
Minimal Extensions

of Tree Languages:

Application to XML

Schema Evolution

Jacques Chabin, Mirian Halfeld-Ferrari,

Martin A. Musicante, Pierre Réty

LIFO, Université d’Orléans

Rapport no RR-2009-06

Minimal Extensions of Tree Languages: Application to
XML Schema Evolution

Jacques Chabin
Université d’Orléans, LIFO

Orléans, France
jacques.chabin@univ-orleans.fr

Mirian Halfeld-Ferrari
∗

Université d’Orléans, LIFO
Orléans, France

mirian.halfeld@univ-orleans.fr

Martin A. Musicante
†

Universidade Federal do Rio
Grande do Norte, DIMAp

Natal, Brazil
mam@dimap.ufrn.br

Pierre Réty
Université d’Orléans, LIFO

Orléans, France
pierre.rety@univ-orleans.fr

ABSTRACT
Data shared among applications has a highly dynamic na-
ture. The schema of this data often changes as the infor-
mation grows and applications that uses an old version of
the schema may need to adjust to the new one. The new
schema should be an evolution of the original one, adding
the capability of accepting a given new data.

In this context, we propose two automatic, conservative
methods for evolving schemas (or types) for semi-structured
data. The application of our method ranges from allowing
the support for new data in a database to more elaborated
usage, such as allowing the generalisation of different mes-
sage types, for instance, in order to define the type of mes-
sages a web service should deal with.

We propose two algorithms, producing different classes
of schema for XML (those classes represented, respectively
by DTD and XML Schema). Each algorithm is given a
regular tree grammar and returns the least schema of its
class that contains the language of the original grammar (in
the sense of language inclusion). Our algorithms are inspired
by grammar inference techniques. They are proven correct.

The intended use of our method is as follows: We start
with a regular tree grammar G0 which is the union of two
other grammars: (i) a given original grammar Gorig which
can be a local tree grammar (LTG or DTD) or a single-
type tree grammar (STTG or XML Schema) and (ii) the
grammar GnewTree which describes a tree that does not be-

∗Partly supported by Codex project ANR-08-DEFIS-04.
Part of this work was done while the author was working
at Université François Rabelais de Tours.
†Partly supported by Codex project ANR-08-DEFIS-04.
This work was done while the author was visiting Université
d’Orléans.

long to L(Gorig) (the language generated by Gorig) but that
represents the data for which an evolution should be trig-
gered. Our algorithms yield the grammars (LTG or STTG
according to the user’s choice) generating the least languages
(local tree language or single-type tree language) containing
both the original language and the new tree. The paper
also discusses the implementation of a prototype (proof of
concept).

1. INTRODUCTION
Dealing with the dynamic nature and great volume of the

data exchanged on the Internet requires the development of
new techniques and tools. The applications that manipulate
these data should be dependable [KH08]. One big step to-
wards dependability is that the algorithms that manipulate
these data are proven correct.

XML is a standard format for data exchange in many
branches of science as well as in e-business/e-government.
In a collaborative environment, data communication among
peers should respect some type constraints. The definition
of new rules for the typing of these data is not rare and the
new type must be communicated among peers that already
have a body of local data that complies with the old rules.
Indeed, the applicability of schema evolution is very large: it
can help in the automatic adaptation of those types of mes-
sages exchanged between web services; in the maintenance
of data related to digital libraries or in the automatic merge
of several XML data repositories, by obtaining of a common
schema, build up from types originated at different sources.

In this context, the learning of new types (or schema, as
it is called by the XML community) can be very helpful
for the harmonious work of the applications that manipu-
late these data. Some algorithms for learning XML data
have been proposed [GGR+00, Chi01, BNV07]. In general,
these algorithms use traditional learning techniques, which
consist of learning the schema using sets of (positive or neg-
ative) examples. Unfortunately, the distributed and gigantic
nature of the data in question makes it unpractical to use
traditional techniques. Our work takes this situation into
account and places ourselves in a more realistic scenario,
where the data administrator needs to incorporate a new
data in his application. Supposing that this new data can-
not be validated wrt the current type, it would be very useful

to automatically generate a new type such that: (i) it is a
conservative extension of the old one and (ii) the new data
is valid wrt to it. Moreover, we are interested in obtaining
the least schema (in the sense of type inclusion) that com-
plies with conditions (i) and (ii) and that can be specified in
current XML schema languages standards such as DTD or
XMLSchema. In this way, our method allows the evolution
of a given schema: usually we talk about the evolution of
a DTD or an XMLSchema, but one may also provoke the
evolution of a DTD towards an XMLSchema. The follow-
ing example illustrates schema evolution as proposed by our
method.

Example 1.1 Consider a web service that exchanges mes-
sages concerning address of people working a research lab-
oratory. As usual we represent non terminals starting with
a capital letter and terminals with a small letter. Let G
be the LTG which defines the addresses of professors and
students and that has D as the axiom. Besides the pro-
duction rules presented below, we suppose that all the pro-
duction rules X → x[ǫ] such that X ∈ {N, M, T, A} and
x ∈ {name, number, telephone, address} are included in the
solution:

Productions rules of G
D → directory[S∗.P ∗]
S → student[N.M.A?]
P → professor[N.A?.T ∗]

Now, suppose the web service should also accept the doc-
ument directory(student(name, phone)). Clearly, this tree
does not respect the type imposed by G. The administra-
tor may require the original schema (grammar) to evolve.
Grammar G′ (whose production rules are presented below
and whose axiom is Y) generates the new tree, but the gram-
mar G1 resulting from a simple union of G and G′ is neither
a LTG nor a STTG.

Productions rules of G′

Y → directory[B]
B → student[C.H]
C → name[ǫ]
H → phone[ǫ]

Supposing a DTD is the schema language used to express
the web service message type, the schema evolution should
results into a new LTG grammar. Our algorithms gives the
following grammar G2 as output (by merging some produc-
tion rules of G1) with DY as axiom.

Productions rules of G2

DY → directory[SB | S
∗
B .P ∗]

SB → student[NC .TH | NC .M.A?]
P → professor[NC .A?.T ∗

H]
NC → name[ǫ]
TH → phone[ǫ]
M → number[ǫ]
A → address [ǫ]

2

In this context, we propose algorithms to evolve schemas
given as a Local Tree Grammar (i.e. a DTD specification) or
as a Single-Type Tree Grammar (i.e. a XMLSchema spec-
ification). Our algorithms are capable of finding a defini-
tion for the least (local or single-type) tree language (set of

XML documents) that contains both the XML documents
described by the original type and the newly-arrived data.
For instance, in Example 1.1, grammar G2 is the least LTG
that contains the language generated by G and the tree
directory(student(name, phone)).

The algorithms proposed in this paper are able to trans-
form a (general) regular tree grammar into a Local or Single-
Type tree grammar. Our algorithms are proven correct for
any regular tree grammar in reduced normal form (a rele-
vant XML schema is in reduced form, and any regular tree
grammar can be transformed into normal form).

The rest of this paper is organised as follows: in Section 2
we recall the theoretical background needed to the introduc-
tion of our method; Section 3 presents our schema evolution
algorithms for LTG and STTG and Section 4 discuss the
implementation of these methods. The paper finishes by
considering some related work and by discussing our per-
spectives of work.

2. THEORETICAL BACKGROUND
This section presents theoretical notions necessary in this

paper. It is a well known fact that type definitions for XML
and regular tree grammars are similar notions and that some
schema definition languages can be represented by using spe-
cific classes of regular tree grammars. Thus, DTD and XML
Schema, correspond, respectively, to Local Tree Grammars
and Single-type Tree Grammars [MLMK05].

Given a XML type T and its corresponding tree gram-
mar G, the set of XML documents described the type T
corresponds to the language (set of trees) generated by G.

Trees can be defined as ranked or unranked. In ranked
trees, each node has a fixed number of children while in
unranked ones each node can have a finite, not predefined,
list of children. In this paper we consider a tree language
as a set of unranked trees. Next, we recall the notions of
unranked Σ-valued trees.

Let U be the set of all finite strings of non-negative inte-
gers with the empty string ǫ as the identity. In the following
definition we assume that Pos(t) ⊆ U is a nonempty set
closed under prefixes1, i.e. , if u � v , v ∈ Pos(t) implies
u ∈ Pos(t).

