a trail of T ′′ , since, by
Proposition 4.2 such an edge would be a trail of length 1 in T . The perfect
matchings associated to T ′ and T ′′ (see Theorem 3.2) are thus disjoint and
induce an even 2-factor of G, which means that G is a 3-edge colourable cubic
graph, as claimed.

¤

Proposition 4.8 Let G be a cubic graph which can be provided with three
compatible normal odd partitions. Then the graph G′ obtained by replacing
a vertex by a triangle, can also be provided with three compatible normal odd
partitions.

Proof Let u be a vertex of G and v1, v2, v3 its neighbors (not necessarily
distinct). Assume that T , T ′ and T ′′ is a set of 3 compatible normal odd
partitions of G such that, eT (u) = uv1, eT ′(u) = uv2 and eT ′′ (u) = uv3. Let T1

and T2 the two trails of T such that u is an end of T1 and an internal vertex of
T2. T 1

1 ending in v1, T 2
1 ending in v2 and T 2

2 ending in v3 denote the subtrails
of T1 and T2 obtained by deleting u. We de�ne similarly T ′1

1 ending in v2, T ′2
1

ending in v1 and T ′2
2 ending in v3 when considering T ′

1 and T ′
2 in T ′ as well as
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T
′′1
1 ending in v3, T

′′2
1 ending in v2 and T

′′2
2 ending in v1 when considering T

′′
1

and T
′′
2 in T ′′ .

When we transform G in G′ the vertex u is deleted and replaced by the triangle
u1, u2, u3 with ui joined to vi (i = 1, 2, 3).

Let Q, Q′ and Q′′ be de�ned in G′ by

Q = T − {T1, T2}+ {T 1
1 + v1u1, T

2
1 + v2u2u1u3v3 + T 2

2 , u2u3}
Q′ = T ′ − {T ′

1, T
′
2}+ {T ′1

1 + v2u2, T
′2
1 + v1u1u2u3v3 + T ′2

2 , u1u3}
Q′′

= T ′′ − {T ′′
1 , T

′′
2 }+ {T ′′1

1 + v3u3, T
′′2
1 + v2u2u1u3v3 + T

′′2
2 , u2u1}

It is a routine matter to check that Q,Q′ and Q′′ are three compatible normal
odd partitions. ¤

It can be pointed out that cubic graphs with with three compatible normal
odd partitions are bridgeless.

Proposition 4.9 Let G be a cubic graph with three compatible normal odd
partitions. Then G is bridgeless.

Proof Assume that xy is a bridge of G and let C be the connected component
of G− xy containing x. Since G has three compatible normal odd partitions,
one of these partitions, say T , is such that eT (x) = xy. The edges of C are
thus partitioned into odd trails (namely the trace of T on C). We have

m = |E(C)| = 3(|C| − 1) + 2

2

and m is even whenever |C| ≡ 3 mod 4 while m is odd whenever |C| ≡ 1 mod 4.
The trace of T on C is a set of |C|−1

2
trails and this number is odd when

|C| ≡ 3 mod 4 and even otherwise. Hence, when |C| ≡ 3 mod 4 we must have
an odd number of odd trails partitioning E(C) but, in that case m is even and
when |C| ≡ 1 mod 4 we must have an even number of odd trails partitioning
E(C) but, in that case m is odd, contradiction. ¤

Fan and Raspaud [3] conjectured that any bridgeless cubic graph can be pro-
vided with three perfect matching with empty intersection.

Theorem 4.10 Let G be a cubic graph with three compatible normal odd par-
titions then there exist 3 perfect matching M , M ′ and M

′′ such that M ∩M ′∩
M

′′
= ∅.
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(a) (b) (c)

Fig. 6. Three compatible normal odd partitions of the Petersen's graph

Proof Following the proof of Theorem 3.2 the odd edges of trails of T (T ′

and T ′′ respectively) constitute a perfect matching (say M M ′ and M
′′ respec-

tively). Let v be any vertex and u1, u2 and u3 its neighbors. T , T ′ and T ′′ being
compatible, we can suppose that eT (v) = vu1, eT ′(v) = vu2 and eT ′′ (v) = vu3.
Since vu1 is an end edge of a trail of T , this edge is not an odd edge relatively
to T . That means that vu1 6∈ M . In the same way vu2 6∈ M ′ and vu3 6∈ M

′′ .
Hence, any edge incident to v is contained in at most two perfect matchings
among M,M ′ and M

′′ . Which means that M ∩M ′ ∩M
′′

= ∅

¤

Theorem 4.10 above implies that Fan-Raspaud Conjecture is true for graphs
with 3 compatible normal odd partitions. By the way, this conjecture seems
to be originated independently by Jackson. Goddyn [5] indeed mentioned this
problem proposed by Jackson for r−graphs (r−regular graphs with an even
number of vertices such that all odd cuts have size at least r, as de�ned
by Seymour [10]) in the proceedings of a joint summer research conference
on graphs minors which dates back 1991. It seems di�cult to characterize
the class of cubic graphs with three compatible normal odd partitions. The
Petersen's graph has this property (see Figure 6). In a forthcoming paper we
prove that 3-edge colorable graphs also have this property as well as the �ower
snarks.
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