
On a family of cubic
graphs containing the

�ower snarks
Jean-Luc Fouquet, Henri Thuillier,

Jean-Marie Vanherpe
LIFO, Université d'Orléans
Rapport no RR-2009-01



On a family of cubic graphs containing the
�ower snarks

Jean-Luc Fouquet, Henri Thuillier, Jean-Marie Vanherpe
L.I.F.O., Faculté des Sciences, B.P. 6759

Université d'Orléans, 45067 Orléans Cedex 2, FR

Abstract

We consider cubic graphs formed with k ≥ 2 disjoint claws Ci ∼ K1,3 (0 ≤ i ≤ k−1)
such that for every integer i modulo k the three vertices of degree 1 of Ci are joined
to the three vertices of degree 1 of Ci−1 and joined to the three vertices of degree 1
of Ci+1. Denote by ti the vertex of degree 3 of Ci and by T the set {t1, t2, ..., tk−1}.
In such a way we construct three distinct graphs, namely FS(1, k), FS(2, k) and
FS(3, k). The graph FS(j, k) (j ∈ {1, 2, 3}) is the graph where the set of vertices
∪i=k−1

i=0 V (Ci) \ T induce j cycles (note that the graphs FS(2, 2p + 1), p ≥ 2, are the
�ower snarks de�ned by Isaacs [8]). We determine the number of perfect matchings
of every FS(j, k). A cubic graph G is said to be 2-factor hamiltonian if every 2-
factor of G is a hamiltonian cycle. We characterize the graphs FS(j, k) that are 2-
factor hamiltonian (note that FS(1, 3) is the "Triplex Graph" of Robertson, Seymour
and Thomas [15]). A strong matching M in a graph G is a matching M such that
there is no edge of E(G) connecting any two edges of M . A cubic graph having a
perfect matching union of two strong matchings is said to be a Jaeger's graph. We
characterize the graphs FS(j, k) that are Jaeger's graphs.

Key words: cubic graph; perfect matching; strong matching; counting; hamiltonian
cycle; 2-factor hamiltonian

1 Introduction

The complete bipartite graph K1,3 is called, as usually, a claw. Let k be an
integer ≥ 2 and let G be a cubic graph on 4k vertices formed with k disjoint
claws Ci = {xi, yi, zi, ti} (0 ≤ i ≤ k−1) where ti (the center of Ci) is joined to
the three independent vertices xi, yi and zi (the external vertices of Ci). For
every integer i modulo k Ci has three neighbours in Ci−1 and three neighbours
in Ci+1. For any integer k ≥ 2 we shall denote the set of integers modulo k as
Zk. In the sequel of this paper indices i of claws Ci belong to Zk.
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Fig. 1. Four consecutive claws

By renaming some external vertices of claws we can suppose, without loss of
generality, that {xixi+1, yiyi+1, zizi+1} are edges for any i distinct from k − 1.
That is to say the subgraph induced on X = {x0, x1, . . . , xk−1} (respectively
Y = {y0, y1, . . . , yk−1}, Z = {z0, z1, . . . , zk−1}) is a path or a cycle (as induced
subgraph of G). Denote by T the set of the internal vertices {t0, t1, . . . , tk−1}.

Up to isomorphism, the matching joining the external vertices of Ck−1 to
those of C0 determines the graph G. In this way we construct essentially three
distinct graphs, namely FS(1, k), FS(2, k) and FS(3, k). The graph FS(j, k)
(j ∈ {1, 2, 3}) is the graph where the set of vertices ∪i=k−1

i=0 {Ci\{ti}} induces j
cycles. We note that FS(3, 2) and FS(2, 2) are multigraphs, and that FS(1, 2)
is isomorphic to the cube. For k ≥ 3 and any j ∈ {1, 2, 3} the graph FS(j, k)
is a simple cubic graph. When k is odd, FS(2, k) is the graph known as the
�ower snark [8].

By using an ad hoc translation of the indices of claws (and of their vertices)
and renaming some external vertices of claws, we see that for any reasoning
about a sequence of h ≥ 3 consecutive claws (Ci, Ci+1, Ci+2, . . . , Ci+h−1) there
is no loss of generality to suppose that 0 ≤ i < i+h−1 ≤ k−1. For a sequence
of claws (Cp, ..., Cr) with 0 ≤ p < r ≤ k − 1, since 0 is a possible value for
subscript p and since k− 1 is a possible value for subscript r, it will be useful
from time to time to denote by x′p−1 the neighbour in Cp−1 of the vertex xp

of Cp (recall that x′p−1 ∈ {xk−1, yk−1, zk−1} if p = 0), and to denote by x′r+1

the neighbour in Cr+1 of the vertex xr of Cr (recall that x′r+1 ∈ {x0, y0, z0} if
r = k − 1). We shall use of analogous notations for neighbours of yp, zp, yr

and zr.

We shall prove in the following lemma that there are essentially two types of
perfect matchings in FS(j, k).

Lemma 1 Let G ∈ FS(j, k) (j ∈ {1, 2, 3}) and let M be a perfect matching
of G. Then the 2−factor G \ M induces a path of length 2 and an isolated
vertex in each claw Ci (i ∈ Zk) and M veri�es one (and only one) of the three
following properties :

i) For every i in Zk M contains exactly one edge joining the claw Ci to the
claw Ci+1,

ii) For every even i in Zk M contains exactly two edges between Ci and Ci+1

and none between Ci−1 and Ci,
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iii) For every odd i in Zk M contains exactly two edges between Ci and Ci+1

and none between Ci−1 and Ci.

Moreover, when k is odd M satis�es only item i).

Proof Let M be a perfect matching of G ∈ FS(j, k) for some j ∈ {1, 2, 3}.
Since M contains exactly one edge of each claw, it is obvious that G \ M
induces a path of length 2 and an isolated vertex in each claw Ci.

For each claw Ci of G the vertex ti must be saturated by an edge of M whose
end (distinct from ti) is in {xi, yi, zi}. Hence there are exactly two edges of M
having one end in Ci and the other in Ci−1 ∪ Ci+1.

If there are two edges of M between Ci and Ci+1 then there is no edge of M
between Ci−1 and Ci. If there are are two edges of M between Ci−1 and Ci

then there is no edge of M between Ci and Ci+1. Hence, we get ii) or iii) and
we must have an even number k of claws in G.

Assume now that there is only one edge of M between Ci−1 and Ci. Then
there exists exactly one edge between Ci and Ci+1 and, extending this trick
to each claw of G, we get i) when k is even or odd. ¤

De�nition 2 We say that a perfect matching M of FS(j, k) is of type 1
in Case i) of Lemma 1 and of type 2 in Cases ii) and iii). If neccessary, to
distinguish Case ii) from Case iii) we shall say type 2.0 in Case ii) and type 2.1
in Case iii). We note that the numbers of perfect matchings of type 2.0 and
of type 2.1 are equal.

Notation : The length of a path P (respectively a cycle Γ) is denoted by l(P )
(respectively l(Γ)).

