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Abstract

A conjecture of Fan and Raspaud [3] asserts that every bridgeless cubic graph con-
tains three perfect matchings with empty intersection. Kaiser and Raspaud [6] sug-
gested a possible approach to this problem based on the concept of a balanced join
in an embedded graph. We give here some new results concerning this conjecture
and prove that a minimum counterexample must have at least 32 vertices.
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1 Introduction

Fan and Raspaud [3] conjectured that any bridgeless cubic graph can be pro-
vided with three perfect matchings with empty intersection (we shall say also
non intersecting perfect matchings).

Conjecture 1 [3] Every bridgeless cubic graph contains perfect matching M1,
M2, M3 such that

M1 ∩M2 ∩M3 = ∅

This conjecture seems to be originated independently by Jackson. Goddyn [5]
indeed mentioned this problem proposed by Jackson for r−graphs (r−regular
graphs with an even number of vertices such that all odd cuts have size at least
r, as de�ned by Seymour [8]) in the proceedings of a joint summer research
conference on graphs minors which dates back 1991.

Conjecture 2 [5] There exists k ≥ 2 such that any r-graph contains k + 1
perfect matchings with empty intersection.

Seymour [8] conjectured that:

Preprint submitted to Elsevier Science 3 October 2008



Conjecture 3 [8] If r ≥ 4 then any r-graph has a perfect matching whose
deletion yields an (r-1)-graph.

Hence Seymour's conjecture leads to a specialized form of Jackson's conjecture
when dealing with cubic bridgeless graphs and the Fan Raspaud conjecture
appears as a re�nement of Jackson's conjecture.

A join in a graph G is a set J ⊆ E(G) such that the degree of every vertex in
G has the same parity as its degree in the graph (V (G), J). A perfect matching
being a particular join in a cubic graph Kaiser and Raspaud conjectured in [6]

Conjecture 4 [6] Every bridgeless cubic graph admits two perfect matching
M1, M2 and a join J such that

M1 ∩M2 ∩ J = ∅

The oddness of a cubic graph G is the minimum number of odd circuits in a 2-
factor of G. Conjecture 1 being obviously true for cubic graphs with chromatic
index 3, we shall be concerned here by bridgeless cubic graphs with chromatic
index 4. Hence any 2-factor of such a graph has at least two odd cycles.
The class of bridgeless cubic graphs with oddness two is, in some sense, the
"easiest" class to manage with in order to tackle some well known conjecture.
In [6] Kaiser and Raspaud proved that Conjecture 4 holds true for bridgeless
cubic graph of oddness two. Their proof is based on the notion of balanced join
in the multigraph obtained in contracting the cycles of a two factor. Using an
equivalent formulation of this notion in the next section, we shall see that we
can get some new results on Conjecture 1 with the help of this technique.

For basic graph-theoretic terms, we refer the reader to Bondy and Murty [1].

2 Preliminary results

Let M be a perfect matching of a cubic graph and let C = {C1, C2 . . . Ck} be
the 2-factor G −M . A ⊆ M is a balanced M−matching whenever there is a
perfect matching M ′ such that M ∩M ′ = A. That means that each odd cycle
of C is incident to at least one edge in A and the subpaths determined by the
ends of M ′ on the cycles of C incident to A have odd lengths.

In the following example, M is the perfect matching (thick edges) of the Pe-
tersen graph. Taking any edge (ab by example) of this perfect matching we
are led to a balanced M−matching since the two cycles of length 5 give rise
to two paths of length 5 (we have "opened" these paths closed to a and b).
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Fig. 1. A balanced M−matching

Remark that given a perfect matching M of a bridgeless cubic graph, M is
obviously a balanced M−matching.

Kaiser and Raspaud [6] introduced this notion via the notion of balanced join
in the context of a combinatorial representation of graphs embedded on sur-
faces. They remarked that a natural approach to the Fan Raspaud conjec-
ture would require �nding two disjoint balanced joins and hence two balanced
M−matchings for some perfect matching M . In fact Conjecture 1 and bal-
anced matching are related by the following lemma

Lemma 5 A bridgeless cubic graph contains 3 non intersecting perfect match-
ing if and only if there is a perfect matching M and two balanced disjoint
balanced M−matchings.

Proof Assume that M1, M2, M3 are three perfect matchings of G such that
M1 ∩ M2 ∩ M3 = ∅. Let M = M1, A = M1 ∩ M2 and B = M1 ∩ M3. Since
A∩B = M1∩M2∩M3, A and B are two balanced M−matchings with empty
intersection.

Conversely, assume that M is a perfect matching and that A and B are two
balanced M−matchings with empty intersection. Let M1 = M , M2 be a per-
fect matching such that M2 ∩ M1 = A and M3 be a perfect matching such
that M3 ∩M1 = B. We have M1 ∩M2 ∩M3 = A ∩ B and the three perfect
matchings M1, M2 and M3 have an empty intersection. ¤

The following theorem is a corollary of Edmond's Matching Polyhedron The-
orem [2]. A simple proof is given by Seymour in [8].

Theorem 6 Let G be an r-graph. Then there is an integer p and a family
M of perfect matchings such that each edge of G is contained in precisely p
members of M.
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Fig. 2. A balanced triple

Lemma 7 Let G be a bridgeless cubic graph and let e = uv and e′ = u′v′ be
two edges of G. Then there exists a perfect matching avoiding these two edges.

