
Functional Term

Rewriting Systems

Yohan Boichut, Jean-Michel Couvreur,

Duy-Tung Nguyen

LIFO, Université d’Orléans

Rapport no RR-2010-02

2

Functional Term Rewriting Systems

Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

Université d’Orléans,
Laboratoire d’Informatique Fondamentale d’Orléans,

F-45067 ORLEANS Cedex 2, France
{yohan.boichut,jean-michel.couvreur,duy.nguyen}@univ-orleans.fr

http://www.univ-orleans.fr/lifo/

Abstract. This reseach report proposes the theoretical foundations of
a new formal tool for symbolic verification of finite systems. Some ap-
proaches reduce the problem of system verification to the reachability
problem in term rewriting systems (TRSs). In our approach, states are
encoded by terms in a BDD-like manner and the transition relation is rep-
resented by a new rewriting relation so called Functional Term Rewriting
Systems (FTRSs). First, we show that FTRSs are as expressive as TRSs.
Then, we focus on a subclass of FTRSs, so called Elementary Functional
Term Rewriting Systems (EFTRSs), and we show that EFTRSs preserve
the FTRSs expressiveness. The main advantage of EFTRSs is that they
are well adapted for acceleration techniques usually used in saturation
algorithms on BDD-like data structures. Our experiments show that for
well-known protocols (e.g. Tree Arbiter, Percolate, Round Robin Mutex
protocols,...) our tool is not only better than other rewriting tools such
as Timbuk or Maude, but also competitive with other model-checkers
such as SPIN, NuSMV or SMART. Moreover, it can also be applied to
model-checking invariant properties which are a particular subclass of
linear temporal logic formula (LTL).

1 Introduction

In the earliest 90s, in order to show their product (complex electronic compo-
nents) secure, electronics industry integrates some techniques coming from the
world of formal methods: the Binary Decision Diagrams (BDDs) [6, 7]. BDDs
are structures coding boolean functions.

They can be considered as trees where nodes specify the choice of a value
for the variable corresponding to this node. A total ordered relation on variables
ensures the existence of a canonical BDD representation of a given boolean
function. Some reduction techniques and data structures well adapted for data
sharing leads to very efficient implementation in practice [42, 36]. Considering
a state or a configuration of a system as a BDD and the transition relation as
operations on BDDs, the techniques mentioned above have made the exhaustive
exploration, verification of huge systems (sometimes composed of more than 1
Billion states [42, 36]) possible.

2 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

Moreover, as shown in [8], the BDDs are expressive enough for handling a
large class of finite systems. In [38], these structures have even been shown to
be adapted for some classes of dynamic systems.

The key point of these data structures being the number of variables, some
people work on BDD-like data structures [43, 12]. Some others have worked in
order to make the application domain of BDDs larger : [3, 34, 33, 39, 44, 40].

In this paper, we aim at proposing a technique mixing acceleration techniques
commonly used in the BDD world for saturation [14], and rewriting techniques.
Indeed, given a system, its configurations are encoded by terms and the transition
relation is described by a functional term rewriting system (FTRS). FTRSs are
shown to be as expressive as term rewriting systems (TRSs). We also focus
on a subclass of FTRSs so called elementary functional term rewriting systems
(EFTRSs). EFTRSs preserve the expressiveness of FTRS and are well adapted
to acceleration techniques.

The remainder of the paper is structured as follows. Section 2 recalls the
background on terms, TRSs and rewriting. Section 3 illustrates how systems are
specified by terms and how the verification of systems can be performed using
rewriting techniques. Section 4 and 5 introduce FTRS and EFTRS, and present
our main results concerning their expressiveness, i.e., FTRS and EFTRS are as
expressive as TRS. Finally, Section 6 shows how the system described in Section
3 is specified in terms of EFTRS. This section also describes how model-checking
can be performed using FTRS/EFTRS and promising results in the field of state
space exploration and model-checking are exhibited. For well-known protocols
(e.g. Tree Arbiter, Percolate, Round Robin Mutex protocols,. . .) our tool is not
only better than other rewriting tools such as Timbuk [31, 27] or Maude [19],
but also competitive with other model-checkers such as SPIN [35], NuSMV [17]
or SMART [10].