Definition 2.1 (Unranked Σ-valued tree t) A nonemp-
ty unranked Σ-valued tree t is a mapping t : Pos(t) → Σ
where Pos(t) satisfies: j ≥ 0, uj ∈ Pos(t), 0 ≤ i ≤ j ⇒ ui ∈
Pos(t). The set Pos(t) is also called the set of positions of
t. We write t(v) = a, for v ∈ Pos(t), to indicate that the
Σ-symbol associated to v is a. Define an empty tree t as the
one having Pos(t) = {ǫ} and t(ǫ) = λ where λ is a special
symbol not in Σ. 2

ǫ

0 1

directory

student professor

number name address phone0.0 name 0.1 1.0 1.1 1.2

Figure 1: An XML tree.

1The prefix relation in U , denoted by � is defined by: u � v
iff uw = v for some w ∈ U .

Fig. 1 represents a tree whose alphabet is the set of ele-
ment names appearing in an XML document. Given a tree
t we denote by t|p the subtree whose root is at position
p ∈ Pos(t), i.e. Pos(t|p) = {s | p.s ∈ Pos(t)} and for each
s ∈ Pos(t|p) we have t|p(s) = t(p.s). For instance, in Fig. 1
t|0 = {(ǫ, student), (0, name), (1, number)}, or equivalently,
t|0 = student(name, number).

Given a tree t such that the position p ∈ Pos(t) and a tree
t′, we note t[p ← t′] as the tree that results of substituting
the subtree of t at position p by t′.

Definition 2.2 (Forest) Let L be a set of trees. ST (L)
denotes the set of sub-trees of elements of L, i.e. ST (L) =
{t | ∃u ∈ L, ∃p ∈ Pos(u), t = u|p}. A forest is a (possibly
empty) tuple of trees. For a terminal a and a forest w =
〈t1, . . . , tn〉, a(w) is defined by a(w) = a(t1, . . . , tn). On
the other hand, w(ǫ) is defined by w(ǫ) = 〈t1(ǫ), . . . , tn(ǫ)〉,
i.e. the tuple of the top symbols of w. 2

The definition of a regular grammar for unranked trees
comes from its ranked version (see [CDG+02]) by allowing
production rules whose right-hand side contains a regular
expression [BMW01]. By convention we use small letters
for terminals and capital letters for non terminals.

Definition 2.3 (Regular Tree Grammar)
A regular tree grammar (RTG) is a 4-tuple G = (N, T, S, P),
where:

• N is a finite set of non-terminal symbols,

• T is a finite set of terminal symbols,

• S is a set of start symbols, where S ⊆ N .

• P is a finite set of production rules of the form X → a [R],
where X ∈ N , a ∈ T , and R is a regular expression over N
(We say that, for a production rule, X is the left-hand side,
a R is the right-hand side, and R is the content model.) 2

Definition 2.4 (Derivation) For a RTG G = (N, T, S, P),
we say that a term t build on N ∪ T derives (in one step)
into t′ iff (i) there exists a position p of t such that t|p =
A ∈ N and a production rule A → a [R] in P , and (ii)
t′ = t[p ← a(w)] where w ∈ L(R) (L(R) is the set of words
of non-terminals generated by R). We note t→[p,A→a [R]] t′.
More generally, a derivation (in several steps) is a (possibly
empty) sequence of one-step derivations. We note t→∗

G t′.
The language L(G) generated by G is the set of trees con-
taining only terminal symbols, defined by : L(G) = {t |
∃A ∈ S, A→∗

G t}. 2

Example 2.1
Given the tree grammar G = (N, T, {X}, P), where P =
{X → f [A∗.B], A → a, B → b}. We have the deriva-
tion from the start symbol X →[X→f [A∗.B]] f(A, A, B)→∗

G

f(a, a, b). Consequently f(a, a, b) ∈ L(G). 2

To produce grammars that generate least languages, our
algorithms need to start from grammars in reduced form and
(as in [ML02]) in normal form.

Definition 2.5 (Reduced Form)
A regular tree grammar (RTG) is said to be in reduced form
if (i) every non-terminal is reachable from a start symbol,
and (ii) every non-terminal generates at least one tree con-
taining only terminal symbols. 2

Note that a relevant XML schema is already in reduced
form. To check that a grammar G = (N, T, S, P) is in re-
duced form, we compute the set of non-terminals reachable
from the start symbols and check that it is equal to N (item
(i)). Since emptiness is decidable for RTGs, checking (ii)
amounts to check that for all A ∈ N , GA = (N, T, {A}, P)
generates a non-empty language.

Converting an arbitrary RTG into reduced form is always
possible, however it may lead to an exponential blow-up in
the number of non-terminals.

Definition 2.6 (Normal Form) A regular tree grammar
(RTG) is said to be in normal form if (i) it does not have
two production rules of the form A→ a[E1] and A→ b[E2]
where terminals a 6= b and (ii) no two production rules have
the same non-terminal in the left-hand side and the same
terminal in the right-hand side. 2

Notice that the definition above is closed to that in [ML02];
the difference is that we include the condition (i) to our nor-
mal form definition. The conversion of a regular tree gram-
mar (RTG) into a normal form is done according to the
following steps: (1) For every pair of rules A → a[E1] and
A→ b[E2] rewrite one of the rules by replacing the non ter-
minal A by a new non terminal B (obtaining, for instance,
B → b[E2]) and substituting all occurrences of A by A | B
in all regular expressions. If A is a start symbol, B should
be added to the set of start symbols. (2) For every pair of
rules A → a[E1] and A → a[E2] replace them by the rule
A→ a[E1 | E2]. Note that the conversion into normal form
preserves the reduced form.

Definition 2.7 (Reduced Normal Form) A regular tree
grammar (RTG) is said to be in reduced normal form if it is
both in reduced form and in normal form. 2

Example 2.2 Given the tree grammar G0 = (N, T, S, P0),
where N = {X, A, B}, T = {f, a, c}, S = {X}, and P0 =
{X → f [A.B], A → a, B → a, A → c}. Note that G0 is in
reduced form, but it is not in normal form. By applying step
(1) of the conversion method discussed above, we obtain the
set P1 = {X → f [(A|C).B], A → a, B → a, C → c}. Thus
G1 = (N ∪{C}, T, S, P1) is already in reduced normal form.
2

The following three definitions come from [MLMK05].

Definition 2.8 (Competing Non-Terminals) Two differ-
ent non-terminals A and B (of the same grammar G) are said
competing with each other if

• one production rule has A in the left-hand side,

• another production rule has B in the left-hand side, and

• these two production rules share the same terminal symbol
in the right-hand side. 2

Definition 2.9 (Local Tree Grammar) A local tree gram-
mar (LTG) is a regular tree grammar that does not have
competing non-terminals.
A local tree language (LTL) is a language that can be gen-
erated by at least one LTG. 2

Note that converting a LTG into normal form produces a
LTG as well.

Definition 2.10 (Single-Type Tree Grammar)
A single-type tree grammar (STTG) is a regular tree gram-
mar in normal form, where (i) for each production rule, non
terminals in its regular expression do not compete with each
other, and (ii) starts symbols do not compete with each
other. A single-type tree language (STTL) is a language
that can be generated by at least one STTG. 2

In [MLMK05] the expressive power of these classes of lan-
guages is discussed. We recall that LTL ⊂ STTL ⊂ RTL.
Moreover, the LTL and STTL are closed under intersection
but not under union; while the RTL are closed under union,
intersection and difference.

Example 2.3 Let G1, G2 and G3 be regular tree grammars.
Each grammar Gi is defined by Gi = (N, T, S = {Dir}, Pi).
We consider that all three sets of production rules have rules
A → a[ǫ] where a ∈ {name, add , phone,number} besides
those specified below.

P1

Dir → directory [Student∗.Prof ∗]
Student → student [DirA | DirB])
Prof → professor [DirB]
DirA → direction[Name.Number?.Add?]
DirB → direction[Name.Add?.Phone∗]

P2

Dir → directory [Student∗.Prof ∗]
Student → student[DirA]
Prof → professor[DirB]
DirA → direction[Name.Number.Add?]
DirB → direction[Name.Add?.Phone∗]

P3

Dir → directory[Student∗.P rof∗]
Student → student[Name.Number.Add?]
Prof → professor[Name.Add?.Phone∗]

Notice that according to the previous definitions, grammar
G3 is a LTG, G2 is a STTG and not a LTG (DirA and
DirB compete with each other) while G1 is a RTG which is
not a STTG (DirA and DirB compete and belong to the
same regular expression). 2

3. SCHEMA EVOLUTION
Our goal is not schema extraction but to allow a given

schema to evolve (in a conservative way) according to the
set of new XML documents that need to be accepted by the
application. This section describes our schema evolution
approach by presenting the main theoretical contributions
of our work.

The algorithms proposed here take as argument a general
regular tree grammar in reduced normal form. They pro-
duce a LTG (respectively a STTG) whose language is the
least LTL (resp. the least STTL) that contains the language
described by the original tree grammar.