Proof Remark that a bridgeless cubic graph is a 3-graph as de�ned by
Seymour. Applying Theorem 6, let M be a set of perfect matching such that
each edge of G is contained in precisely p members of M (for some �xed
integer p ≥ 1).

Assume �rst that e and e′ have a common end vertex (say u). Then u is
incident to a third edge e”. Any perfect matching using e” avoids e and e′.

When e and e′ have no common end then, let f and g be the two edges incident
with u. Assume that any perfect matching using f or g contains also the edge
e′. Then e′ is contained in 2p members of M, impossible. Hence some perfect
matchings using f or g must avoid e′, as claimed. ¤

It can be pointed out that Lemma 7 is not extendable, so easily, to a larger
set of edges. Indeed, a corollary of Theorem 6 asserts that M (the family of
perfect matching considered) intersects each 3−edge cut in exactly one edge.
Hence for such a 3−edge cut, there is no perfect matching in M avoiding this
set.

Let C be an odd cycle and let T = {x, y, z} a set of three distinct vertices
of C. We shall say that C is a balanced triple when the three subpaths of C
determined by T have odd lengths.

Let C = x0x1 . . . x2k be an odd cyle of length at least 7. Assume that its vertex
set is coloured with three colours 1, 2 and 3 such that 2 ≤ |A1| ≤ |A2| ≤ |A3|,
Ai denoting the set of vertices coloured with i, i = 1, 2, 3. Then we shall say
that C is good odd cycle.

Lemma 8 Any good odd cycle C contains two disjoint balanced triples T and
T ′ intersecting each colour exactly once.

Proof We shall prove this lemma by induction on |C|.
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Assume �rst that C has length 7. Then A1 and A2 have exactly two vertices
while A3 must have 3 vertices. We can distinguish, up to isomorphism, 9
subcases

(1) A3 = {x0, x1, x2} A1 = {x3, x4} and A2 = {x5, x6} then T = {x0, x3, x6}
and T ′ = {x1, x4, x5} are two disjoint balanced triples.

(2) A3 = {x0, x1, x2} A1 = {x3, x5} and A2 = {x4, x6} then T = {x2, x3, x4}
and T ′ = {x5, x6, x0} are two disjoint balanced triples.

(3) A3 = {x0, x1, x2} A1 = {x3, x6} and A2 = {x4, x5} then T = {x2, x3, x4}
and T ′ = {x5, x6, x0} are two disjoint balanced triples.

(4) A3 = {x0, x1, x3} A1 = {x2, x4} and A2 = {x5, x6} then T = {x1, x4, x5}
and T ′ = {x2, x3, x6} are two disjoint balanced triples.

(5) A3 = {x0, x1, x3} A1 = {x2, x5} and A2 = {x4, x6} then T = {x1, x4, x5}
and T ′ = {x2, x3, x6} are two disjoint balanced triples.

(6) A3 = {x0, x1, x3} A1 = {x2, x6} and A2 = {x4, x5} then T = {x1, x0, x6}
and T ′ = {x2, x3, x4} are two disjoint balanced triples.

(7) A3 = {x0, x1, x4} A1 = {x2, x3} and A2 = {x5, x6} then T = {x1, x2, x5}
and T ′ = {x0, x3, x6} are two disjoint balanced triples.

(8) A3 = {x0, x1, x4} A1 = {x2, x5} and A2 = {x3, x6} then T = {x1, x2, x3}
and T ′ = {x0, x5, x6} are two disjoint balanced triples.

(9) A3 = {x0, x1, x4} A1 = {x2, x6} and A2 = {x3, x5} then T = {x1, x2, x3}
and T ′ = {x0, x5, x6} are two disjoint balanced triples.

Assume that C is a good odd cycle of length at least 9 and assume that the
property holds for any good odd cycle of length |C| − 2.

Claim 1 If C has two consecutive vertices xj and xj+1 (j being taken modulo
2k) in the same set Ai (i = 1, 2 or 3) such that |Ai| ≥ 4, then the property
holds.

Proof Assume that C has two consecutive vertices xj and xj+1 in the same
set Ai (i = 1, 2 or 3) such that |Ai| ≥ 4, then delete xj and xj+1 and add the
edge xj−1xj+2. We get hence a good odd cycle C ′ of length |C| − 2. C ′ has
two disjoint balanced triples T and T ′ by induction hypothesis and we can
check that these two triples are also balanced in C since the edge xj−1xj+2 is
replaced by the path xj−1xjxj+1xj+2 in C. ¥

Claim 2 If C has two consecutive vertices xj and xj+1 (j being taken modulo
2k) one of them being in Ai while the other is in Ai′ (i 6= i′ ∈ {1, 2, 3}), then
the property holds as soon as |Ai| ≥ 3 and |Ai′| ≥ 3.

Proof Use the same trick as in the proof of Claim 1 ¥

6



If A3 ≥ 4, we can suppose, by Claim 1 that no two vertices of A3 are consec-
utive on C. When x ∈ A3, x′ (its succesor in the natural ordering) is in A1 or
A2. By Claim 2, the vertices in A3 have at most two successors in A1 and at
most two successors in A2. Hence we must have |A3| = 4 and |A2| = |A3| = 2,
impossible. If |A3| = 3 then we must have |A2| = |A3| = 3 since C has length
9. In that case we certainly have two consecutive vertices with distinct colours
and we can apply the above claim 1. ¤

Let C be an even cycle and let P = {x, y} a set of two distinct vertices of C.
We shall say that C is a balanced pair when the two subpaths of C determined
by P have odd lengths.