2 Counting perfect matchings of FS(j, k)

We shall say that a vertex v of a cubic graph G is in�ated into a triangle when
we construct a new cubic graph G′ by deleting v and adding three new vertices
inducing a triangle and joining each vertex of the neighbourood N(v) of v to
a single vertex of this new triangle. We say also that G′ is obtain from G by
a triangular extension. The converse operation is the contraction or reduction
of the triangle. The number of perfect matchings of G is denoted by µ(G).

Lemma 3 Let G be a bipartite cubic graph and let {V1, V2} be the bipartition
of its vertex set. Assume that each vertex in W1 ⊆ V1 is in�ated into a triangle
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and let G′ be the graph so obtained. Then µ(G) = µ(G′).

Proof Note that {V1, V2} is a balanced bipartition and, by König's Theo-
rem, the graph G is a cubic 3-edge colourable graph. So, G′ is also a cubic
3-edge colourable graph (hence, G and G′ have perfect matchings). Let M be
a perfect matching of G′. Each vertex of V1 \W1 is saturated by an edge whose
second end vertex is in V2. Let A ⊆ V2 be the set of vertices so saturated in V2.
Assume that some triangle of G′ is such that the three vertices are saturated
by three edges having one end in the triangle and the second one in V2. Then
we need to have at least |W1| + 2 vertices in V2 \ A, a contradiction. Hence,
M must have exactly one edge in each triangle and the contraction of each
triangle in order to get back G transforms M in a perfect matching of G.
Conversely, each perfect matching of G leads to a unique perfect matching of
G′ and we obtain the result. ¤

Let us denote by µ(j, k) the number of perfect matchings of FS(j, k), µ1(j, k)
its number of perfect matchings of type 1 and µ2(j, k) its number of perfect
matchings of type 2.

Lemma 4 We have

• µ(1, 3) = µ1(1, 3) = 9
• µ(2, 3) = µ1(2, 3) = 8
• µ(3, 3) = µ1(3, 3) = 6
• µ(1, 2) = 9, µ1(1, 2) = 3
• µ(2, 2) = 10, µ1(2, 2) = 4
• µ(3, 2) = 12, µ1(3, 2) = 6

Proof The cycle containing the external vertices of the claws of the graph
FS(1, 3) is x0, x1, x2, y0, y1, y2, z0, z1, z2, x0. Consider a perfect matching M
containing the edge t0x0. There are two cases: i) x1x2 ∈ M and ii) x1t1 ∈ M .
In Case i) we must have y0y1, t1z1, t2z2, z0y2 ∈ M . In Case ii) there are two
sub-cases: ii).a x2y0 ∈ M and ii).b x2t2 ∈ M . In Case ii).a we must have
y1y2, t2z2, z0z1 ∈ M and in Case ii).b we must have y0y1, y2z0, z1z2 ∈ M . Thus,
there are exactly 3 distinct perfect matching containing t0x0. By symmetry,
for i = 1, 2 there are 3 distinct perfect matchings containing tixi, therefore
µ(1, 3) = 9.

It is well known that the Petersen graph has exactly 6 perfect matchings.
Since FS(2, 3) is obtained from the Petersen graph by in�ating a vertex in a
triangle these 6 perfect matchings lead to 6 perfect matchings of FS(2, 3). We
have two new perfect matchings when considering the three edges connected to
this triangle (we have two ways to include these edges in a perfect matching).
Hence µ(2, 3) = 8.
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FS(3, 3) is obtained from K3,3 by in�ating three vertices in the same colour
of the bipartition. Since K3,3 has 6 perfect matchings, applying Lemma 3 we
get immediately the result for µ(3, 3).

Is is a routine matter to obtain the values for FS(j, 2) (j ∈ {1, 2, 3}). ¤

Theorem 5 The numbers µ(i, k) of perfect matchings of FS(i, k) (i ∈ {1, 2, 3})
are given by:

When k ≡ 1(2)

• µ(2, k) = 2k

• µ(1, k) = 2k + 1

• µ(3, k) = 2k − 2

When k ≡ 0(2)

• µ(2, k) = 2× 3
k
2 + 2k

• µ(1, k) = 2× 3
k
2 + 2k − 1

• µ(3, k) = 2× 3
k
2 + 2k + 2

Proof We shall prove this result by induction on k and we distinguish the
case "k odd" and the case "k even".

The following trick will be helpful. Let i 6= 0 and let Ci−2, Ci−1, Ci and Ci+1

be four consecutive claws of FS(j, k) (j ∈ {1, 2, 3}). We can delete Ci−1 and
Ci and join the three external vertices of Ci−2 to the three external vertices of
Ci+1 by a matching in such a way that the resulting graph is FS(j′, k−2). We
have three distinct ways to reduce FS(j, k) into FS(j′, k − 2) when deleting
Ci−1 and Ci.

Case 1: We add the edges {xi−2xi+1, yi−2yi+1, zi−2zi+1} and we get G1 =
FS(j1, k − 2)

Case 2: We add the edges {xi−2yi+1, yi−2zi+1, zi−2xi+1} and we get G2 =
FS(j2, k − 2).

Case 3: We add the edges {xi−2zi+1, yi−2xi+1, zi−2yi+1} and we get G3 =
FS(j3, k − 2).

Following the cases, we shall precise the values of j1, j2 and j3.

It is an easy task to see that each perfect matching of type 1 of FS(j, k) leads
to a perfect matching of G1, G2 or G3 and, conversely, each perfect matching
of type 1 of G1 allows us to construct 2 distinct perfect matchings of type 1
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of FS(j, k), while each perfect matching of type 1 of G2 and G3 allows us to
construct 1 perfect matching of type 1 of FS(j, k).

We have

µ1(2, k) = 2µ1(G1) + µ1(G2) + µ1(G3) (1)

Claim 1 µ1(2, k) = 2k

Proof Since the result holds for FS(2, 3) and FS(2, 2) by Lemma 4, in order
to prove the result by induction on the number k of claws, we assume that the
property holds for FS(2, k − 2) with k − 2 ≥ 2.

In that case G1, G2 and G3 are isomorphic to FS(2, k− 2). Using Equation 1
we have, as claimed

µ1(2, k) = 4µ1(2, k − 2) = 2k

¤

Claim 2 µ1(1, k) = 2k + 1 and µ1(3, k) = 2k − 2

Proof Since the result holds for FS(1, 3) FS(1, 2), FS(3, 3) FS(3, 2)by
Lemma 4, in order to prove the result by induction on the number k of claws,
we assume that the property holds for FS(1, k − 2), and FS(3, k − 2) with
k − 2 ≥ 2.

When considering FS(1, k), G1 is isomorphic to FS(1, k − 2), and among G2

and G3 one of them is isomorphic to FS(3, k−2) and the other to FS(1, k−2).
In the same way, when considering FS(3, k), G1 is isomorphic to FS(3, k−2),
and G2 and G3 are isomorphic to FS(1, k − 2).