The intuitive idea underlying both algorithms is to iden-
tify sets of competing non-terminal symbols of the tree gram-
mar, and fix the problem by identifying these non-terminals
as the same one.

3.1 Generating LTG from RTG
We consider the problem of obtaining a local tree grammar

whose language contains a given tree language. Given a
regular tree grammar G0, we are interested in the definition
of the least local tree language that contains the language
generated by G0. The new language will be described by a
local tree grammar. The algorithm described below obtains
a new grammar by transforming G0. The transformation
rules are intuitively simple : every pair of competing non-
terminals are transformed into one symbol. We show that
this simple transformation of the original grammar yields to
a local tree grammar in a finite number of steps.

Let us now consider some useful properties of local tree
languages. These properties will be used to show the cor-
rectness of our grammar-transformation algorithm. The fol-
lowing lemma states that the type of the subtrees of a tree
node is determined by the label of its node (i.e. the type of
each node is locally defined). Recall that ST (L) is the set
of sub-trees of elements of L.

Lemma 3.1 Let L be a local tree language (LTL). Then,
for each t ∈ ST (L), each t′ ∈ L and each p′ ∈ Pos(t′), we
have that

t(ǫ) = t′(p′) =⇒ t′[p′ ← t] ∈ L.

Proof. Let us write a = t(ǫ) = t′(p′) and t = a(w). L
can be generated by a LTG in normal-form : G = (N, T, S, P).
To generate a, there is only one rule A→ a[R] ∈ P . There-
fore ∃u ∈ L(R), u→∗

G w. Then A→∗
G a(w).

On the other hand, ∃B ∈ S, B →∗
G t′. Consequently,

B →∗
G t′[p′ ← A] →∗

G t′[p′ ← a(w)] = t′[p′ ← t]. Thus
t′[p′ ← t] ∈ L.

In the following, we also need a weaker version of the
previous lemma:

Corollary 3.1 Let L be a local tree language (LTL). Then,
for each t, t′ ∈ ST (L), and each p′ ∈ Pos(t′), we have that

t(ǫ) = t′(p′) =⇒ t′[p′ ← t] ∈ ST (L).

2

In practical terms, Corollary 3.1 give us a rule of thumb on
how to“complete”a regular language in order to obtain a lo-
cal tree language. For instance, let L = {f(a(b), c), f(a(c), b)}
be a regular language. According to Corollary 3.1, we know
that L is not LTL and that the least local tree language
L′ containing L contains all trees where a has c as a child
together with all trees where a has b as a child. In other
words, L′ = {f(a(b), c), f(a(c), b), f(a(c), c), f(a(b), b)}.

Let us now define our first algorithm for schema (DTD,
Local Tree Grammar) evolution. The main intuition be-
hind our algorithm is to merge rules having competing non
terminals in their left-hand side. New non terminals are
introduced in other to replace competing ones.

Definition 3.1 (Grammar Transformation) Let G0 =
(N0, T0, S0, P0) be a regular tree grammar in reduced nor-
mal form. We define a new regular tree grammar G =
(N, T, S, P), obtained from G0, according to the following
steps:

1. Let G2 := G0, where G2 is denoted by (N2, T2, S2, P2).

2. While there exists a pair of production rules of the
form X1 → a [R1] and X2 → a [R2] in P2 (X1 6= X2)
do:

(a) Let Y be a new non-terminal symbol and define
a substitution σ = [X1/Y, X2/Y].

(b) Let G3 := (σ(N2 ∪ {Y }), T2, σ(S2), P3), s.t. P3 =
σ(P2 ∪ {Y → a [R1|R2]} − {X1 → a [R1], X2 →
a [R2]}).

(c) Let G2 := G3,
where G2 is denoted by (N2, T2, S2, P2).

3. Return G2. 2

Example 3.1 Consider the situation described in Exam-
ple 1.1 where grammar G1 is the input for the algorithm
of Definition 3.1. In a first step, production rules D →
directory[S∗.P ∗] and Y → directory[B] are replaced by
DY → directory[B | S∗.P ∗]. Following the same idea, rules
S → student[N.M.A?] and B → student[C.D] are replaced
by SB → student[C.D | N.M.A?]. This change implies
changes on the right-hand side of other production rules such
as DY → directory[SB | S

∗
B .P ∗]. The last steps merge rules

concerning the terminals name and phone. In this way we
obtain the grammar
G2 = ({DY , SB , P, NC , PD, M, A}, {directory, student,

professor, name, phone, number, address},
{DY }, P)

whose set of production rules P is shown in Example 1.1. 2

The next two properties are straightforward and shows
that our algorithm stops, generating a local tree grammar
in normal form:

Theorem 3.1 (The algorithm stops) The algorithm in
Definition 3.1 always ends, producing an RTG in reduced
normal form.

Proof: Straightforward, from the facts: (i) At each itera-
tion, a pair of production rules is substituted by just one
production rule. (ii) Each iteration maintains the reduced
normal form of the grammar being processed. 2

Theorem 3.2 The grammar produced by the algorithm of
definition 3.1 is an LTG.

Proof: Straightforward, from the stop condition on the main
loop. 2

The following theorem is the main result of this sub-section.
It shows that the language generated by the grammar ob-
tained by algorithm in Definition 3.1 is the least possible
language (in the sense of set inclusion) that is both a local
tree language and contains the language generated by the
original grammar G0.

Theorem 3.3 The grammar returned by the algorithm of
Definition 3.1 generates the least local tree language that
contains L(G0). 2

The intuition behind the proof of this theorem is as fol-
lows. Let G be the grammar produced by our algorithm and
let G′ be any LTG such that L(G0) ⊆ L(G′),

We have to prove that L(G0) ⊆ L(G) (soundness), and that
L(G) ⊆ L(G′) (minimality: L(G) is the least LTL containing
L(G0)). Proving soundness is not very difficult. Minimality
comes from the following steps:
- As production rules of a LTG in normal form define a
bijection between the sets of terminals and non-terminals,
there is only one rule in G of the form A→ a[R] producing
subtrees with root a. By the construction of our algorithm
this rule should correspond to a rule Aj → a[Rj] in G0 with
R = θ(R1) | · · · | θ(Rn) where θ is a composition of substi-
tutions.
- Consequently, we can prove that if a(w) is a subtree of
t ∈ L(G), then there is at least one tree in L(G0) with a(w′)
as a subtree, s.t. w′(ǫ) = w(ǫ) (i.e. forests w′ and w have the
same tuple of top-symbols).
- w is a forest composed by subterms of L(G), and by in-
duction hypothesis applied to each component of w (each
component is a strict subtree of a(w)), we get that w is also
a forest composed of subtrees by L(G′). On the other hand,
since L(G0) ⊆ L(G′), a(w′) is a subtree of L(G′).
- As G′ is a LTG, from Corollary 3.1, we can replace each
subtree of a(w′) –rooted by the elements of w′(ǫ)– by the
corresponding subtree of a(w) and thus, a(w) is a subtree of
L(G′).
- Finally, as this is valid for every subtree, we have that
L(G) ⊆ L(G′).

Formally, in order to prove Theorem 3.3, we need to prove
some properties over the algorithm. Recall that G0 = (N0,
T0, S0, P0) is the initial grammar considered by the algo-
rithm, and that G = (N, T, S, P) denotes the grammar com-
puted by the algorithm.

We start by showing that our algorithm proposes a gram-
mar which generates a language containing L(G0). The fol-
lowing lemma shows that the substitution defined at step 2a
of the algorithm preserves the trees generated by the gram-
mar G0.

Lemma 3.2 Consider one step of the algorithm. If X →∗
P2

a(w) then σ(X) →∗
P3

a(w) where P2 and P3 are the set of
production rules referred in Definition 3.1.

Proof. By induction on the length of X →∗
P2

a(w).
We have X →P2 a[R] and ∃u ∈ L(R), u→∗

P2
w. Two cases

should be considered whether X is or not a competing non
terminal.
- If X is not a competing non terminal, ie X 6∈ {X1, X2},
σ(X) →P3 a [σ(R)] and σ(u) ∈ L(σ(R)). By induction hy-
pothesis, σ(u)→∗

P3
w, therefore σ(X)→∗

P3
a(w).

- Otherwise, suppose X is a competing non terminal, ie
X = X1 (the case X = X2 is similar). Now σ(X) = Y =
σ(Y)→P3 a [σ(R1|R2)], and σ(u) ∈ L(σ(R1)). By induction
hypothesis, σ(u)→∗

P3
w, therefore σ(X)→∗

P3
a(w).