Let C = x0x1 . . . x2k−1 be an even cyle of length at least 4. Assume that its
vertex set is coloured with three colours 1, 2 and 3. Let Ai be the set of vertices
coloured with i, i = 1, 2, 3. Assume that |Ai| = 0 or 1 for at most one colour,
then we shall say that C is good even cycle.

Lemma 9 Any good even cycle C contains two disjoint balanced pairs Pi and
P ′

i intersecting Ai exactly once each as soon as Ai has at least two vertices
(i = 1, 2, 3).

Proof We prove the lemma for i = 1. Assume that |A1| ≥ 2 and |A2| ≥ 2.
Assume that x0 is a vertex in A2 and let xi be the �rst vertex in A1, xj be
the last vertex in A1 when running on C in the sens given by x0x1. If i 6= 1 or
j 6= 2k− 1 P = {xi−1, xi} and P ′ = {xj, xj+1} are two distinct balanced pairs
intersecting A1 exactly once each. Assume that i = 1 and j = 2k − 1. Since
A2 contains another vertex xl (1 < l < 2k − 1). Let xm be the �rst vertex in
A1 when running from xl to x2k−1 (l < m ≤ 2k − 1. Then P = {x0, x1} and
P ′ = {xm−1, xm} are two disjoint balanced pairs intersecting A1 exactly once
each. ¤

Lemma 10 Let C be an even cycle of length 2p ≥ 8 and let x and y be two
vertices. Assume that the vertices of C − {x, y} are partitioned into A and B
with |A| ≥ p− 2 and |B| ≥ p− 2. Then there are at least two disjoint balanced
pairs intersecting A and B exactly once each.

Proof Let us colour alternately the vertices of C in red and blue. If A
contains at least two red (or blue) vertices u and v and B two blue (or red
respectively) vertices u′ and v′ then P = {u, u′} and P ′ = {v, v′} are two
disjoint balanced pairs. If A contains a red vertex u and a blue vertex v and,
symmetrically, B contains a red vertex u′ and a blue vertex v′ then P = {u, u′}
and P ′ = {v, v′} are two disjoint balanced. It is clear that at least one of the
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above cases must happens and the result follows. ¤

3 Applications

From now on, we consider that our graphs are cubic, connected and bridgeless
(multi-edges are allowed). Moreover we suppose that they are not 3−edge
colourable. Hence these graphs have perfect matchings and any 2-factor have
a non null even number of odd cycles. If X ⊂ V (G) and Y ⊂ V (G), d(X, Y )
is the length of a shortest path between these two sets.

3.1 Graphs with small oddness

Theorem 11 Let G be a cubic graph of oddness two. Assume that G has a
perfect matching M where the 2−factor C = {C1, C2 . . . Ck} of G−M is such
that C1 and C2 are the only odd cycles and d(C1, C2) ≤ 3. Then G has three
perfect matchings with an empty intersection.

Proof

If d(C1, C2) = 1 let uv be an edge joining C1 and C2 (u ∈ C1 and v ∈ C2).
A = {uv} is a balanced M−matching. Let M2 be a perfect matching such
that M2 ∩M = A. There is certainly a perfect matching M3 avoiding uv (see
Theorem 6). Hence M , M1 and M3 are three perfect matchings with an empty
intersection.

It can be noticed that d(C1, C2) 6= 2. Indeed, Let P = u1vu2 be a shortest
path joining u1 ∈ C1 to u2 ∈ C2, then the cycle of C containing v cannot be
disjoint from C1 or C2, impossible.

Assume thus now that d(C1, C2) = 3 and let P = u1u2u3u4 be a shortest path
joining C1 to C2 (with u1 ∈ C1 and u4 ∈ C2). Then A = {u1u2, u3u4} is a
balanced M−matching. Let M2 be a perfect matching such that M2∩M = A.
From Lemma 7 there is a perfect matching M3 avoiding these two edges of A.
Hence M , M2 and M3 are three non intersecting perfect matchings ¤

A graph G is near-bipartite whenever there is an edge e of G such that G− e
is bipartite.

Theorem 12 Let G be a cubic graph of oddness two. Assume that G has
a perfect matching M where the 2−factor C = of G − M has only 3 cycles
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C1, C2 (odds) and C3 (even) such that the subgraph of G induced by C3 is
a near-bipartite graph. Then G has three perfect matchings with an empty
intersection.

Proof From Theorem 11, we can suppose that d(C1, C2) ≥ 3. That means
that the neighbors of C1 are contained in C3 as well as those of C2. Let us
colour the vertices of C3 with two colours red and blue alternately along C3.
Assume that a and b are two vertices of C3 with distinct colours such that a
is a neighbor of C1 and b is a neighbor of C2. Let e and f be the two edges
of M so determined by a and b. Then A = {e, f} is a balanced M−matching.
Let M2 be a perfect matching such that M ∩ M2 = A and M3 be a perfect
matching avoiding A (Lemma 7). Then M,M1 and M2 are 3 non intersecting
perfect matchings.