2 Preliminaries on Terms and TRSs

Comprehensive surveys can be found in [24, 2] for term rewriting systems.
For now, we focus on terms composed of binary functional symbols and of

the constant ⊥. We denote by Fbin this set of symbols. Let X be a countable
set of variables. T (Fbin,X) denotes the set of terms built on those symbols
and containing variables, and T (Fbin) denotes the set of ground terms (terms
without variables). A substitution is a function σ from X into T (Fbin,X), which
can be extended uniquely to an endomorphism of T (Fbin,X). A position p for
a term t is a word over N. The empty sequence ǫ denotes the top-most position.
The set Pos(t) of positions of a term t is inductively defined by Pos(f(t1, t2)) =
{ǫ}∪{1.p | and p ∈ Pos(t1)}∪{2.p | and p ∈ Pos(t2)}, and Pos(t) = {ǫ} when
t ∈ X or t =⊥. Let � be a partial order on positions. Let p1 and p2 be two words
of N

∗, we say that p1 � p2 if there exists ω ∈ N
∗ such that p1 = p2.ω.

If p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p denotes
the term obtained by replacement of the subterm t|p at position p by the term s.
We also denote by t(p) the symbol occurring in t at position p. Given a term

Functional Term Rewriting Systems 3

t ∈ T (Fbin,X) and A a set of symbols, let PosA(t) = {p ∈ Pos(t) | t(p) ∈ A}.
Thus PosF(t) is the set of positions of t, at each of which a function symbol
appears. The set of frontier positions of a term t, denoted by FPos(t), is defined
as follows: FPos(t) = {p ∈ Pos(t) | p.1 /∈ Pos(t)}. The set of variables occurring
a term t ∈ T (F ,X) is denoted by Var(t). More formally, Var(t) = {t|p | p ∈
PosX (t)}.

A TRS R is a set of rewrite rules (l, r) ∈ T (Fbin,X) × T (Fbin,X) , also
denoted by l → r where Var(r) ⊆ Var(l) and l 6∈ X . The TRS R induces
a rewriting relation →R on terms whose reflexive transitive closure is written
→∗

R. More precisely, we say that t →R t′ if there exist a position p of Pos(t),
a rule l → r ∈ R and a substitution σ : X 7→ T (F) such that t|p = lσ and
t′ = t[rσ]p.

The set of R-descendants of a set of terms E ⊆ T (Fbin) is R∗(E) = {s ∈
T (Fbin) | t →∗

R s ∧ t ∈ E}.

3 Verification of Systems using Rewriting

This section shows how the tree arbiter protocol (TAP), a protocol solving mu-
tual exclusion problem for accessing to a shared resource, can be formalised in
terms and TRSs. We also describe how a safety property concerning this protocol
can be formulated in a reachability problem.

3.1 Presentation of the Tree Arbiter Protocol (TAP)

As mentioned above, the TAP is an asynchronous circuit that solves the mu-
tual exclusion problem by building a tree of arbiter cells. This circuit has been
introduced by Dill [25] and has been handled as a problem of asynchronous
model-checking in [18]. Recently, a version of the TAP has been tackled using a
technique of tree regular model-checking in [1].

The circuit works by performing elimination rounds: an arbiter cell arbitrates
between its two children. The leaves of the tree are processors, which may want
to access asynchronously a shared resource. The N processors at the lowest level
are arbitrated by N/2 cells. The winners of that level are arbitrated by the next
level, and so forth.

3.2 Specification of the TAP in Terms and TRS

We use the binary symbols i, r, t and b respectively for the specification of states
idle, requesting, token and token below where:

– state idle means that all children of a cell (or a processor) do(es) not do
anything.

– state requesting means that this processor (or one of children of this cell)
wants to access the shared resource.

– state token means that this processor (or this cell) has been granted the
shared resource.

4 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

– state token below means that the shared resource (or the token) is somewhere
in one of subtree below this node.

Given an initial total idle state for a model of 4 processors u = t(i(i(⊥, ⊥), i(⊥, ⊥)), i(i(⊥,⊥), i(⊥, ⊥)))

where all processors are idle and the root cell holds the token (See Figure 1a).
Requests are propagated upwards until the root, holding the token, is reached:

i(x, r(y, z)) → r(x, r(y, z)) (1)

i(r(x, y), z) → r(r(x, y), z) (2)

i(⊥, ⊥) → r(⊥,⊥) (3)

By using only these requests rules, the system may reach a total requesting
state v = t(r(r(⊥,⊥), r(⊥,⊥)), r(r(⊥,⊥), r(⊥,⊥))) (See Figure 1b).