Example 3.2 Let the RTG G0 be the input of the algo-
rithm of Definition 3.1 and G be the resulting LTG:

G0: G:
S → a[A.A] Y → a[Y.Y | B]
A→ a[B] B → b[ǫ]
B → b[ǫ]

Notice that L(G0) contains just the tree t = a(a(b), a(b))
and that t ∈ L(G). 2

We can now begin to show the relationship between the orig-
inal language, as described by the grammar G0 and the lan-
guage generated by the grammar obtained by the algorithm
of Definition 3.1. Let θ be the composition of all the substi-
tutions defined by the algorithm at step 2a.

Corollary 3.2

• L(G0) ⊆ L(G)

• If X →∗
G0

t and θ(X) →∗
G t′, then t(ǫ) = t′(ǫ) (i.e. t

and t′ have the same top symbol).

Proof. The first item is an immediate consequence of
the previous lemma.
Since G0 is in normal form, X occurs once as the left-hand
side of a production rule in G0. The same holds for θ(X)
in G. Therefore X produces in G0 only one top symbol,
and θ(X) produces in G only one top symbol. Because of
Lemma 3.2, these top symbols are equal.

Notice that from the grammars of Example 3.2, we can
derive A→∗

G0
a(b) and X →∗

G a(b) (recall that X = θ(A)).

The next lemma states that the resulting grammar G does
not introduce any new terminal symbol at the root of the
generated trees:

Lemma 3.3 ∀t ∈ L(G), ∃t′ ∈ L(G0), t′(ǫ) = t(ǫ).

Proof. Let t = a(w) ∈ L(G). The sets of initial non-
terminals satisfy S = θ(S0). Therefore there exists A ∈ S0

s.t. θA→G a(u) with u ∈ N∗ and u→∗
G w.

Since G0 is in reduced form, there exist A → a′[R] ∈ P0,
v ∈ L(R), and a forest w′ s.t. v →∗

G0
w′. Therefore A→∗

G0

a′(w′).
From Corollary 3.2, a′ = a, then there exists t′ = a(w′) ∈
L(G0) and t′(ǫ) = a = t(ǫ).

Next, we show that for every sub-tree generated by G, its
root appears in at least one subtree of the language gener-
ated by G0 (recall that w′(ǫ) = w(ǫ) means that forests w′

and w have the same tuple of top-symbols):

Lemma 3.4 If t ∈ ST (L(G)), such that t = a(w), then,
∃t′ ∈ ST (L(G0)), t′ = a(w′) ∧ w′(ǫ) = w(ǫ).

Proof. Let t ∈ ST (L(G)) s.t. t = a(w). There ex-
ists A → a[R] ∈ P s.t. A → a(u), u ∈ L(R), u →∗

G

w. By construction, R = θ(R1)| . . . |θ(Rn), and ∀i, ∃Ai ∈
N0, Ai → a[Ri] ∈ P0 ∧ θ(Ai) = A. Therefore there exists j
s.t. u ∈ L(θ(Rj)). Consider Aj → a[Rj] ∈ P0. There exists
u′ ∈ L(Rj) s.t. θ(u′) = u.
Since G0 is in reduced form, there exists a forest w′ s.t.
u′ →∗

G0
w′. Consequently Aj →G0 a(u′) →∗

G0
a(w′). Let

t′ = a(w′). Since G0 is in reduced form, the rule Aj → a[Rj]
is reachable in G0, then t′ ∈ ST (L(G0)). From Corollary
3.2, since θ(u′) = u, we have w(ǫ) = w′(ǫ).

As an illustration of Lemma 3.4, we observe that from the
grammars of Example 3.2, given the tree a(a(b), a(a(b), a(b)),
for its sub-tree t = a(a(b), a(b)) ∈ ST (L(G)), we have t′ =
t ∈ ST (L(G0)).

Now, we can prove that the algorithm just adds what is
necessary to get a LTL (and not more), in other words, that
L(G) is the least local tree language that contains L(G0).
This is done in two stages: first for subtrees, then for trees.

Lemma 3.5 Let L′ be a LTL such that L(G0) ⊆ L′. Then
ST (L(G)) ⊆ ST (L′).

Proof. By structural induction on the trees in ST (L(G)).
Let t = a(w) ∈ ST (L(G)). From Lemma 3.4, there exists
t′ ∈ ST (L(G0)) s.t. t′ = a(w′)∧w′(ǫ) = w(ǫ). Since L(G0) ⊆
L′, we have ST (L(G0)) ⊆ ST (L′), then t′ ∈ ST (L′).
If w is an empty forest (i.e. the empty tuple), w′ is also
empty, therefore t = t′ ∈ ST (L′).
Otherwise, let us write w = (a1(w1), . . . , an(wn)) and w′ =
(a1(w

′
1), . . . , an(w′

n)) (since w(ǫ) = w′(ǫ), w and w′ have the
same top symbols). Since t = a(w) ∈ ST (L(G)), for each
j ∈ {1, . . . , n}, aj(wj) ∈ ST (L(G)), then by induction hy-
pothesis aj(wj) ∈ ST (L′).
L′ is a LTL, and for each j we have : aj(wj) ∈ ST (L′),
t′ ∈ ST (L′), (aj(wj))(ǫ) = aj = t′(j). By applying Corol-
lary 3.1 n times, we get t′[1 ← a1(w1)] . . . [n ← an(wn)] =
t ∈ ST (L′).

Theorem 3.4 Let L′ be a LTL such that L′ ⊇ L(G0). Then
L(G) ⊆ L′.

Proof. Let t ∈ L(G). Then t ∈ ST (L(G)). From
Lemma 3.5, t ∈ ST (L′). On the other hand, from Lemma
3.3, there exists t′ ∈ L(G0) s.t. t′(ǫ) = t(ǫ). Then t′ ∈ L′.
From Lemma 3.1, t′[ǫ← t] = t ∈ L′.

This result ensures that the grammar G of Example 3.2
generates the least LTL that contains L(G0).

3.2 Generating STTG from RTG
Let us now consider the problem of obtaining a single-

type tree grammar whose language contains a given tree
language. Thus, given a regular tree grammar G0, we are
interested in the definition of the least single-type tree lan-
guage that contains the language generated by G0. The
new language will be described by a single-type grammar.
The algorithm described below obtains a new grammar by
transforming G0. Roughly speaking, for each production
rule A → a [R] in G0, an equivalence relation is defined on
the non-terminals of R, so that all competing non-terminals
of R are in the same equivalence class. These equivalence
classes are the non-terminals of the new grammar.

Let G0 = (N0, T0, S0, P0) be a RTG in reduced normal
form.

Definition 3.2 (Grouping competing non-terminals)
Let ‖ be the relation on N0 defined by: for all A, B ∈ N0,
A ‖ B iff A = B or A and B are competing in P0.

For any χ ∈ P(N0), let ‖χ be the restriction of ‖ to the
set χ (‖χ is defined only for elements of χ).

Lemma 3.6 Since G0 is in normal form, ‖χ is an equiva-
lence relation for any χ ∈ P(N0).

Proof: Reflexivity and symmetry are obvious. Let us prove
transitivity. Let A, B, C ∈ χ and suppose A ‖χ B and
B ‖χ C. If A = B or B = C, we get automatically A ‖χ
C. Otherwise A and B are competing, and B and C are
competing. Therefore there are production rules in P0 :

A→ a[R1], B → a[R2], B → b[R3], C → b[R4]

Since G0 is in normal form, a = b, then A and C are com-
peting, thus A ‖χ C. 2

Notations

• For any regular expression R, N(R) denotes the set of
non-terminals occurring in R.

• For any χ ∈ P(N0) and any A ∈ χ, Âχ denotes the
equivalence class of A w.r.t. relation ‖χ. In other

words, Âχ contains A and the non-terminals of χ that
are competing with A in P0.

• σN(R) is the substitution defined over N(R) by ∀A ∈

N(R), σN(R)(A) = ÂN(R). By extension, σN(R)(R) is
the regular expression obtained from R by replacing
each non-terminal A in R by σN(R)(A).

To make presentation easier, the algorithm below is not
optimized. An optimized version is given in Section 4.

Definition 3.3 (RTG into STTG Transformation) Let
G0 = (N0, T0, S0, P0) be a regular tree grammar in reduced
normal form. We define a new regular tree grammar G =
(N, T, S, P), obtained from G0, according to the following
steps:

1. Let G = (P(N0), T0, S, P) where:

S = {ÂS0 | A ∈ S0},

P = { {A1, . . . , An} → a [σN(R)(R)] |
A1 → a[R1], . . . , An → a[Rn] ∈ P0, R = (R1| · · · |Rn)},
where {A1, . . . , An} indicates all non-empty sets con-
taining competing non-terminals (not only the maxi-
mal ones).