It remains thus to assume that the neighbors of C1 and C2 have the same
colour (say red). G being bridgeless, we have an odd number (at least 3) of
edges in M joining C1 and C3 (C2 and C3 respectively). The remaining vertices
of C3 are matched by edges of M , but we have at least 6 blue vertices more
than red vertices in C3 to be matched and hence at least three pairs of blue
vertices must be matched. Let e ∈ E(G) such that G− e is bipartite, if e ∈ C3

then C3 must have odd length, impossible. Hence e is the only chord of C3

whose ends have the same colour, impossible.

¤

Theorem 13 Assume that G is a cubic graph having a perfect matching M
where the 2−factor C = {C1, C2, C3, C4 . . . Ck} of G−M is such that C1, C2,
C3 and C4 are the only odd cycles. Assume moreover that d(C1, C2) = 1 as
well as d(C3, C4) = 1. Then G has three perfect matchings with an empty
intersection.

Proof Let u1u2 be an edge joining C1 to C2 and u3u4 be an edge joining
C3 to C4. A = {u1u2, u3u4} is a balanced M−matching. Let M2 be a perfect
matching such that M ∩M2 = A′. By Lemma 7, there is a perfect matching
M3 avoiding these two edges. Hence the three perfect matchings M , M2 and
M3 are non intersecting. ¤

Theorem 14 Assume that G has a perfect matching M where the 2−factor
C has only 4 chordless cycles C = {C1, C2, C3, C4}. Then G has three perfect
matchings with an empty intersection.

Proof By the connectivity of G, every vertex of three cycles of C (say C1, C2

and C3) are joined to C4 while no other edge exists. Otherwise the result holds

9



by Theorem 13.

Each cycle of C has length at least 3 and, hence C4 has length at least 9. We
can colour each vertex v ∈ C4 with 1, 2 or 3 following the fact the edge of M
incident with v has its other end on C1, C2 or C3. From lemma 8, there is two
balanced triples T and T ′ intersecting each colour. These two balanced triples
determine two disjoint balanced M−matchings. Hence, the result holds from
Lemma 5. ¤

3.2 Good Rings, Good stars

A good path of index C0 is a set P of k + 1 disjoint cycles C0, C1 . . . Ck such
that

• C0 and Ck are the only odd cycles of P
• Ci is joined to Ci+1 (0 ≤ i ≤ k − 1) by an edge ei (called jonction edge of
index C0)

• the two jonction edges incident to an even cycle determine two odd paths
on this cycle

A good ring is a set R of disjoint odd cycles C0 . . . C2p−1 and even cycles such
that

• Ci is joined to Ci+1 (i is taken modulo 2p) by a good path Pi of index Ci

whose even cycles are in R
• the good paths involved in R are pairwise disjoint.

A good star (centered in C0) is a set S of four disjoint cycles C0, C1, C2, C3

such that

• C0 (the center) is chordless and has length at least 7
• C0 is joined to each other cycle by at least two edges and has no neighbor

outside of S
• there is no edge between C1, C2 and C3

Theorem 15 Assume that G has a perfect matching M where the 2−factor
C of G − M can be partitioned into good rings, good stars and even cycles.
Then G has three perfect matchings with an empty intersection.

Proof Let R be the set of good rings of C and S be the set of good stars.

Let R ∈ R, and let C0 . . . C2p−1 be its set of odd cycles. Let us us say that a
junction edge of R has an even index whenever this edge is a junction edge
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of index Ci with i even. A junction edge of odd index is de�ned in the same
way. Let AR be the set of junction edge of even index of R and BR the set of
junction edge of odd index. We let A =

⋃
R∈R AR and B =

⋃
R∈R BR.

For each star S ∈ S, assume that each vertex of the center is coloured with
the name of the odd cycle of S to whom this vertex is adjacent. Let TS and
T ′

S be two disjoint balanced triples (Lemma 8) of the center of S. Let NS and
N ′

S be the sets of three edges joining the center of S to the other cycles of S,
determined by TS and T ′

S. Let A′ =
⋃

S∈S NS and B′ =
⋃

S∈S N ′
S.

It is an easy task to check that A + A′ and B + B′ are two disjoint balanced
M−matchings. Hence, the result holds from Lemma 5. ¤

A particular case of the above result is given by E. Mà£ajová and M. �koviera.
The length of a ring is the number of jonction edges. A ring of length 2 is merely
a set of two odd cycles joined by two edges.

Corollary 16 [7]Assume that G has a perfect matching M where the odd
cycles of the 2−factor C can be arranged into rings of length 2. Then G has
three perfect matchings with an empty intersection.

It can be pointed out that this technique of rings of length 2 was used in [4]
for the 5− �ow problem when dealing with graphs of small order and graphs
with low genus. This technique has been developped independently by Ste�en
in [9].

4 On graphs with at most 32 vertices

Determining the structure of a minimal counterexample to a conjecture is one
of the most typical methods in Graph Theory. In this section we investigate
some basic structures of minimal counterexamples to Conjecture 1.

The girth of a graph is the length of shortest cycle. Mà£ajová and �koviera [7]
proved that the girth of a minimal counterexample is at least 5.