Using Equation 1 we have,

µ1(1, k) = 2µ1(1, k − 2) + µ1(1, k − 2) + µ1(3, k − 2)

and
µ1(1, k) = 2(2k−2 + 1) + 2k−2 + 1 + 2k−2 − 2 = 2k + 1

µ1(3, k) = 2(2k−2 − 2) + 2k−2 + 1 + 2k−2 + 1 = 2k − 2

¤
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When k is odd, we have µ2(j, k) = 0 by Lemma 1 and hence µ(j, k) = µ1(j, k)

When k is even it remains to count the number of perfect matchings of type 2.
From Lemma 1, for every tow consecutive claws Ci and Ci+1, we have either
two edges of M joining the external vertices of Ci to those of Ci+1 or none. We
have 3 ways to choose 2 edges between Ci and Ci+1, each choice of these two
edges can be completed in a unique way in a perfect matching of the subgraph
Ci ∪ Ci+1. Hence we get easily that the number of perfect matchings of type
2 in FS(j, k) (j ∈ {1, 2, 3}) is

µ2(j, k) = 2× 3
k
2 (2)

Using Claims 1 and 2 and Equation 2 we get the results for µ(j, k) when k is
even.

¤

3 Some structural results about perfect matchings of FS(j, k)

3.1 Perfect matchings of type 1

Lemma 6 Let M be a perfect matching of type 1 of G = FS(j, k). Then the
2−factor G \M has exactly one or two cycles and each cycle of G \M has
at least one vertex in each claw Ci (i ∈ Zk).

Proof Let M be a perfect matching of type 1 in G. Let us consider the claw
Ci for some i in Zk. Assume without loss of generality that the edge of M
contained in Ci is tixi. The cycle of G\M visiting xi comes from Ci−1, crosses
Ci by using the vertex xi and goes to Ci+1. By Lemma 1, the path yitizi is
contained in a cycle of G\M . The two edges incident to yi and zi joining Ci to
Ci−1 (as well as those joining Ci to Ci+1) are not contained both in M (since
M has type 1). Thus, the cycle of G \M containing yitizi comes from Ci−1,
crosses Ci and goes to Ci+1. Thus, we have at most two cycles in G \M , as
claimed, and we can note that each claw must be visited by these cycles. ¤

De�nition 7 Let us suppose that M is a perfect matching of type 1 in G =
FS(j, k) such that the 2−factor G \ M has exactly two cycles Γ1 and Γ2.
A claw Ci intersected by three vertices of Γ1 (respectively Γ2) is said to be
Γ1-major (respectively Γ2-major).
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Lemma 8 Let M be a perfect matching of type 1 of G = FS(j, k) such that
the 2−factor G \ M has exactly two cycles. Then, the lengths of these two
cycles have the same parity as k, and those lengths are distinct when k is odd.

Proof Let Γ1 and Γ2 be the two cycles of G \M . By Lemma 6, for each i in
Zk these two cycles must cross the claw Ci. Let k1 be the number of Γ1-major
claws and let k2 be the number of Γ2-major claws. We have k1 + k2 = k,
l(Γ1) = 3k1 + k2 and l(Γ2) = 3k2 + k1. When k is odd, we must have either
k1 odd and k2 even, or k1 even and k2 odd. Then Γ1 and Γ2 have distinct odd
lengths. When k is even, we must have either k1 and k2 even, or k2 and k1

odd. Then Γ1 and Γ2 have even lengths. ¤

Lemma 9 Let M be a perfect matching of type 1 of G = FS(j, k) such that
the 2−factor G \M has exactly two cycles Γ1 and Γ2. Suppose that there are
two consecutive Γ1-major claws Cj and Cj+1 with j ∈ Zk \{k−1}. Then there
is a perfect matching M ′ of type 1 such that the 2−factor G \M ′ has exactly
two cycles Γ′1 and Γ′2 having the following properties:

a) for i ∈ Zk \ {j, j + 1} Ci is Γ′2-major if and only if Ci is Γ2-major,
b) Cjand Cj+1 are Γ′2-major,
c) l(Γ′1) = l(Γ1)− 4 and l(Γ′2) = l(Γ2) + 4.

Proof Consider the claws Cj and Cj+1. Since Cj is a Γ1-major claw suppose
without loss of generality that tjzj belongs to M and that Γ1 contains the path
x′j−1xjtjyjyj+1 where x′j−1 denotes the neighbour of xj in Cj−1 (then xjxj+1

belongs to M). Since Cj+1 is Γ1-major and Γ2 goes through Cj and Cj+1,
the cycle Γ1 must contain the path yj+1tj+1xj+1x

′
j+2 where x′j+2 denotes the

neighbour of xj+1 in Cj+2 (then M contains tj+1zj+1 and yj+1y
′
j+2). Denote

by P1 the path x′j−1xjtjyjyj+1tj+1xj+1x
′
j+2. Note that Γ2 contains the path

P2 = z′j−1zjzj+1z
′
j+1 where z′j−1 and z′j+1 are de�ned similarly. See to the left

part of Figure 2.

Let us perform the following local transformation: delete xjxj+1, tjzj and
tj+1zj+1 from M and add zjzj+1, tjxj and tj+1xj+1. Let M ′ be the resulting per-
fect matching. Then the subpath P1 of Γ1 is replaced by P ′

1 = x′j−1xjxj+1x
′
j+2

and the subpath P2 of Γ2 is replaced by P ′
2 = z′j−1zjtjyjyj+1tj+1zj+1z

′
j+2 (see

Figure 2). We obtain a new 2-factor containing two new cycles Γ′1 and Γ′2.
Note that Cj and Cj+1 are Γ′2-major claws and for i in Zk \ {j, j + 1} Ci is
Γ′2-major (respectively Γ′1-major) if and only if Ci is Γ2-major (respectively
Γ1-major). The length of Γ1 (now Γ′1) decreases of 4 units while the length of
Γ2 (now Γ′2) increases of 4 units. ¤
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Fig. 2. Local transformation of type 1

The operation depicted in Lemma 9 above will be called a local transformation
of type 1.

Lemma 10 Let M be a perfect matching of type 1 of G = FS(j, k) such that
the 2−factor G \M has exactly two cycles Γ1 and Γ2. Suppose that there are
three consecutive claws Cj, Cj+1 and Cj+2 with j in Zk \ {k − 1, k − 2} such
that Cj and Cj+2 are Γ1-major and Cj+1 is Γ2-major. Then there is a perfect
matching M ′ of type 1 such that the 2−factor G \M ′ has exactly two cycles
Γ′1 and Γ′2 having the following properties:

a) for i ∈ Zk \ {j, j + 1, j + 2} Ci is Γ′2-major if and only if Ci is Γ2-major,
b) Cj and Cj+2 are Γ′2-major and Cj+1 is Γ′1-major,
c) l(Γ′1) = l(Γ1)− 2 and l(Γ′2) = l(Γ2) + 2.