The root cell grants the resource to at most one child, and the grant propa-
gates downward to one of the processors. If both children of a cell are requesting
the resource, then the cell chooses one of them non-deterministically:

t(x, r(y, z)) → b(x, t(y, z)) (4)

t(r(x, y), z) → b(t(x, y), z) (5)

Consequently, in such a way, only a processor having requested the resource
will get it. When the processor is done with the resource, it sends a release
request that is propagated upwards.

b(x, t(⊥,⊥)) → t(x, i(⊥, ⊥)) (6)

b(t(⊥,⊥), z) → t(i(⊥, ⊥), z) (7)

Along the come-back to the root process of the token, three behaviours are
possible for a cell:

– If all of the children of such a cell are in the idle state then this cell gives
the token to the next higher neighboured cell and goes also to the idle state.

b(x, t(i(y, z), i(u, v))) → t(x, i(i(y, z), i(u, v))) (8)

b(t(i(x, y), i(u, v)), z) → t(i(i(x, y), i(u, v)), z) (9)

– If one of the children of such a cell has requested the resource then:
• either the next state of the cell will be the request one and the token

goes to the next higher neighboured cell using following rules

b(x, t(r(y, z), i(u, v))) → t(x, r(r(y, z), i(u, v))) (10)

b(x, t(i(y, z), r(u, v))) → t(x, r(i(y, z), r(u, v))) (11)

b(t(r(x, y), i(u, v)), z) → t(r(r(x, y), i(u, v)), z) (12)

b(t(i(x, y), r(u, v)), z) → t(r(i(x, y), r(u, v)), z) (13)

• or the next state of the cell will be the token below one because the cell
has chosen to give the token to one of its requesting children using rules
(4) or (5).

Functional Term Rewriting Systems 5

3.3 Verification using Reachability Analysis

An interesting safety property φ to check on the TAP is that there is always only
one token circulating in the hierarchy tree. So, one can formulated this property
as a predicate to check on each reachable configuration.

Considering the symbols ⊤ and ⊥ as respectively the true and false values,
let OneToken be the predicate defined as follows for a term α ∈ T (Fbin):

OneToken(α) =

⊤ if ∀p, p′Pos(α),
α(p) = α(p′) = t ⇒ p = p′

⊥ otherwise.

Consequently,

TAP satisfies φ ⇔ ∀α ∈ R∗({u}), OneToken = ⊤,

with u is the term t(i(i(⊥, ⊥), i(⊥,⊥)), i(i(⊥, ⊥), i(⊥,⊥))).

Fig. 1: a) total idle global state u and b) total requesting global state v

4 Functional Term Rewriting Systems

In this section, we propose a new formalism, so called Functional Term Rewriting
Systems (FTRSs) being able to simulate classical TRS. The motivations of this
new formalism are on the one hand that to make the control of the rewriting
process easier and completly independent of the implementation of the rewriting
engine, and on the other hand to offer a formalism well adapted to acceleration
techniques commonly used in saturation algorithm on BDDs.

We first introduce new functional symbols so called non-terminals. We denote
by FNT the set of non-terminal symbols such that FNT ∩Fbin = ∅ and for each
F ∈ FNT , the arity of F is one. To make the distinction between functional
symbols easier, from now, only functional symbols of FNT will be written in
capital letters. A functional TRS Rλ is a set of rules of the form F (t) → α
where F ∈ FNT , t ∈ T (Fbin,X) and α ∈ T (Fbin∪FNT ,X). A FTRS Rλ induces
a functional rewriting relation →Rλ

on terms in T (Fbin ∪ FNT): u →Rλ
v iff

there exist a position p of u and a rule F (t) → α in Rλ such that there exists a
substitution σ : X → T (Fbin) with u|p = F (t)σ and v = u[ασ]p.

6 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

We also denote by →∗
Rλ

the transitive closure of the functional rewriting
relation →Rλ

. The following definition describes the set of terms of T (Fbin)
reachable by function rewriting from a term of T (Fbin ∪ FNT).