Lemma 17 [7] If G is a smallest bridgeless cubic graph with no 3 non-
intersecting perfect matchings, then the girth of G is at least 5

Lemma 18 If G is a smallest bridgeless cubic graph with no 3 non-intersecting
perfect matchings, then G does not contain a subgraph isomorphic to G8 (see
Figure 3).
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Proof Assume that G contains G8. Let a′, b′, c′ and d′ be the vertices of
G−G8 adjacent to, respectively a, b, c and d. Let G′ be the graph obtained in
deleting G8 and joining a′ to c′ and b′ to d′. It is an easy task to verify that
G′ has chromatic index 3 if and only if G itself has chromatic index 3. We
do not know whether this graph is connected or not but each component is
smaller than G and contains thus 3 non-intersecting perfect matchings leading
to 3 non-intersecting perfect matchings for G′. Let P1 P2 and P3 these perfect
matchings. Our goal is to construct 3 non-intersecting perfect matchings for G
M1, M2 and M3 from those of G′. We have thus to delete the edge a′c′ and b′d′

from P1, P2 and P3 whenever they belong to these sets and add some edges of
G8 in order to obtain the perfect matchings for G.

Let us now consider the number of edges in {a′c′, b′d′} which are contained in
P1 ∩ P2 or in P1 ∩ P3 or in P2 ∩ P3.

When none of P1 ∩ P2,P1 ∩ P3 or P2 ∩ P3 contain a′c′ nor b′d′ we set M1 =
P1 + {ax, bt, cz, dy}, M2 = P2 + {ay, dz, ct, bx} and M3 = P3 + {ax, bt, cz, dy}.

Assume that the edges a′c′ and b′d′ both belong to some Pi ∩ Pj (i 6= j ∈
{1, 2, 3}), say P1 ∩ P2. In this case P3 cannot contain one of those edges.
Thus we write M1 = P1 − {a′c′, b′d′} + {a′a, c′c, b′b, d′d} + {xz, ut},M2 =
P2 − {a′c′, b′d′}+ {a′a, c′c, b′b, d′d}+ {xz, ut} and M3 = P3 + {ax, bt, cz, dy}.

Finally assume w.l.o.g that P1∩P2 = {a′c′}. When P2∩P3 = P1∩P3 = set we
set M1 = P1−{a′c′}+ {a′a, c′c}+ {yt, xb, dz}, M2 = P2−{a′c′}+ {a′a, c′c}+
{bt, xz, dy} and M3 = P3 + {ax, bt, cz, dy}. On the last hand, if one of the sets
P2∩P3 or P1∩P3 (say P2∩P3) contain the edge b′d′, we write M1 = P1−{a′c′}+
{a′a, c′c}+{yt, xb, dz},M2 = P2−{a′c′, b′d′}+{a′a, b′b, c′c, d′d}+{xz, yt} and
M3 = P3 − {b′d′}+ {b′b, d′d}+ {ay, xz, ct}.

In all cases, since P1 ∩ P2 ∩ P3 = ∅ we have M1 ∩M2 ∩M3 = ∅.

¤
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Lemma 19 If G is a smallest bridgeless cubic graph with no 3 non-intersecting
perfect matchings, then G does not contain a subgraph isomorphic to the Pe-
tersen graph with one vertex deleted.

Proof Let P be a graph isomorphic to the Petersen graph whose vertex
set is {a, b, c, d, e, x, y, z, t, u} and such that abcde and xyztu are the two odd
cycles of the 2-factor associated to the perfect matching {ax, bt, cy, du, ez}.
Assume that H = P − a is a subgraph of G. Let x′, b′ and c′ be respectively
the neighbors of x, b and c in G − H. Let G′ be the graph whose vertex set
is V (G − H) ∪ {v} where v /∈ V (G) is a new vertex and whose edge set is
E(G − H) ∪ {vx′, ve′, vb′}. Since G′ is smaller than G, G′ contains 3 non-
intersecting perfect matchings P1, P2, P3.

For i ∈ {1, 2, 3} we can associate to Pi two perfect matchings of G , namely
Mi and M ′

i , as follows (observe that exactly one of the edges vx′, vb′ or vc′

belongs to Pi) :

When vx′ ∈ Pi we set Mi = Pi − {vx′} ∪ {xx′, bt, cy, du, ez}
and M ′

i = Pi − {vx′} ∪ {xx′, tu, bc, yz, ed}.
When vb′ ∈ Pi we set Mi = Pi − {vb′} ∪ {bb′, cy, xu, de, zt}
and M ′

i = Pi − {vb′} ∪ {bb′, cd, ut, ez, xy}.
When ve′ ∈ Pi we set Mi = Pi − {ve′} ∪ {ee′, cd, bt, zy, xu}
and M ′

i = Pi − {ve′} ∪ {ee′, du, xy, zt, bc}.

But now, if on one hand Pi ∩ Pj contains one of the edges in {vx′, vb′, ve′}
for some i 6= j ∈ {1, 2, 3} and for k ∈ {1, 2, 3} distinct from i and j,
Mi∩M ′

j∩Mk = Mi∩M ′
j∩M ′

k = P1∩P2∩P3 = ∅,a contradiction. If, on the other
hand, each of Pi, Pj and Pk (for i, j, k distinct members of {1, 2, 3}) contains
exactly one edge of {vx′, vb′, vc′} we also have Mi∩Mj∩Mk = Pi∩Pj∩Pk = ∅,
a contradiction. ¤

Theorem 20 If G is a smallest bridgless cubic graph with no 3 non-intersecting
perfect matchings, then G has at least 32 vertices

Proof Assume to the contrary that G is a counterexample with at most 30
vertices. We can obviously suppose that G is connected. Let M be a perfect
matching and let C be the 2−factor of G − M . Assume that the number of
odd cycles of C is the oddness of G. Since G has girth at least 5 by Lemma
17, the oddness of G is 2, 4 or 6.