Proof Since Cj is Γ1-major, as in the proof of Lemma 9 suppose that
Γ1 contains the path x′j−1xjtjyjyj+1 (that is edges tjzj and xjxj+1 belong to
M). Since Cj+1 is Γ2-major the cycle Γ1 contains the edge yj+1yj+2. Then we
see that Γ1 contains the path Q1 = x′j−1xjtjyjyj+1yj+2tj+2zj+2z

′
j+3 and that

Γ2 contains the path Q2 = z′j−1zjzj+1tj+1xj+1xj+2x
′
j+3. Note that yj+1tj+1,

zj+1zj+2 and tj+2xj+2 belong to M .

Let us perform the following local transformation: delete tjzj, xjxj+1, zj+1zj+2

and xj+2tj+2 from M and add xjtj, zjzj+1, xj+1xj+2 and zj+2tj+2 to M . Let
M ′ be the resulting perfect matching. Then the subpath Q1 of Γ1 is replaced
by Q′

1 = x′j−1xjxj+1tj+1zj+1zj+2z
′
j+3 and the subpath Q2 of Γ2 is replaced by

Q′
2 = z′j−1zjtjyjyj+1yj+2tj+2xj+2x

′
j+3 (see Figure 3). We obtain a new 2-factor

containing two new cycles named Γ′1 and Γ′2. Note that Cj and Cj+2 are now Γ′2-
major claws and Cj+1 is Γ′1-major. The length of Γ1 decreases of 2 units while
the length of Γ2 increases of 2 units. It is clear that for i ∈ Zk \{j, j +1, j +2}
Ci is Γ′2-major (respectively Γ′1-major) if and only if Ci is Γ2-major (respec-
tively Γ1-major). ¤
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Fig. 3. Local transformation of type 2

The operation depicted in Lemma 10 above will be called a local transforma-
tion of type 2.

Lemma 11 Let M be a perfect matching of type 1 of G = FS(j, k) such that
the 2−factor G \M has exactly two cycles Γ1 and Γ2. Suppose that there are
three consecutive claws Cj, Cj+1 and Cj+2 with j in Zk \ {k − 1, k − 2} such
that Cj+1 and Cj+2 are Γ2-major and Cj is Γ1-major. Then there is a perfect
matching M ′ of type 1 such that the 2−factor G \M ′ has exactly two cycles
Γ′1 and Γ′2 having the following properties:

a) for i ∈ Zk \ {j, j + 1, j + 2} Ci is Γ′2-major if and only if Ci is Γ2-major,
b) Cj and Cj+1 are Γ′2-major and Cj+2 is Γ′1-major,
c) l(Γ′1) = l(Γ1) and l(Γ′2) = l(Γ2).

Proof Since Cj is Γ1-major, as in the proof of Lemma 9 suppose that
Γ1 contains the path x′j−1xjtjyjyj+1 (that is edges tjzj and xjxj+1 belong to
M). Since Cj+1 and Cj+2 are Γ2-major, the unique vertex of Cj+1 (respec-
tively Cj+2) contained in Γ1 is yj+1 (respectively yj+2). Note that the perfect
matching M contains the edges tjzj, xjxj+1, tj+1yj+1, zj+1zj+2 and tj+2yj+2.
Then the path R1 = x′j−1xjtjyjyj+1yj+2y

′
j+3 is a subpath of Γ1 and the path

R2 = z′j−1zjzj+1tj+1xj+1xj+2tj+2zj+2z
′
j+3 is a subpath of Γ2. See to the left

part of Figure 4.

Let us perform the following local transformation: delete tjzj, xjxj+1, tj+1yj+1,
zj+1zj+2 and tj+2yj+2 from M and add xjtj, zjzj+1, tj+1xj+1, yj+1yj+2 and
tj+2zj+2. Let M ′ be the resulting perfect matching. Then the subpath R1 of
Γ1 is replaced by R′

1 = x′j−1xjxj+1xj+2tj+2yj+2y
′
j+3 and the subpath R2 of

Γ2 is replaced by R′
2 = z′j−1zjtjyjyj+1tj+1zj+1zj+2z

′
j+3. We obtain a new 2-

factor containing two new cycles named Γ′1 and Γ′2 such that l(Γ′1) = l(Γ1)
and l(Γ′2) = l(Γ2) (see Figure 4). It is clear that for i ∈ Zk \ {j, j + 1, j + 2}
Ci is Γ′2-major (respectively Γ′1-major) if and only if Ci is Γ2-major (respec-
tively Γ1-major). Note that Cj and Cj+1 are Γ′2-major and Cj+2 is Γ′1-major. ¤
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Fig. 4. Local transformation of type 3
The operation depicted in Lemma 11 above will be called a local transforma-
tion of type 3.

Lemma 12 Let M be a perfect matching of type 1 of G = FS(j, k) such that
the 2−factor G \M has exactly two cycles Γ1 and Γ2 such that l(Γ1) ≤ l(Γ2)
and l(Γ2) is as great as possible. Then there exists at most one Γ1-major claw.

Proof Suppose, for the sake of contradiction, that there exist at least two
Γ1-major claws. Since l(Γ2) is maximum, by Lemma 9 these claws are not
consecutive. Then consider two Γ1-major claws Ci and Ci+h+1 (with h ≥ 1)
such that the h consecutive claws (Ci+1, . . . , Ci+h) are Γ2-major. Since l(Γ2) is
maximum, by Lemma 10 the number h is at least 2. Then by applying r = bh

2
c

consecutive local transformations of type 3 (Lemma 11) we obtain a perfect
matching M (r) such that the 2−factor G\M (r) has exactly two cycles Γ

(r)
1 and

Γ
(r)
2 with l(Γ

(r)
1 ) = l(Γ1) and l(Γ

(r)
2 ) = l(Γ2) and such that Ci+2bh

2
c and Ci+h+1

are Γ
(r)
1 -major. Since l(Γ

(r)
2 ) is maximum, we can conclude by Lemma 9 and

by Lemma 10 that h is neither even nor odd, a contradiction. ¤

3.2 Perfect matchings of type 2

We give here a structural result about perfect matchings of type 2 in G =
FS(j, k).

Lemma 13 Let M be a perfect matching of type 2 of G = FS(j, k) (with
k ≥ 4). Then the 2−factor G \M has exactly one cycle of even length l ≥ k
and a set of p cycles of length 6 where l + 6p = 4k (with 0 ≤ p ≤ k

2
).

Proof Let M be a perfect matching of type 2 in G. By Lemma 1 the number
k of claws is even. Let i in Zk such that there are two edges of M between
Ci−1 and Ci. There are no edges of M between Ci and Ci+1 and two edges of
M between Ci+1 and Ci+2. We may consider that 0 ≤ i < k − 1.
For j ∈ {i, i + 2, i + 4, . . .} we denote by ej the unique edge of G \M having
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one end vertex in Cj−1 and the other in Cj. Let us denote by A the set
{ei, ei+2, ei+4, . . .}. We note that | A |= k

2
.