2. Remove unreachable non-terminals and unreachable
rules in G, then return it.

2

Our generation of STTG from RTG is based on grouping
competing non-terminals into equivalence classes. In the
new grammar each non-terminal is a set of non-terminals
of N0. When competing non-terminals which appear in the
same regular expression R in G0 are identified, the set that
contains all of them forms a new non-terminal symbol. The
production rule having this new symbol as its left-hand side
is obtained from those rules containing the competing sym-
bols in G0.

Notice that our algorithm first considers (step 1 in Defi-
nition 3.3) all sets of competing non-terminals on their left-
hand side (and not only maximal sets) to build the produc-
tion rules of G. Thus, at step 1, G may create unreachable
rules (from the start symbols), which are then removed at
step 2.

Example 3.3 Consider a non-STTG grammar G0 having
the following set P0 of productions rules (Image is the start
symbol):
Image → image[Frame1 | Frame2 | Background.Foreground]

Frame1 → frame[Frame1.F rame1 | ǫ]

Frame2 → frame[Frame2.F rame2.F rame2 | ǫ]

Background → back[Frame1]

Foreground → fore[Frame2]

Grammar G0 defines different ways of decomposing an im-
age: recursively into two or three frames or by describing the
background and the foreground separately. Moreover, the
background (resp. the foreground) is described by binary
decompositions (resp. ternary decompositions). In other
words, the language of G0 contains the union of the trees:
image(bin(frame)); image(ter(frame)) and image (back (bin
(frame)), fore (ter (frame))) where bin (resp. ter) denotes
the set of all binary (resp. ternary) trees that contains only
the symbol frame.
The algorithm returns G, which contains the rules below
(the start symbol is {Image}) :

{Image} → image[{Frame1, F rame2} | {Frame1, F rame2}
| {Background}.{Foreground}]

{Background} → back[{Frame1}]
{Foreground} → fore[{Frame2}]
{Frame1, F rame2} → frame[ǫ

| {Frame1, F rame2}.{Frame1, F rame2}
| {Frame1, F rame2}.{Frame1, F rame2}.{Frame1, F rame2}]

{Frame1} → frame[{Frame1}.{Frame1} | ǫ]
{Frame2} → frame[{Frame2}.{Frame2}.{Frame2} | ǫ]

Note that some regular expressions could be simplified. G
is a STTG that generates the union of image(tree(frame))
and image (back (bin (frame)), fore (ter (frame))) where
tree denotes the set of all trees that contain only the symbol
frame and such that each node has 0 or 2 or 3 children. Let
LG(X) denote the language obtained by deriving in G the
non-terminal X. Actually, LG({Frame1, F rame2}) is the
least STTL that contains LG0(Frame1)∪LG0(Frame2). 2

Theorem 3.5 The grammar returned by the algorithm of
Definition 3.3 generates the least STTL that contains L(G0).

The rest of this sub-section consists in proving the previ-
ous theorem. The notations are those of Definition 3.3. The
proof somehow looks like the proof concerning the transfor-
mation of a RTG into a LTG (Sub-section 3.1). However
it is more complicated since in a STTL (and unlike what
happens in a LTL), the confusion between t|p = a(w) and
t′|p′ = a(w′) should be done only if position p in t has been
generated by the same production rule as position p′ in t′,
i.e. the symbols occurring in t and t′ along the paths going
from root to p (resp. p′ in t′) are the same. This is why we
introduce notation path(t, p) to denote these symbols (Def-
inition 3.4).

Lemma 3.7 Let χ ∈ P(N0) and A, B ∈ χ. Then Âχ and

B̂χ are not competing in P .

Proof. By contradiction. Suppose Âχ and B̂χ are com-
peting in P . Then there exist Âχ → a[R1] ∈ P and B̂χ →
a[R2] ∈ P .

From the construction of P , there exist C ∈ Âχ (then C ‖χ
A) and C → a[R′

1] ∈ P0, as well as D ∈ B̂χ (then D ‖χ B)
and D → a[R′

2] ∈ P0.

Therefore C ‖χ D and by transitivity A ‖χ B, then Âχ =

B̂χ, which is impossible since by definition, competing non-
terminals are not equal.

Example 3.4 Given the grammar of Example 3.3, let χ =
{Frame1 ,Frame2 ,Background}. The equivalence classes in-

duced by ‖χ are F̂rame1
χ

= F̂rame2
χ

= {Frame1 ,Frame2};

̂Background
χ

= {Background}; which are non-competing
non-terminals in P .

Lemma 3.8 G is a STTG.

Proof. We first prove that there are no regular expres-
sion in P containing competing non-terminals.
Let ÂS0 , B̂S0 ∈ S. Then A, B ∈ S0, and from previous
lemma ÂS0 and B̂S0 are not competing in P . For any reg-
ular expression R, let ÂN(R), B̂N(R) ∈ N(σN(R)(R)). Then

A, B ∈ N(R), and from previous lemma ÂN(R) and B̂N(R)

are not competing in P .
It rest us to prove that G is in normal form: There is

at most one rule in P whose left-hand-side is {A1, . . . , An},
since for each Ai there is at most one rule in P0 whose left-
hand-side is Ai (because G0 is in normal form). Therefore
G is in normal form.

The next lemma stablishes the basis for proving that the
language generated by G contains the language generated
by G0. It considers the derivation process over G0 at any
step (supposing that this step is represented by a derivation
tree t) and proves that, in this case, at the same derivation
step over G, we can obtain a tree t′ having all the following
properties: (i) the set of positions is the same for both trees
(Pos(t) = Pos(t′)); (ii) positions associated to terminal are
identical in both trees; (iii) if position p is associated to a
non-terminal A in t then position p ∈ Pos(t′) is associated

to the equivalence class Âχ for some χ ∈ P(N0) such that
A ∈ χ.

Lemma 3.9 Let Y ∈ S0. If G0 derives:
t0 =Y → · · · → tn−1 →[pn, An→an[Rn]] tn then G can derive:

t′0 = Ŷ S0 → · · · → t′n−1 →[pn, Ân
χn→an[σN(Rn|···)(Rn|···)]] t′n

s.t. ∀i ∈ {0, . . . , n}, Pos(t′i) = Pos(ti) ∧
∀p ∈ Pos(ti): (ti(p) ∈ T0 =⇒ t′i(p) = ti(p))∧

(ti(p) = A ∈ N0 =⇒ ∃χ ∈ P(N0), A ∈ χ ∧ t′i(p) = Âχ)

Proof. The proof is by induction in the length of the
derivation process.
- n = 0. The property holds because t0(ǫ) = Y and t′0(ǫ) =

Ŷ χ with χ = S0 and Y ∈ χ.

- Induction step. Assume the property for n − 1 ∈ IN. By
hypothesis tn−1 →[pn, An→an[Rn]] tn, then tn−1(pn) = An ∈
N0.
By induction hypothesis, t′n−1(pn) = Ân

χn
for some χn ∈

P(N0), and An ∈ χn.

By construction of P , Ân

χn
→ an[σN(Rn|···)(Rn| · · ·)] ∈ P .

Therefore t′n−1 →[pn, Ân
χn→an[σN(Rn|···)(Rn|···)]] t′n =

t′n−1[pn ← an[σN(Rn|···)(w)]] whereas tn = tn−1[pn ← an(w)]
and w ∈ L(Rn). Consequently
t′n(pn) = an = tn(pn) and ∀i ∈ IN, tn(pn.i) = B ∈ N(Rn) ⊆

N(Rn| · · ·) ∧ t′n(pn.i) = B̂N(Rn|···).

The next example illustrates Lemma 3.9.

Example 3.5 Given the grammar of Example 3.3, consider
trees t, t′ and t′′ in Figure 2 obtained after three steps in
the derivation process: t is a derivation tree for G0 while
t′ and t′′ are for G. Tree t′ is the one that corresponds to
t according to Lemma 3.9. Notice that t′′ is a tree that
can also be derived from G, but it is not in L(G0) (indeed,
since Pos(t) 6= Pos(t′′), tree t′′ does not have the properties
required in Lemma 3.9). 2

The following corollary proves that the language of the
new grammar G, proposed by the algorithm of Definition 3.3,
contains the original language of G0.

Corollary 3.3 L(G0) ⊆ L(G). 2

In the rest of this section we work on proving that L(G) is
the least STTL that contains L(G0). To prove this property,
we first need to prove some properties over STTLs.

We start by considering paths in a tree. We are interested
by paths starting on the root and achieving a given position
p in a tree t. Paths are defined as a sequence of labels. For
example, path(a(b, c(d)), 1) = a.c.