Claim 1 G has oddness 2 or 4.

Proof Assume that G has oddness 6. We have C = {C1, C2, C3, C4, C5, C6}
and each cycle Ci (i = 1 . . . 6) is chordless and has length 5. Each cycle Ci is
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joined to at least two other cycles of C. Otherwise, if Ci is joined to only one
cycle Cj (i 6= j), these two cycles would form a connected component of G
and G would not be connected, impossible. It is an easy task to see that we
can thus partition C into good rings and the results comes from Theorem 15. ¥

Assume now that G has oddness 4. Hence C contains 4 odd cycles C1, C2, C3

and C4. Since these cycles have length at least 5, C contains eventually an
even cycle C5. From Lemmas 17 and 18 if C5 exists, C5 is a chordless cycle
of length 6 or C5 has length 8 (with at most one chord) or 10. When C5 has
length 10, C1, C2, C3 and C4 are chordless cycles of length 5. When C5 has
length 8, C1, C2, C3 and C4 are chordless cycles of length 5 or 3 of them have
length 5 while the last one has length 7.

Theorem 13 says that we are done as soon as we can �nd two edges allowing
to arrange by pairs C1, C2, C3 and C4 (say for example C1 joined to C2 and
C3 to C4) and Theorem 15 says that we are done whenever these 4 odd cycles
induce a good star. That means that the subgraph H induced by the four odd
cycles is of one of the two following types:

Type 1 One odd cycle (say C4) has all its neighbors in C5 and the 3 other odd cycles
induce a connected subgraph

Type 2 One cycle (say C4) is joined to the other by at least one edge while the
others are not adjacent.

Claim 2 C5 has length at least 8.

Proof Assume that |C5| = 6, the girth of G being at least 5 (Lemma 17) we
can suppose that C5 has no chord. H is not of type 1, otherwise C4 having
its neighbors in C5, C5 is connected to the remaining part of G with one edge
only, impossible since G is bridgeless. Assume thus that H is of type 2. Then,
there are 6 edges between C5 and H. Since there are at least 15 edges going
out C1, C2 and C3 that means that there are at least 9 edges between C0 and
the other odd cycles. Hence, C0 must have length 9 and can not be adjacent
to C5. G is then partitioned into a good star and an even cycle and the result
comes from Theorem 15. ¥

Claim 3 If C5 has length 8 then it has no chord.

Proof If C5 has a chord then there are at most 6 edges joining C5 to H. If
H is of type 1 then C4 has at least 5 neighbors in C5. Hence there is at most
one edge between H and C5, impossible. If H is of type 2, then the the three
cycles C1, C2 and C3 have at least 9 neighbors in C4, impossible since G has
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at most 30 vertices. ¥

Claim 4 If C5 exists then H is not of type 1.

Proof If H is of type 1, then C4 has its neighbors (at least 5) in C5 and there
are 3 or 5 edges between H and C5.

Whenever there are 5 edges between H and C5, C5 has length 10 and C1, C2, C3

have length 5 (as well as C4). In that case w.l.o.g., we can consider that C3 is
joined by exactly one edge to C5 and joined by 4 edges to C2. The las t neighbor
of C2 cannote be on C5, otherwise the 5 neighbors of C1 are on C5 and C5 must
have length 12, impossible. Hence, C2 is joined to C1 by exactly one edge and
C1 is joined to C5 by 4 edges. Let us colour each vertex v of C5 with 1, 3 or 4
when v is adjacent to Ci (i = 1, 3, 4). From Lemma 9, we can �nd 2 disjoint
balanced pairs on C5 P = {u, v} and P ′ = {u′, v′} with u and u′ coloured
with 4, v and v′ coloured with 1. These two pairs determine two disjoint set
of edges N ′ = {e, f} and N” = {h, i} in M and allow us to construct two
disjoint balanced M−matchings M ′ = {e, f, g} and M” = {h, i, j} in choosing
two distinct edges g and j between C2 and C3. The result follows from Lemma
5

Whenever there are 3 edges between H and C5, C5 has length 8 or 10, any
two cycles in {C1, C2, C3} are joined by at least two edges and each of them
is joined to C5 by exactly one edge. Let A be the three vertices of C5 which
are the neighbors of C1 ∪C2 ∪C3. Let B be the neighbors of C4 on C5. When
C5 has length 10 this cycle induces a chord xy. In that case, Lemma 10 says
that we can �nd 2 disjoint balanced pairs P = {u, v} and P ′ = {u′, v′} with
u, u′ ∈ A and v, v′ ∈ B. These two pairs determine two disjoint set of edges
N ′ = {e, f} and N” = {h, i} in M and allow us to construct two disjoint
balanced M−matchings M ′ = {e, f, g} and M” = {h, i, j} in choosing two
suitable distinct edges g and j joining two of the cycles in {C1, C2, C3}. When
C5 has no chord, we can apply the same technique in choosing x and y in B.