Assume without loss of generality that the two edges of M between Ci−1 and
Ci have end vertices in Ci which are xi and yi (then zi is the end vertex of ei

in Ci). Two cases may now occur.

Case 1: The end vertices in Ci+1 of the two edges of M between Ci+1 and
Ci+2 are xi+1 and yi+1 (then zi+1 is the end vertex of ei+2 in Ci+1).
In that case the 2− factor G\M contains the cycle of length 6 xixi+1ti+1yi+1yiti
while the edge zizi+1 of G \M relies ei and ei+2.

Case 2: The end vertices in Ci+1 of the two edges of M between Ci+1 and Ci+2

are yi+1 and zi+1 (respectively xi+1 and zi+1). Then xi+1 (respectively yi+1) is
the end vertex of ei+2 in Ci+1.
In that case the edges ei and ei+2 are connected in G \ M by the path
zizi+1ti+1yi+1yitixixi+1 (respectively zizi+1ti+1xi+1xitiyiyi+1).

The same reasoning can be done for {ei+2, ei+4}, {ei+4, ei+6}, and so on. Then,
we see that the set A is contained in a unique cycle Γ of G \M which crosses
each claw. Thus, the length l of Γ is at least k. More precisely, each ej in A
contributes for 1 in l, in Case 1 the edge zizi+1 contributes for 1 in l and in
Case 2 the path zizi+1ti+1yi+1yitixixi+1 contributes for 7 in l. Let us suppose
that Case 1 appears p times (0 ≤ p ≤ k

2
), that is to say G \ M contains

p cycles of length 6. Since Case 2 appears k
2
− p times, the length of Γ is

l = k
2

+ p + 7(k
2
− p) = 4k − 6p. ¤

Remark 14 If k is even then by Lemmas 6, 8 and 13 FS(j, k) has an even
2-factor. That is to say FS(j, k) is a cubic 3-edge colourable graph .

4 Perfect matchings and hamiltonian cycles of F (j, k)

4.1 Perfect matchings of type 1 and hamiltonicity

Theorem 15 Let M be a perfect matching of type 1 of G = FS(j, k). Then
the 2-factor G \M is a hamiltonian cycle except for k odd and j = 2, and for
k even and j = 1 or 3.

Proof Suppose that there exists a perfect matching M of type 1 of G such
that G \ M is not a hamiltonian cycle. By Lemma 6 and Lemma 8 the 2-
factor G \M is made of exactly two cycles Γ1 and Γ2 whose lengths have the
same parity as k. Without loss of generality we suppose that l(Γ1) ≤ l(Γ2).
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Assume moreover that among the perfect matchings of type 1 of G such that
the 2−factor G \M is composed of two cycles, M has been chosen in such a
way that the length of the longest cycle Γ2 is as great as possible. By Lemma
12 there exists at most one Γ1-major claw.

Case 1: There exists one Γ1-major claw.

Without loss of generality, suppose that C0 is intersected by Γ1 in {y0, t0, x0}
and that y′k−1y0 belongs to Γ1. Since for every i 6= 0 the claw Ci is Γ2-major,
Γ1 contains the vertices y0, t0, x0, x1, x2, . . . , xk−1.

• If k = 2r + 1 with r ≥ 1 then Γ2 contains the path

z0z1t1y1y2t2z2...z2r−1t2r−1y2r−1y2rt2rz2r.

Thus, y0xk−1, x0yk−1, z0zk−1 are edges of G. This means that ∪i=k−1
i=0 {Ci\{ti}}

induces two cycles, that is to say j = 2 and G = FS(2, k).

• If k = 2r + 2 with r ≥ 1 then Γ2 contains the path

z0z1t1y1y2t2z2...z2r−1t2r−1y2r−1y2rt2rz2rz2r+1t2r+1y2r+1.

Thus, x0zk−1, y0xk−1 and z0yk−1 are edges. This means that ∪i=k−1
i=0 {Ci \ {ti}}

induces one cycle, that is to say j = 1 and G = FS(1, k).

Case 2: There is no Γ1-major claw.

Suppose that x0 belongs to Γ1. Then, Γ1 contains x0, x1, ..., xk−1.

• If k = 2r + 1 with r ≥ 1 then Γ2 contains the path

y0t0z0z1t1y1y2...z2r−1t2r−1y2r−1y2rt2rz2r.

Thus, x0xk−1, y0zk−1 and z0yk−1 are edges of G and the set ∪i=k−1
i=0 {Ci \ {ti}}

induces two cycles,that is to say j = 2 and G = FS(2, k).

• If k = 2r + 2 with r ≥ 1 then Γ2 contains the path

y0t0z0z1t1y1y2...y2rt2rz2rz2r+1t2r+1y2r+1.

Thus, x0xk−1, y0yk−1 and z0zk−1 are edges. This means that ∪i=k−1
i=0 {Ci \ {ti}}

induces three cycles, that is to say j = 3 and G = FS(3, k).

¤

De�nition 16 A cubic graph G is said to be 2-factor hamiltonian [6] if ev-
ery 2-factor of G is a hamiltonian cycle (or equivalently, if for every perfect
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matching M of G the 2-factor G \M is a hamiltonian cycle).

By Theorem 15 for any odd k ≥ 3 and j ∈ {1, 3} or for any even k and
j = 2, and for every perfect matching M of type 1 in FS(j, k) the 2-factor
FS(j, k) \ M is a hamiltonian cycle. By Lemma 13 FS(2, k) (k ≥ 4) may
have a perfect matching M of type 2 such that the 2-factor FS(2, k) \M is
not a hamiltonian cycle (it may contains cycles of length 6).

Then we have the following.

Corollary 17 A graph G = FS(j, k) is 2-factor hamiltonian if and only if
k is odd and j = 1 or 3.

We note that FS(1, 3) is the "Triplex Graph" of Robertson, Seymour and
Thomas [15]. We shall examine others known results about 2-factor hamilto-
nian cubic graphs in Section 5.

Corollary 18 The chromatic index of a graph G = FS(j, k) is 4 if and only
if j = 2 and k is odd.

Proof When j = 2 and k is odd, any 2-factor must have at least two cycles,
by Theorem 15. Then Lemma 8 implies that any 2-factor is composed of two
odd cycles. Hence G has chromatic index 4.

When j = 1 or 3 and k is odd by Theorem 15 FS(j, k) is hamiltonian. If k is
even then by Lemmas 6, 8 and 13 FS(j, k) has an even 2-factor. ¤

4.2 Perfect matchings of type 2 and hamiltonicity

At this point of the discourse one may ask what happens for perfect match-
ings of type 2 in FS(j, k) (k even). Can we characterize and count perfect
matchings of type 2, complementary 2-factor of which is a hamiltonian cycle ?
An a�rmative answer shall be given.

Let us consider a perfect matching M of type 2 in FS(j, 2p) with p ≥ 2.
Suppose that there are no edges of M between C2i−1 and C2i (for any i ≥ 1),
that is M is a matching of type 2.0 (see De�nition 2). Consider two consecutive
claws C2i and C2i+1 (0 ≤ i ≤ p− 1). There are three cases:

Case (x): {y2iy2i+1, z2iz2i+1} ⊂ M (then, M∩(C2i∪C2i+1) = {x2it2i, x2i+1t2i+1}).