Definition 3.4 (Path in a tree t to a position p) Let t
be a tree and p ∈ Pos(t). We define path(t, p) as being the
word of symbols occurring in t along the branch going from
the root to position p. Formally, path(t, p) is recursively
defined by :

• path(t, ǫ) = t(ǫ)

• path(t, p.i) = path(t, p).t(p.i) where i ∈ IN. 2

Given a STTG G, let us consider the derivation process of
two trees t and t′ belonging to L(G). The following lemma
proves that positions (p in t and p′ in t′) having identical
paths are derived by using the same rules. A consequence
of this lemma (when t′ = t and p′ = p) is the well known
result about the unicity in the way of deriving a given tree
with a STTG [ML02].

Lemma 3.10 Let G′ be a STTG, let t, t′ ∈ L(G′).
Let X →∗

[pi,rulepi
] t be a derivation of t and X ′ →∗

[p′
i
,rule′

p′
i

] t′

be a derivation of t′ by G′ (X, X ′ are start symbols). Then
∀p ∈ Pos(t), ∀p′ ∈ Pos(t′),
(path(t, p) = path(t′, p′) =⇒ rulep = rule′p′)

Proof. Suppose path(t, p) = path(t′, p′). Then we have
length(p) = length(p′). The proof is by induction on length(p).
- If length(p) = 0, then p = p′ = ǫ, and t(ǫ) = t′(ǫ) = a.
Therefore ruleǫ = (X → a[R]) and rule′ǫ = (X ′ → a[R′]).
If X 6= X ′ then two start symbols are competing, which is
impossible since G′ is a STTG.
If X = X ′ and R 6= R′ then G′ is not in normal form, which
contradicts the fact that G′ is a STTG.
Therefore ruleǫ = rule′ǫ, then rulep = rule′p′ .

- Induction step. Suppose p = q.k and p′ = q′.k′ (k, k′ ∈ IN),
and path(t, p) = path(t′, p′).
Then path(t, q) = path(t′, q′). By induction hypothesis,
ruleq = rule′q′ = (X → a[R]). There exits w, w′ ∈ L(R)

s.t. w(k) = A, w′(k′) = A′ and rulep = (A → b[R1]),
rule′p′ = (A′ → b[R′

1]) where b = t(p) = t′(p′).

If A 6= A′ then A ∈ N(R) and A′ ∈ N(R) are competing,
which is impossible since G′ is a STTG.
If A = A′ and R1 6= R′

1, then G′ is not in normal form,
which contradicts the fact that G′ is a STTG.
Consequently rulep = rule′p′ .

In a STTL, it is possible to permute sub-trees that have
the same paths.

ǫ ǫ ǫ

Frame1

0.0

0

0.1

0.0.10.0.0

image

frame

frame Frame1

Frame1

{Frame1, F rame2}

{Frame1, F rame2}

0.0

0

0.1

0.0.10.0.0

image

frame

frame

{Frame1, F rame2}

0.0

0

0.1

0.0.10.0.0

image

frame

frame

{Frame1, F rame2}

0.0.2

{Frame1, F rame2}

{Frame1, F rame2}

{Frame1, F rame2}

Figure 2: Derivation trees t, t′ and t′′ .

Lemma 3.11 Let G′ be a STTG. ∀t, t′ ∈ L(G′), ∀p ∈ Pos(t),
∀p′ ∈ Pos(t′), (path(t, p) = path(t′, p′) =⇒ t′[p′ ← t|p] ∈
L(G′))

Proof. Let us write t|p = a(f) and t′|p′ = a(f ′) (f, f ′

are forests).
From lemma 3.10, t(p) and t′(p′) have been generated by the
same rule, say X → a[R]. Then there exist w, w′ ∈ L(R)
s.t. w →∗

G′ f and w′ →∗
G′ f ′. We have (A is a start symbol)

A→∗
G′ t′[p′ ← a(w′)]→∗

G′ t′[p′ ← a(f ′)] = t′

Therefore A→∗
G′ t′[p′ ← a(w)]→∗

G′ t′[p′ ← a(f)] = t′[p′ ←
t|p] ∈ L(G′).

Example 3.6 Let G be the grammar of Example 3.3. Con-
sider a tree t as shown in Figure 3. The permutation of sub-
trees t|0.0 and t|0.1 gives us a new tree t′. Both t and t′ are
in L(G). 2

ǫǫ

0

image

frame

0.0

0.0.0 0.0.1

frame frame

0.0

0

0.1

0.0.10.0.0

image

frame

0.0.2 0.1.10.1.0

frame frameframe frame frame

frame

frame

frame

0.1

0.0.0

frame

0.1.2

frame frame frame

0.1.0

Figure 3: Trees t and t′ with permuted sub-trees.

Definition 3.5 (Branch derivation) Let G′ be a RTG.
A branch-derivation is a tuple of production rules2 of G′ :
〈A1 → a1[R1], . . . , An → an[Rn]〉 s.t. ∀i ∈ {2, . . . , n}, Ai ∈
N(Ri−1). 2

Notice that if A1 is a start symbol, the branch-derivation
represents the derivation of a branch of a tree3. This branch
contains the terminals a1, . . . , an (the path to the node hav-
ing an as label).

2Indices are written as super-scripts for coherence with the
notations used in lemma 3.12.
3This tree may contain non-terminals.

Now, let us prove properties over the grammar G built by
Definition 3.3.

Lemma 3.12 Consider a branch-derivation in G:
〈{A1

1, . . . , A
1
n1
} → a1σN(R1

1|···|R
1
n1

)[R
1
1| · · · |R

1
n1

], . . . ,

{Ak
1 , . . . , Ak

nk
} → akσN(Rk

1 |···|Rk
nk

)[R
k
1 | · · · |R

k
nk

]〉 and let ik ∈

{1, . . . , nk}.
Then there exists a branch-derivation in G0:
(A1

i1
→ a1[R1

i1
], . . . , Ak

ik
→ ak[Rk

ik
]).

Proof. By induction on k.
- k = 1. There is one step. From Definition 3.3, Ak

ik
→

ak[Rk
ik

] ∈ P0.
- Induction step. By induction hypothesis applied on the

last k − 1 steps, there exists a branch-derivation in G0 :
(A2

i2
→ a2[R2

i2
], . . . , Ak

ik
→ ak[Rk

ik
]).

Moreover {A2
1, . . . , A

2
n2
} ∈ N(σN(R1

1|···|R
1
n1

)(R
1
1| · · · |R

1
n1

)).

Then there exists i1 ∈ {1, . . . , n1} s.t. A2
i2
∈ N(R1

i1
). And

from Definition 3.3, A1
i1
→ a1[R1

i1
] ∈ P0.

The following example illustrates Lemma 3.12 and its proof.

Example 3.7 Let G be the grammar of Example 3.3 and t
the tree of Figure 3. The branch-derivation corresponding to
the node 0.0.0 contains the first and the fourth rules of G pre-
sented in Example 3.3 (notice that the fourth rule appears
three times). Figure 4 illustrates this branch-derivation on
a derivation tree. For instance, the first rule in G is

{Image} → image[{Frame1, F rame2} | {Frame1, F rame2}
| {Background}.{Foreground}] (R1)

and G0 has the production rule

Image → image[Frame1 | Frame2 | Background.Foreground]

Then, the branch-derivation gives us the fourth rule in G,
namely:

{Frame1, F rame2} → frame[ǫ
| {Frame1, F rame2}.{Frame1, F rame2}
| {Frame1, F rame2}.{Frame1, F rame2}.{Frame1, F rame2}].

Notice that the left-hand side {Frame1, F rame2} is a non
terminal in the right-hand side of (R1). Now, consider each
non terminal of G0 forming the non terminal {Frame1,
F rame2} in G. Clearly, Frame1 is on the right-hand side of
the second rule in P0 while Frame2 is on the right-hand side
of the third rule in P0 (as shown in Example 3.3). We can
observe the same situation for all the rules in the branch-
derivation. Thus, as proved in Lemma 3.12, the branch-
derivation in G0 that corresponds to the one considered in
this example is:

〈 Image → image[Frame1 | Frame2 | Background.Foreground]
Frame2 → frame[Frame2.F rame2.F rame2 | ǫ]
Frame2 → frame[Frame2.F rame2.F rame2 | ǫ]
Frame2 → frame[Frame2.F rame2.F rame2 | ǫ] 〉 2

0.0

0

0.1

0.0.10.0.0

image

frame

frame

0.0.2

{Frame1, F rame2}

{Frame1, F rame2}

{Frame1, F rame2}

0.1

{Frame1, F rame2}

frame

ǫ

Figure 4: Derivation tree in G. Grey nodes illustrate
a branch-derivation.