The result follows from Lemma 5.

¥

Claim 5 if H is of type 2 then C5 has 8 vertices.

Proof When C5 has length 10, this cycle has no chord. Otherwise, we have at
most 8 edges between H and C5. Hence C1, C2 and C3 are joined to C4 with at
least 7 edges, impossible since G hat at most 30 vertices. Assume thus that C5

is a chordless cycle of length 10 then there are 15 edges going out C1∪C2∪C3
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and at most 5 of them are incident to C4. Hence there are 10 edges between
C1 ∪C2 ∪C3 and C5, 5 edges between C1 ∪C2 ∪C3 and C4 and henceforth no
edge between C4 and C5. One cycle in {C1, C2, C3} has exactly one neighbor
in C5 (say C1) or two of them (say C1 and C2) have this property .

It is an easy task to �nd a balanced triple u, v, w on C4 where u is a neighbor of
C1, v a neighbor of C2 and w a neighbor of C3. This balanced triple determine
a balanced M−matching A. We can construct a balanced M−matching B
disjoint from A in choosing two edges e end f connecting C1∪C2 to C5 whose
ends are adjacent on C5 (since 7 or 8 edges are involved between these two
sets) and an edge h 6∈ A between C3 and C4. The result follows from Lemma
5

¥

Claim 6 If C5 exists then H is not of type 2.

Proof From claim 5, it remains to assume that C5 has length 8. Then C1 ∪
C2 ∪C3 is joined to C4 by at least 7 edges. C4 has then no neighbor in C5 and
G is partitioned into a good star centered on C4 and an even cycle as soon
as C1, C2 and C3 have two neighbors at least in C4. In that case, the result
follows from Theorem 15.

Assume thus that C1 has only one neighbor in C4 (and then 4 neighbors in
C5). Assume that C2 has more neighbors in C5 than C3. Hence C2 has at least
2 neighbors in C5. Let us colour each vertex v of C5 with 1, 2 or 3 when v is
adjacent to C1, C2 or C3. With that colouring C5 is a good even cycle. We can
�nd 2 disjoint balanced pairs intersecting the colour 1 exactly once each. Let
{e, f} and {g, h} the two pairs of edges of M so determined. We can complete
these two pairs with a third edge i (j respectively) connecting C3 to C4 or C2

to C3,following the cases, in such a way that A = {e, g, i} and B = {f, h, j}
are two disjoint balanced M−matchings. The result follows from Lemma 5

¥

Claim 7 The oddness of G is at most 2.

Proof In view of the previous claims, it remains to consider the case were C
is reduced to a set of four odd cycles {C1, C2, C3, C4}. Once again, Theorem
13, says that, up to the name of cycles, C1, C2 and C3 are joined to the last
cycle C4 and have no other neighboring cycle. That means that C1, C2, C3

have length 5 and C4 has length 15. These 4 cycles are chordless and the result
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comes from Theorem 14. ¥

Hence, we can assume that C contains only two odd cycles C1 and C2. Since
we consider graphs with at most 30 vertices and since the even cycles of C
have length at least 6, C contains only one even cycle C3 or two even cycles
C3 and C4 or three even cycles C3, C4 and C5. From Theorem 11, C1 and C2

are at distance at least 4. That means that the only neighbors of these two
cycles are vertices of the remaining even cycles.

It will be convenient, in the sequel, to consider that the vertices of the even
cycles are coloured alternately in red and blue.

Claim 8 If C1 and C2 are joined to an even cycle in C, then their neighbors
in that even cycle have the same colour

Proof Assume that C1 is joined to a blue vertex of an even cycle of C by
the edge e and C2 is joined to a red vertex of this same cycle by the edge e′.
A = {e, e′} is then a balanced M−matching. Let M2 be the perfect matching
of G such that M∩M2 = A and let M3 be a perfect matching avoiding e and e′

(Lemma 7). then M , M2 and M3 are two non intersecting perfect matchings,
a contradiction. ¥

Hence, for any even cycle of C joined to the two cycles C1 and C2, we can
consider that, after a possible permutation of colours for some even cycle, the
vertices adjacent to C1 or C2 have the same colour (say red).

Claim 9 C contains 2 even cycles

Proof Assume that C contains 3 even cycles C3, C4 and C5. We certainly
have, up to isomorphism, C3 and C4 with length 6 and C5 of length 6 or 8
while the lengths of C1 and C2 are bounded above by 7. In view of Claim 8
C1 ∪ C2 has at most 3 neighbors in C3 and in C4 and at most 4 neighbors in
C5. Since C1 and C2 have at least 10 neighbors, that means that all the red
vertices of C3 ∪ C4 ∪ C5 are adjacent to some vertex in C1 or C2. It is then
easy to see that two even cycles are joined by two distinct edges (i and j)
whose ends are blue and each of them is connected to both C1 and C2 (say
e and f connecting C1 and g and h connecting C2). Then A = {e, g, i} and
B = {f, h, j} are two disjoint balanced M−matchings and the result follows.