Case (y): {x2ix2i+1, z2iz2i+1} ⊂ M (then, M∩(C2i∪C2i+1) = {y2it2i, y2i+1t2i+1}).
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Case (z): {x2ix2i+1, y2iy2i+1} ⊂ M (then, M∩(C2i∪C2i+1) = {z2it2i, z2i+1t2i+1}).

The subgraph induced on C2i∪C2i+1 is called a block. In Case (x) (respectively
Case (y), Case (z)) a block is called a block of type X (respectively block of
type Y , block of type Z). Then FS(j, 2p) with a perfect matchings M of type
2.0 can be seen as a sequence of p blocks properly relied. In other words, a
perfect matchings M of type 2 in FS(j, 2p) is entirely described by a word of
length p on the alphabet of three letters {X,Y, Z}. The block C0∪C1 is called
initial block and the block C2p−1∪C2p is called terminal block. These extremal
blocks are not considered here as consecutive blocks.

By Lemma 13, FS(j, 2p) \ M has no 6-cycles if and only if FS(j, 2p) \ M
is a unique even cycle. It is an easy matter to prove that two consecutive
blocks do not induce a 6-cycle if and only if they are not of the same type.
Then the possible con�gurations for two consecutive blocks are XY , XZ, Y X,
Y Z, ZX and ZY . To eliminate a possible 6-cycle in C0 ∪ C2p−1 we have to
determine for every j ∈ {1, 2, 3} the forbidden extremal con�gurations. An
extremal con�guration shall be denoted by a word on two letters in {X,Y, Z}
such that the left letter denotes the type of the initial block C0 ∪ C1 and the
right letter denotes the type of the terminal block C2p−1 ∪ C2p. We suppose
that the extremal blocks are connected for j = 1 by the edges x2p−1z0, y2p−1x0

and z2p−1y0, for j = 2 by the edges x2p−1x0, y2p−1z0 and z2p−1y0 and for j = 3
by the edges x2p−1x0, y2p−1y0 and z2p−1z0. Then, it is easy to verify that we
have the following result.

Lemma 19 Let M be a perfect matching of type 2.0 of G = FS(j, 2p) (with
p ≥ 2) such that the 2−factor G\M is a hamiltonian cycle. Then the forbidden
extremal con�gurations are

XY , Y Z and ZX for FS(1, 2p),

XX, Y Z and ZY for FS(2, 2p),

and XX, Y Y and ZZ for FS(3, 2p).

Thus, any perfect matching M of type 2.0 of FS(j, 2p) such that the 2−factor
G \ M is a hamiltonian cycle is totally characterized by a word of length
p on the alphabet {X, Y, Z} having no two identical consecutive letters and
such that the sub-word [initial letter][terminal letter] is not a forbidden con-
�guration. Then, we are in position to obtain the number of such perfect
matchings in FS(j, 2p). Let us denote by µ′2.0(j, 2p) (respectively µ′2.1(j, 2p),
µ′2(j, 2p)) the number of perfect matchings of type 2.0 (respectively type 2.1,
type 2) complementary to a hamiltonian cycle in FS(j, 2p). Clearly µ′2(j, 2p) =
µ′2.0(j, 2p) + µ′2.1(j, 2p) and µ′2.0(j, 2p) = µ′2.1(j, 2p).
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Theorem 20 The numbers µ′2(j, 2p) of perfect matchings of type 2 comple-
mentary to hamiltonian cycles in FS(j, 2p) (j ∈ {1, 2, 3}) are given by:

µ′2(1, 2p) = 2p+1 + (−1)p+12,

µ′2(2, 2p) = 2p+1 ,

and µ′2(3, 2p) = 2p+1 + (−1)p4.

Proof Consider, as previously, perfect matchings of type 2.0. Let α and β be
two letters in {X, Y, Z} (not necessarily distinct). Let Ap

αβ be the set of words
of length p on {X, Y, Z} having no two consecutive identical letters, beginning
by α and ending by a letter distinct from β. Denote the number of words in
Ap

αβ by ap
αβ. Let Bp

αβ be the set of words of length p on {X,Y, Z} having no
two consecutive identical letters, beginning by α and ending by β. Denote by
bp
αβ the number of words in Bp

αβ.

Clearly, the number of words of length p having no two consecutive identical
letters and beginning by α is 2p−1. Then ap

αβ + bp
αβ = 2p−1. The deletion of the

last β of a word in Bp
αβ gives a word in Ap−1

αβ and the addition of β to the right
of a word in Ap−1

αβ gives a word in Bp
αβ.

Thus bp
αβ = ap−1

αβ and for every p ≥ 3 ap
αβ = 2p−1− ap−1

αβ . We note that a2
αβ = 2

if α = β, and a2
αβ = 1 if α 6= β. If α = β we have to solve the recurrent

sequence : u2 = 2 and up = 2p−1 − up−1 for p ≥ 3. If α 6= β we have to solve
the recurrent sequence : v2 = 1 and vp = 2p−1−vp−1 for p ≥ 3. Then we obtain
up = 2

3
(2p−1 + (−1)p) and vp = 1

3
(2p + (−1)p+1) for p ≥ 2.

By Lemma 19

µ′2.0(1, 2p) = ap
XY + ap

Y Z + ap
ZX = 3vp = 2p + (−1)p+1,

µ′2.0(2, 2p) = ap
XX + ap

Y Z + ap
ZY = up + 2vp = 2p ,

and µ′2.0(3, 2p) = ap
XX + ap

Y Y + ap
ZZ = 3up = 2p + (−1)p2.

Since µ′2(j, 2p) = µ′2.0(j, 2p) + µ′2.1(j, 2p) and µ′2.0(j, 2p) = µ′2.1(j, 2p) we obtain
the announced results. ¤

Remark 21 We see that µ′2(j, 2p) ' 2p+1 and this is to compare with the
number µ2(j, 2p) = 2 × 3p of perfect matchings of type 2 in FS(j, 2p) (see
backward in Section 2).
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4.3 Strong matchings and Jaeger's graphs

For a given graph G = (V,E) a strong matching (or induced matching) is a
matching S such that no two edges of S are joined by an edge of G. That
is, S is the set of edges of the subgraph of G induced by the set V (S). We
consider cubic graphs having a perfect matching which is the union of two
strong matchings that we call Jaeger's graph (in his thesis [9] Jaeger called
these cubic graphs equitable). We call Jaeger's matching a perfect matching
M of a cubic graph G which is the union of two strong matchings MB and
MR. Set B = V (MB) (the blue vertices) and R = V (MR) (the red vertices).
An edge of G is said mixed if its end vertices have distinct colours. Since the
set of mixed edges is E(G) \M , the 2-factor G \M is even and | B | = | M |.
Thus, every Jaeger's graph G is a cubic 3-edge colourable graph and for any
Jaeger's matching M = MB ∪MR, | MB | = | MR |. See, for instance, [3] and
[4] for some properties of these graphs.