The following lemma somehow expresses what the algo-
rithm of Definition 3.3 does. Given a forest w = (t1, . . . , tn),
recall that w(ǫ) = 〈t1(ǫ), . . . , tn(ǫ)〉, i.e. w(ǫ) is the tuple of
the top symbols of w.

Lemma 3.13 ∀t ∈ L(G), ∀p ∈ Pos(t),
t|p = a(w) =⇒ ∃t′ ∈ L(G0), ∃p

′ ∈ pos(t′), t′|p′ = a(w′) ∧
w′(ǫ) = w(ǫ) ∧ path(t′, p′) = path(t, p). 2

Proof. There exists a branch-derivation in G that de-
rives the position p of t
({A1

1, . . . , A
1
n1
} → a1σN(R1

1|···|R
1
n1

)[R
1
1| · · · |R

1
n1

], . . . ,

{Ak
1 , . . . , Ak

nk
} → akσN(Rk

1 |···|Rk
nk

)[R
k
1 | · · · |R

k
nk

])

and u ∈ L(σN(Rk
1 |···|Rk

nk
)(R

k
1 | · · · |R

k
nk

)) s.t. u→∗
G w.

Then there exists ik s.t. u ∈ L(σN(Rk
1 |···|Rk

nk
)(R

k
ik

)).

Then there exists v ∈ L(Rk
ik

) s.t. u = σN(Rk
1 |···|Rk

nk
)(v).

Note that ∀Y ∈ N0, ∀χ ∈ P(N0), Y and Ŷ χ generate
the same top-symbol. So u and v generate the same top-
symbols. Since G0 is in reduced form, there exists w′ s.t.
v →∗

G0
w′, and then w′(ǫ) = w(ǫ).

From Lemma 3.12, there exists a branch-derivation in G0 :
(A1

i1
→ a1[R1

i1
], . . . , Ak

ik
→ ak[Rk

ik
]).

Since G0 is in reduced form, there exists t′ ∈ LG0(A
1
i1

) (i.e.

t′ is a tree derived from A1
i1

by rules in P0, and t′ con-
tains only terminals), and there exists p′ ∈ Pos(t′) s.t. this
branch-derivation derives in G0 the position p′ of t′.
Since v ∈ L(Rk

ik
) and v →∗

G0
w′, one can even choose t′ s.t.

t′|p′ = ak(w′). Since ak = a, we have t′|p′ = a(w′).

On the other hand, path(t′, p′) = a1 . . . ak = path(t, p).
Finally, since t ∈ L(G), {A1

1, . . . , A
1
n1
} ∈ S. Since A1

i1
∈

{A1
1, . . . , A

1
n1
}, from Definition 3.3 we have A1

i1
∈ S0. There-

fore t′ ∈ L(G0).

Example 3.8 Let G be the grammar of Example 3.3 and t
the tree of Figure 3. Let p = 0.
Using the notations of Lemma 3.13, t|0 = frame(w) where
w = 〈frame(frame, frame, frame), frame(frame, frame)〉.
t 6∈ L(G0), however
t′ = image(frame(frame(frame, frame), frame)) ∈ L(G0)

and (with p′ = p = 0) t′|p′ = frame(w′) where w′ =
〈frame(frame, frame), frame〉. Thus w′(ǫ) = w(ǫ).
Note that some others t′ ∈ L(G0) suit as well.

We end this section by proving that the grammar obtained
by our algorithm generates the least STTL which contains
L(G0).

Lemma 3.14 Let L′ be a STTL s.t. L(G0) ⊆ L′. Let t ∈
L(G). Then, ∀p ∈ Pos(t), ∃t′ ∈ L′, ∃p′ ∈ pos(t′), (t′|p′ =
t|p ∧ path(t′, p′) = path(t, p)). 2

Proof. We define the relation = over Pos(t) by p =

q ⇐⇒ ∃i ∈ IN, p.i = q. Since Pos(t) is finite, = is noethe-
rian. The proof is by noetherian induction on =.
Let p ∈ pos(t). Let us write t|p = a(w).
From Lemma 3.13, we know that:
∃t′ ∈ L(G0), ∃p

′ ∈ pos(t′), t′|p′ = a(w′) ∧ w′(ǫ) = w(ǫ)
∧path(t′, p′) = path(t, p). Thus, t|p = a(a1(w1), . . . , an(wn))
and t′|p′ = a(a1(w

′
1), . . . , an(w′

n)).

Now let p = p.1. By induction hypothesis:
∃t′1 ∈ L′, ∃p′

1 ∈ pos(t′1), t
′
1|p′

1
= t|p.1 = a1(w1) ∧path(t′1, p

′
1) =

path(t, p.1). Notice that t′1 ∈ L′, t′ ∈ L(G0) ⊆ L′, and L′ is a
STTL. Moreover path(t′1, p

′
1) = path(t, p.1) = path(t, p).a1 =

path(t′, p′).a1 = path(t′, p′.1).
As path(t′1, p

′
1) = path(t′, p′.1), from Lemma 3.11 applied on

t′1 and t′, we get t′[p′.1← t′1|p′
1
] ∈ L′.

However (t′[p′.1← t′1|p′
1
])|p′ = a(a1(w1), a2(w

′
2), . . . , an(w′

n))

and path(t′[p′.1← t′1|p′
1
], p′) = path(t′, p′) = path(t, p).

By applying the same reasoning for positions p.2, . . . , p.n,
we get a tree t′′ ∈ L′ s.t. t′′|p′ = t|p and path(t′′, p′) =
path(t, p).

Corollary 3.4 (when p = ǫ, and then p′ = ǫ)
Let L′ be a STTL s.t. L′ ⊇ L(G0). Then L(G) ⊆ L′.

4. IMPLEMENTATION
In Section 3, Definition 3.3 presents an algorithm to evolve

a STTG. The direct implementation of this algorithm leads
to an exponential time and space behavior. While that def-
inition eases the presentation, its implementation needs to
be efficient, in order to be useful in practice. In this section,
we describe a new version of the same algorithm, which is
suited for direct implementation. It is straightforward to
see that this algorithm generates the same result as that
of Definition 3.3. The next algorithm keeps a set of un-
processed non-terminals which are accessible from the start
symbol (this set is represented by U in Definition 4.1). In
this way we just compute those non-terminal symbols which
are accessible from the start symbols of the grammar.

Definition 4.1 (RTG into STTG Transformation) Let
G0 = (N0, T0, S0, P0) be (general) regular tree grammar. We
define a new single-type tree grammar G = (N, T, S, P), ob-
tained from G0, according to the following steps:

1. Let S := {ÂS0 | A ∈ S0};

2. Let G := (N := ∅, T := T0, S, P := ∅);

3. Let U := S;

4. While U 6= ∅ do:

(a) Choose {A1, . . . , An} ∈ U ;

(b) Let U := U − {{A1, . . . , An}};

(c) Let N := N ∪ {{A1, . . . , An}};

(d) Let P := P ∪ { {A1, . . . , An} → a σN(R)(R) |
A1 → a[R1], . . . , An → a[Rn] ∈ P0,
R = (R1| · · · |Rn)};

(e) Let U := (U ∪ {ÂN(R)|A ∈ N(R)})−N ;

End While

5. Return G.

2

In Definition 4.1, we start by computing the equivalence
classes of the start symbols of G0 and we insert them to
the set U , containing those non-terminals which are not yet
processed. At each iteration of the while loop, an element
of U is chosen as the new non-terminal for which a new
production rule is going to be created. This non-terminal is
added to the set N . At each step the set U is updated by
adding to it those non-terminals appearing on the right-hand
side of the new production rule, filtering the non-terminals
already processed.

Our algorithms are designed to be used in a scenario where
a (XML) data administrator needs to change the type of
their data. The schema evolution is triggered by the arrival
of new documents that are not validated by the existing
schema. In this case, the administrator will build a simple
schema from the new data and add the new rules to those
of the existing type. The tree grammar resulting from this
operation will not be a valid schema, but it can be seen as an
instance of a general regular tree grammar. This grammar
will be the input to our algorithms.

We have a prototype tool that implements the proposed
algorithms. The purpose of our prototype is to serve as a
proof of concept. It was implemented using the ASF+SDF
Meta-Environment [vdBHdJ+01] and it is about 1000 lines
of code. The grammars presented in the Examples 1.1 and 3.3
were obtained by our prototype. Despite its purpose as a
proof of concept, our implementation runs quite fast, since
schemas are generally not very large.