Assume now that C = {C1, C2, C3}. Since C1 and C2 have at least 5 neighbors
each in C3, C3 must have 10 red vertices. Hence C1 and C2 have length 5 and
C3 has length 20. The 10 blue vertices of C3 are matched by 5 edges of M .
For any chord of C3, we can �nd a red vertex in each path determined by
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this chord on C3, one being adjacent to C1 and the other to C2. Let A be
the three edges so determined. A is a balanced M−matching. By systematic
inspection we can check that it is always possible to �nd two disjoint balanced
M−matchings so constructed. The result follows from Lemma 5 ¥

We shall say that G is a graph of type 3 when

Type 3 C contains two even cycles C3 and C4, the neighborhood of C1 is contained
in C3, the neighborhood of C2 is contained in C4, and C3 and C4 are joined
by 3 or 5 edges.

Claim 10 C1 and C2 have length 5 or 7 or one of them has length 9. In the
latter case G is a graph of type 3

Proof G being connected and bridgeless, C1 and C2 are joined to the remain-
ing cycles of C by an odd number of edges (at least 3).

Assume that C1 has length at least 11, then there at least 16 vertices involved
in C1 ∪ C2. Hence, C contains exactly one even cycle. From Claim 9 this is
impossible.

Assume that C1 has length 9, then if C1 is connected to the remaining part of
G with 3 edges, that means that C1 has 3 chords. Since G has girth at least
5, C1 induces a subgraph isomorphic to the Petersen graph where a vertex is
deleted. This is impossible in view of Lemma 19.

Hence C1 is connected to the even cycles of C with 5 edges. If C has only
one cycle C3, then, in view of claim this cycle must has length at least 20,
impossible. We can thus assume that C contains two cycles C3 and C4. Since
C1 ∪ C2 contains at least 14 vertices, C3 and C4 have length 8. If C1 and C2

have both some neighbors in C3, there are at most 4 such vertices in view of
Claim 8. In that case, the remaining (at least 6)neighbors are in C4, impossible
since this forces C4 to have length at least 10.

Hence C1 has all its neighbors in C3 and C2 all its neighbors in C4. The perfect
matching M forces C3 and C4 to be connected with an odd number (3 or 5)
of edges and G is a graph of type 3, as claimed. ¥

From now on, we have C = {C1, C2, C3, C4}

Claim 11 G is not a graph of type 3

Proof
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Let f = ab and g = cd two edges joining C3 to C4 with a and c in C3. Whatever
is the colour of a and c we can choose two distinct vertices u and v in the
neighboring vertices of C1 on C3 such that u and a have distinct colours as
well as v and c. Let g be the edge joining C1 to u and h the edge joining
C1 to v. In the same way, we can �nd two distinct vertices w and x in the
neighboring vertices of C2 on C4 with the same property relatively to b and d
leading to the edges g′ and h′.

We can check that M ′ = {f, g, h} and M” = {f ′, g′, h′} are two disjoint
balanced M−matchings. The result follows from Lemma 5

¥

Claim 12 One of C1 or C2 has its neighborhood included in C3 or C4

Proof If C1 and C2 have neighbors in C3 and C4 each, then, from Claim 8,
there are at least 20 vertices involved in C3∪C4. Hence C1 and C2 have length
5 and C3 ∪C4 contains exactly 20 vertices. The 10 red vertices of C3 ∪C4 are
adjacent to C1 or C2 and the blue vertices are connected together.

Let f be a chord for C3 and f ′ be a chord for C4 (whenever these two chord
exist). We can �nd two red vertices in C3 separated by f , one being adjacent
to C1 by an edge g while the other is adjacent to C2 by an edge h. Let
M ′ = {f, g, h} be the set of three edges so constructed.In the same way we get
M” = {f ′, g′, h′} when considering C4. M ′ and M” are two disjoint balanced
M−matchings. The result follows from Lemma 5

Assume thus that C1 has no chord. That means that we can �nd two distinct
edges e and f connecting C3 to C4. Let g be an edge connecting C1 to C3, h
be an edge connecting C2 to C4, i an edge connecting C1 to C4 and j an edge
connecting C2 to C3. Then M ′ = {e, g, h} and M” = {f, i, j} are two disjoint
balanced M−matchings. The result follows from Lemma 5 ¥

We can assume now that C2 has its neighbors contained in C4. Since G is not
of type 3 by Claim 11, C1 has some neighbor in C4. C4 must have length 12
at least from Claim 8. This forces C3 to have length 8, C4 length 12 and C1

and C2 lengths 5. Moreover, there is one edge exactly between C1 and C4 and
2 or 4 edges between C3 and C4. It is then an easy task to �nd M ′ = {e, f, g}
and M” = {h, i, j} with e and h connecting C1 and C3, f and i connecting C3

and C4, g and j connecting C4 and C2 such that M ′ and M” are two disjoint
balanced M−matchings. The result follows from Lemma 5 ¤
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5 Conclusion

A Fano colouring of G is any assignment of points of the Fano plane F7 (see,
e.g., [7]) to edges of G such that the three edges incident with each vertex of G
are mapped to three distinct collinear points of F7 . The following conjecture
appears in [7]

Conjecture 21 [7] Every bridgeless cubic graph admits a Fano colouring
which uses at most four lines.

In fact, Mà£ajová and �koviera proved in [7] that conjecture 1 and Conjecture
21 are equivalent. Hence, our results can be immediately translated in terms
of the Mà£ajová and �koviera conjecture.
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