In this subsection we determine the values of j and k for which a graph FS(j, k)
is a Jaeger's graph.

Lemma 22 If G = FS(j, k) is a Jaeger's graph (with k ≥ 3) and M =
MB ∪MR is a Jaeger's matching of G then M is a perfect matching of type 1.

Proof Suppose that M is of type 2 and suppose without loss of general-
ity that there are two edges of M between C0 and C1, for instance x0x1 and
y0y1. Then C0 ∩ M = {t0z0} and C1 ∩ M = {t1z1}. Suppose that x0x1 and
y0y1 belong to MB. Since MB is a strong matching, t0z0 and t1z1 belong to
M \MB = MR. This is impossible because MR is also a strong matching. By
symmetry there are no two edges of MR between C0 and C1. Then there is one
edge of MB between C0 and C1, x0x1 for instance, and one edge of MR between
C0 and C1, y0y1 for instance. Since MB and MR are strong matchings, there
is no edge of M in C0 ∪C1, a contradiction. Thus, M is a perfect matching of
type 1. ¤

Lemma 23 If G = FS(j, k) is a Jaeger's graph (with k ≥ 3) then either
(j = 1 and k ≡ 1 or 2 (mod 3)) or (j = 3 and k ≡ 0 (mod 3)).

Proof Let M = MB ∪ MR be a Jaeger's matching of G. By Lemma 22
M is a perfect matching of type 1. Suppose without loss of generality that
MB ∩ E(C0) = {x0t0}. Since MB is a strong matching there is no edge of
MB between C0 and C1. Suppose, without loss of generality, that the edge in
MR joining C0 to C1 is y0y1. Consider the claws C0, C1 and C2. Since MB

and MR are strong matchings, we can see that the choices of x0t0 ∈ MB

and y0y1 ∈ MR �xes the positions of the other edges of MB and MR. More
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precisely, {t1z1, y2t2} ⊂ MB and {x1x2, z2z
′
3} ⊂ MR. This unique con�guration

is depicted in Figure 5.
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Fig. 5. Strong matchings MB (bold edges) and MR (dashed edges)

If k ≥ 4 then we see that z2z3 ∈ MR, x3t3 ∈ MB, and y3y
′
4 ∈ MR. So, the local

situation in C3 is similar to that in C0, and we can see that there is a unique
Jaeger's matching M = MB ∪MR such that x0t0 ∈ MB and y0y1 ∈ MR in the
graph FS(j, k). We have to verify the coherence of the connections between
the claws Ck−1 and C0. We note that MB = M ∩ (∪i=k−1

i=0 E(Ci)) and MR is a
strong matching included in the 2-factor induced by ∪i=k−1

i=0 {V (Ci) \ {ti}}.

Case 1: k = 3p with p ≥ 1.
We have x0t0 ∈ MB, yk−1tk−1 ∈ MB, xk−2xk−1 ∈ MR and z′k−1z0 = zk−1z

′
0 ∈

MR (that is, zk−1z0 ∈ MR). Thus, zk−1z0, yk−1y0 and xk−1x0 are edges of
FS(j, 3p) and we must have j = 3.

Case 2: k = 3p + 1 with p ≥ 1.
We have x0t0 ∈ MB, xk−1tk−1 ∈ MB (that is, xk−1x0 /∈ E(G)), zk−2zk−1 ∈ MR

and z′k−1z0 = yk−1y
′
0 ∈ MR (that is, yk−1z0 ∈ MR). Thus, yk−1z0, xk−1y0 and

zk−1x0 are edges of FS(j, 3p + 1) and we must have j = 1.

Case 3: k = 3p + 2 with p ≥ 1.
We have x0t0 ∈ MB, zk−1tk−1 ∈ MB, yk−2yk−1 ∈ MR and z′k−1z0 = xk−1x

′
0 ∈

MR (that is xk−1z0 ∈ MR). Thus, xk−1z0, yk−1x0 and zk−1y0 are edges of
FS(j, 3p + 2) and we must have j = 1. ¤

Remark 24 It follows from Lemma 23 that for every k ≥ 3 the graph
FS(2, k) is not a Jaeger's graph. This is obvious when k is odd, since the
�ower snarks have chromatic index 4.

Then, we obtain the following.

Theorem 25 For j ∈ {1, 2, 3} and k ≥ 2, the graph G = FS(j, k) is a
Jaeger's graph if and only if
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either k ≡ 1 or 2 (mod 3) and j = 1,

or k ≡ 0 (mod 3) and j = 3.

Moreover, FS(1, 2) has 3 Jaeger's matchings and for k ≥ 3 a Jaeger's graph
G = FS(j, k) has exactly 6 Jaeger's matchings.

Proof For k = 2 we remark that FS(1, 2) (that is the cube) has exactly
three distinct Jaeger's matchings M1, M2 and M3. Following our notations:
M1 = {x0t0, t1z1} ∪ {y0y1, z0x1}, M2 = {z0t0, t1y1} ∪ {y0z1, x0x1} and M3 =
{y0t0, t1x1} ∪ {z0z1, x0y1}.

For k ≥ 3, by Lemma 23, condition

(∗) (j = 1 and k ≡ 1 or 2 (mod 3)) or (j = 3 and k ≡ 0 (mod 3))

is a necessary condition for FS(j, k) to be a Jaeger's graph.

Consider the function ΦX,Y : V (G) → V (G) such that for every i in Zk,
ΦX,Y (ti) = ti, ΦX,Y (zi) = zi, ΦX,Y (xi) = yi and ΦX,Y (yi) = xi. De�ne similarly
ΦX,Z and ΦY,Z . For j = 1 or 3 these functions are automorphisms of FS(j, k).
Thus, the process described in the proof of Lemma 23 is a constructive process
of all Jaeger's matchings in a graph FS(j, k) (with k ≥ 3) verifying condition
(*).