5. RELATED WORK
As discussed in [Flo05], traditional tools require the data

schema to be developed prior to the creation of the data to-
gether with an agreement of the involved communities over
a the structure and a vocabulary. Unfortunately, in sev-
eral modern applications the schema often changes as the
information grows and different people, organisations and
communities have inherently different ways of modeling the
same information. Complete elimination the schema does
not seem to be a solution since it assigns meaning to the
data and thus helps automatic data search, comparison and
processing. To find a balance, [Flo05] considers that we need
to find how to automatically map schemas and vocabulary
to each other and how to rewrite code written for a certain
schema into code written for another schema describing the
same domain.

Most existing work in the area of XML schema evolu-
tion is placed in the second proposed solution. For instance,

in [GMR05] a set of schema update primitives is proposed
and the impact of schema updates over XML documents is
analysed. The basic idea is to keep track of the updates
made to the schema and to identify the portions of the
schema that require validation. The document portions af-
fected by those updates are then re-validated (and changed,
if necessary).

Our approach aims to be included in the first proposed so-
lution of [Flo05] since it allows the conservative evolution of
schemas. Indeed, our method extends the work in [BDH+04,
dHM07, BDFM09] which considers the conservative evolu-
tion of LTG in a local perspective, i.e. by proposing the evo-
lution of regular expressions. Contrary to this, the present
paper proposes schema evolution in a global perspective,
dealing with the tree grammars as a whole. Moreover, we
also consider the evolution of STTG.

Our proposal is inspired in some grammar inference meth-
ods (see [Ang92, Sak97] for surveys) that returns a tree
grammar or a tree automaton from a set of positive exam-
ples. For instance, in [BM03] we find a method for learning
a subclass of (ranked) regular tree languages. It is based
on the construction of a tree automaton whose states are
equivalence classes. In [BM06], the same authors establish
that the whole set of (ranked) RTL is efficiently identifi-
able from membership queries and positive examples. Our
method deals with unranked trees, starts from a given RTG
G0 (representing a set of positive examples) and finds the
least LTG or STTG that contains L(G0). As we consider a
initial tree grammar we are not exactly inserted in the learn-
ing domain, but their methods inspire us and give us tools
to solve our problem, namely, the evolution of a original
schema (and not the extraction of a new schema).

Several papers (such as in [GGR+00, Chi01, BNST06,
BNV07]) deal with XML schema inference. An algorithm
for extracting intuitive DTDs from XML document is pro-
posed in [GGR+00]. In [Chi01] XML schemas are modelled
as extended context free grammars and the author proposes
an extraction algorithm, based on grammar inference, which
merges non terminals with similar context. The initial gram-
mar comes from a set of non terminals and production rules
as contents of document nodes. In [BNST06] DTD inference
consists in an inference of regular expressions from positive
examples. As the seminal result from Gold [Gol67] shows
that the class of all regular expressions cannot be learnt
from positive examples, [BNST06] identifies classes of reg-
ular expressions that can be efficiently learnt. Their basic
method consists in inferring a single occurrence automaton
called SOA from a finite set of strings and to transform it to
a SORE (regular expressions in which every element name
can occur at most once). Their method is extended to deal
with XMLSchema (XSD) in [BNV07]. They introduce the
concept of single occurrence XSD, noted by SOXSD, as an
XSD containing only SOREs. In this context, they propose
a method to infer k-local (a XSD having its content models
depending only on labels up to k ancestor) SOXDs.

6. CONCLUSION
This paper deals with type evolution of semi-structured

data. Our algorithms give schemas generating the minimal
tree languages containing the original type. Our goal is to
allow a given schema to evolve encompassing the needs of the
application using it. Therefore, we always consider an initial
existing type that should evolve and not the construction of

a schema from scratch.
The paper includes all proofs concerning the correction

and the minimality of the generated grammars. A proto-
type has been implemented in order to show the feasibil-
ity of our approach. This work complements the proposals
in [BDFM09, dHM07], since we consider not only DTD but
also XSD schema, and adopts a global approach where all
the tree grammar is taken into account as a whole.

Some aspects of our tools can be improved, in particular
the conciseness of the regular expressions appearing in the
generated grammars. We believe that techniques used in the
DTD extraction domain, such as [GGR+00], can be used
in this context. We are considering the comparison of our
generated LTGs (or DTDs) with hose obtained by schema
extractors.

7. REFERENCES
[Ang92] Dana Angluin. Computational learning

theory: survey and selected bibliography. In
STOC ’92: Proceedings of the twenty-fourth
annual ACM symposium on Theory of
computing, pages 351–369, New York, NY,
USA, 1992. ACM.

[BDFM09] Béatrice Bouchou, Denio Duarte,
Mirian Halfeld Ferrari, and Martin A.
Musicante. Extending xml types using
updates. In Dr. Hung, editor, Services and
Business Computing Solutions with XML:
Applications for Quality Management and
Best Processes, pages 1–21. IGI Global,
2009.

[BDH+04] B. Bouchou, D. Duarte, M. Halfeld Ferrari,
D. Laurent, and M. A. Musicante. Schema
evolution for XML: A consistency-preserving
approach. In Mathematical Foundations of
Computer Science (MFCS), number 3153 in
Lecture Notes in Computer Science, pages
876–888. Springer-Verlag, August 2004.

[BM03] Jérôme Besombes and Jean-Yves Marion.
Apprentissage des langages réguliers d’arbres
et applications. Traitement automatique de
langues, 44(1):121–153, Jul 2003.

[BM06] Jérôme Besombes and Jean-Yves Marion.
Learning tree languages from positive
examples and membership queries.
Theoretical Computer Science, 2006.

[BMW01] A. Brüggeman-Klein, M. Murata, and
D. Wood. Regular tree and regular hedge
languages over non-ranked alphabets.
Technical Report HKUST TCSC 2001 05,
Hong Kong Univ. of Science and Technology
Computer Science Center (available at
http://www.cs.ust.hk/tcsc/RR/2001Â-

05.ps.gz),
2001.

[BNST06] Geert Jan Bex, Frank Neven, Thomas
Schwentick, and Karl Tuyls. Inference of
concise DTDs from XML data. In VLDB,
pages 115–126, 2006.

[BNV07] Geert Jan Bex, Frank Neven, and Stijn
Vansummeren. Inferring xml schema
definitions from xml data. In VLDB, pages

998–1009, 2007.

[CDG+02] H. Comon, M. Dauchet, R. Gilleron,
F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and
Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997
(new version 2002).

[Chi01] B. Chidloviskii. Schema extraction from
XMLS data: A grammatical inference
approach. 2001.

[dHM07] Robson da Luz, Mı́rian Halfeld Ferrari, and
Martin A. Musicante. Regular expression
transformations to extend regular languages
(with application to a datalog XML schema
validator). Journal of Algorithms (Special
Issue), 62(3-4):148–167, 2007.

[Flo05] Daniela Florescu. Managing semi-structured
data. ACM Queue, 3(8):18–24, 2005.

[GGR+00] Minos N. Garofalakis, Aristides Gionis,
Rajeev Rastogi, S. Seshadri, and Kyuseok
Shim. Xtract: A system for extracting
document type descriptors from xml
documents. In SIGMOD Conference, pages
165–176, 2000.

[GMR05] Giovanna Guerrini, Marco Mesiti, and
Daniele Rossi. Impact of XML schema
evolution on valid documents. In WIDM’05:
Proceedings of the 7th annual ACM
international workshop on Web information
and data management, pages 39–44, New
York, NY, USA, 2005. ACM Press.

[Gol67] E. Mark Gold. Language identification in
the limit. Information and Control,
10(5):447–474, 1967.

[KH08] John Kavanagh and Wendy Hall, editors.
Grand Challenges in Computing Research
Conference. UK Computing Research
Committee, 2008. http://www.ukcrc.org.uk
/grand_challenges/news/gccr08final.pdf.

[ML02] Murali Mani and Dongwon Lee. Xml to
relational conversion using theory of regular.
In In VLDB Workshop on EEXTT, pages
81–103. Springer, 2002.

[MLMK05] Makoto Murata, Dongwon Lee, Murali
Mani, and Kohsuke Kawaguchi. Taxonomy
of XML schema languages using formal
language theory. ACM Trans. Inter. Tech.,
5(4):660–704, 2005.

[Sak97] Yasubumi Sakakibara. Recent advances of
grammatical inference. Theor. Comput. Sci.,
185(1):15–45, 1997.

[vdBHdJ+01] Mark van den Brand, Jan Heering, Hayco
de Jong, Merijn de Jonge, Tobias Kuipers,
Paul Klint, Leon Moonen, Pieter Olivier,
Jeroen Scheerder, Jurgen Vinju, Eelco
Visser, and Joost Visser. The asf+sdf
meta-environment: a component-based
language development environment.
Electronic Notes in Theoretical Computer
Science, 44(2), 2001.