We remark that for any choice of an edge e of C0 to be in MB there are
two distinct possible choices for an edge f between C0 and C1 to be in MR,
and such a pair {e, f} corresponds exactly to one Jaeger's matching. Then, a
Jaeger's graph FS(j, k) (with k ≥ 3) has exactly 6 Jaeger's matchings. ¤

Remark 26 The Berge-Fulkerson Conjecture states that if G is a bridgeless
cubic graph, then there exist six perfect matchings M1, . . . , M6 of G (not
necessarily distinct) with the property that every edge of G is contained in
exactly two of M1, . . . ,M6 (this conjecture is attributed to Berge in [16] but
appears in [5]). Using each colour of a cubic 3-edge colourable graph twice,
we see that such a graph veri�es the Berge-Fulkerson Conjecture. Very few
is known about this conjecture except that it holds for the Petersen graph
and for cubic 3-edge colourable graphs. So, Berge-Fulkerson Conjecture holds
for Jaeger's graphs, but generally we do not know if we can �nd six distinct
perfect matchings. We remark that if FS(j, k), with k ≥ 3, is a Jaeger's graph
then its six Jaeger's matchings are such that every edge is contained in exactly
two of them.
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5 2-factor hamiltonian cubic graphs

Recall that a simple graph of maximum degree d > 1 with edge chromatic
number equal to d is said to be a Class 1 graph. For any d-regular simple
graph (with d > 1) of even order and of Class 1, for any minimum edge-
colouring of such a graph, the set of edges having a given colour is a perfect
matching (or 1-factor). Such a regular graph is also called a 1-factorable graph.
A Class 1 d-regular graph of even order is strongly hamiltonian or perfectly 1-
factorable (or is a Hamilton graph in the Kotzig's terminology [10]) if it has
an edge colouring such that the union of any two colours is a hamiltonian
cycle. Such an edge colouring is said to be a Hamilton decomposition in the
Kotzig's terminology. In [11] by using two operations ρ and π (described also
in [10]) and starting from the θ-graph (two vertices joined by three parallel
edges) he obtains all strongly hamiltonian cubic graphs, but these operations
do not always preserve planarity. In his paper [10] he describes a method
for constructing planar strongly hamiltonian cubic graphs and he deals with
the relation between strongly hamiltonian cubic graphs and 4-regular graphs
which can be decomposed into two hamiltonian cycles. See also [12] and a
recent work on strongly hamiltonian cubic graphs [2] in which the authors
give a new construction of strongly hamiltonian graphs.

A Class 1 regular graph such that every edge colouring is a Hamilton decom-
position is called a pure Hamilton graph by Kotzig [10]. Note that K4 is a
pure Hamilton graph and every cubic graph obtained from K4 by a sequence
of triangular extensions is also a pure Hamilton cubic graph. In the paper [10]
of Kotzig, a consequence of his Theorem 9 (p.77) concerning pure Hamilton
graphs is that the family of pure Hamilton graphs that he exhibits is precisely
the family obtained from K4 by triangular extensions. Are there others pure
Hamilton cubic graphs ? The answer is "yes".

We remark that 2-factor hamiltonian cubic graphs de�ned above (see De�ni-
tion 16) are pure Hamilton graphs (in the Kotzig's sense) but the converse is
false because K4 is 2-factor hamiltonian and the pure Hamilton cubic graph
on 6 vertices obtained from K4 by a triangular extension (denoted by PR3) is
not 2-factor hamiltonian. Observe that the operation of triangular extension
preserves the property "pure Hamilton", but does not preserve the property
"2-factor hamiltonian". The Heawood graph H0 (on 14 vertices) is pure Hamil-
tonian, more precisely it is 2-factor hamiltonian (see [7] Proposition 1.1 and
Remark 2.7). Then, the graphs obtained from the Heawood graph H0 by tri-
angular extensions are also pure Hamilton graphs.

A minimally 1-factorable graph G is de�ned by Labbate and Funk [7] as a
Class 1 regular graph of even order such that every perfect matching of G
is contained in exactly one 1-factorization of G. In their article they study
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bipartite minimally 1-factorable graphs and prove that such a graph G has
necessarily a degree d ≤ 3. If G is a minimally 1-factorable cubic graph then
the complementary 2-factor of any perfect matching has a unique decomposi-
tion into two perfect matchings, therefore this 2-factor is a hamiltonian cycle
of G, that is G is 2-factor hamiltonian. Conversely it is easy to see that any
2-factor hamiltonian cubic graph is minimally 1-factorable. The complete bi-
partite graph K3,3 and the Heawood graph H0 are examples of 2-factor hamil-
tonian bipartite graph given by Labbate and Funk. Starting from H0, from
K1,3 and from three copies of any tree of maximum degree 3 and using three
operations called amalgamations the authors exhibit an in�nite family of bi-
partite 2-factor hamiltonian cubic graphs, namely the poly − HB − R − R2

graphs (see [7] for more details). Except H0, these graphs are exactly cyclically
3-edge connected. Others structural results about 2-factor hamiltonian bipar-
tite cubic graph are obtained in [13], [14]. These results have been completed
and a simple method to generate 2-factor hamiltonian bipartite cubic graphs
was given in [6].

Proposition 27 (Lemma 3.3, [6]) Let G be a 2-factor hamiltonian bipartite
cubic graph. Then G is 3-connected and | V (G) |≡ 2 (mod 4).

Let G1 and G2 be disjoint cubic graphs, x ∈ v(G1), y ∈ v(G2). Let x1, x2, x3

(respectively y1, y2, y3) be the neighbours of x in G1 (respectively, of y in G2).
The cubic graph G such that V (G) = (V (G1)\{x})∪(V (G2)\{y}) and E(G) =
(E(G1)\{x1x, x2x, x3x})∪(E(G2)\{y1y, y2y, y3y})∪{x1y1, x2y2, x3y3} is said to
be a star product and G is denoted by (G1, x)∗(G2, y). Since {x1y1, x2y2, x3y3}
is a cyclic edge-cut of G, a star product of two 3-connected cubic graphs has
cyclic edge-connectivity 3.

Proposition 28 (Proposition 3.1, [6]) If a bipartite cubic graph G can be rep-
resented as a star product G = (G1, x)∗(G2, y), then G is 2-factor hamiltonian
if and only if G1 and G2 are 2-factor hamiltonian.

Then, taking iterated star products of K3,3 and the Heawood graph H0 an
in�nite family of 2-factor hamiltonian cubic graphs is obtained. These graphs
(except K3,3 and H0) are exactly cyclically 3-edge connected. In [6] the authors
conjecture that the process is complete.

Conjecture 29 (Funk, Jackson, Labbate, Sheehan (2003)[6]) Let G be a bi-
partite 2-factor hamiltonian cubic graph. Then G can be obtained from K3,3

and the Heawood graph H0 by repeated star products.

The authors precise that a smallest counterexample to Conjecture 29 is a
cyclically 4-edge connected cubic graph of girth at least 6, and that to show
this result it would su�ce to prove that H0 is the only 2-factor hamiltonian
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cyclically 4-edge connected bipartite cubic graph of girth at least 6. Note that
some results have been generalized in [1].

To conclude, we may ask what happens for non bipartite 2-factor hamiltonian
cubic graphs. Recall that K4 and FS(1, 3) (the "Triplex Graph" of Robertson,
Seymour and Thomas [15]) are 2-factor hamiltonian cubic graphs. By Corol-
lary 17 the graphs FS(j, k) with k odd and j = 1 or 3 introduced in this paper
form a new in�nite family of non bipartite 2-factor hamiltonian cubic graphs.
We remark that they are cyclically 6-edge connected. Can we generate others
families of non bipartite 2-factor hamiltonian cubic graphs ? Since PR3 (the
cubic graph on 6 vertices obtained from K4 by a triangular extension) is not
2-factor hamiltonian and PR3 = K4 ∗K4, the star product operation is surely
not a possible tool.
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