Definition 1 (R∗
λ). Let Rλ be a FTRS and E ⊆ T (Fbin ∪ FNT) such that

E ∩ T (Fbin) = ∅. The set of reachable terms of T (Fbin) from E is denoted by
R∗

λ(E) and is defined as follows:

R∗
λ(E) = {β ∈ T (Fbin)|α →∗

Rλ
β ∧ α ∈ E}.

Now, let us compare the expressiveness of FTRSs and TRSs. Proposition 1
shows that a rewrite step using R can be simulated with a FTRS Rλ.

Proposition 1. Let R be a TRS over T (Fbin,X) × T (Fbin,X), α ∈ T (Fbin),
β ∈ T (Fbin) and l → r ∈ R. Let Rλ be the FTRS such that Rλ = {Fl→r(a(x, y)) →
a(Fl→r(x), y), Fl→r(a(x, y)) → a(x, Fl→r(y)) | a ∈ Fbin}∪{Fl→r(l) → r}. Thus,

α →{l→r} β ⇔ Fl→r(α) →∗
Rλ

β.

Proof. – α →{l→r} β ⇒ Fl→r(α) →∗
Rλ

β: By Definition, there exist a posi-
tion p of α and a substitution σ : X → T (Fbin) such that α|p = lσ and
β = α[rσ]p. Let α′ be the term constructed as follows: α′ = α[Fl→r(α|p)]p.
Clearly, using only rules of the form Fl→r(a(x, y)) → a(Fl→r(x), y) and
Fl→r(a(x, y)) → a(x, Fl→r(y)), one has

Fl→r(α) →∗
Rλ

α′. (14)

By hypothesis, there exist a substitution σ : X → T (Fbin) such that α|p =
lσ. Consequently, one has Fl→r(α|p) = Fl→r(lσ). Thus, Fl→r(α|p) = Fl→r(l)σ.
By construction of α′, there exist a rule of Rλ, i.e. Fl→r(l) → r, a substitution
σ : X → T (Fbin) and a position p such that α′|p = Fl→r(l)σ. Consequently,
one can construct the term α′[rσ] which is equal to β by construction of α′.
So, one has

α′ →Rλ
β. (15)

So, using (14) and (15), one can deduce that Fl→r(α) →∗
Rλ

β. Consequently,
α →{l→r} β ⇒ Fl→r(α) →∗

Rλ
β.

– α →{l→r} β ⇐ Fl→r(α) →∗
Rλ

β: Let R′
λ be the FTRS such that R′

λ = Rλ \
{Fl→r(l) → r |l → r ∈ R}.. Trivially, one can show that R′∗

λ ({Fl→r(α)}) = ∅.
Consequently, it implies that, for obtaining the term β ∈ R∗

λ({Fl→r(α)}),
the rule Fl→r(l) → r has to be applied at least one time. Actually, we
claim that this rule is applied exactly one times. Indeed, let us proceed by
induction on the rewriting path leading us from Fl→r(α) to β i.e. there
exist t0, . . . , tn ∈ T (Fbin ∪ FNT) such that t0 = Fl→r(α) →Rλ

t1 →Rλ

. . . tn−1 →Rλ
tn = β. We first show that each ti has one position p at

most such that ti(p) = Fl→r. Let Pn be the following proposition: for all
p, p′ ∈ Pos(tn), if tn(p) = tn(p′) = Fl→r then p = p′.

Functional Term Rewriting Systems 7

• P0: Since t0 = Fl→r(α) and α ∈ T (Fbin), ε is the unique position of t0
where Fl→r occurs. So, P0 is true.

• Pn ⇒ Pn+1: Suppose Pn to be true. Consequently, tn satisfies the prop-
erty: p, p′ ∈ Pos(tn), if tn(p) = tn(p′) = Fl→r . Moreover, since tn →Rλ

tn+1, there exists necessarily a unique position p of tn such that tn(p) =
Fl→r . Let us proceed by rewriting case analysis:* Fl→r(a(x, y)) → a(Fl→r(x), y) is applied at position p: So there exists

a substitution σ : X → T (Fbin) such that tn|p = Fl→r(a(x, y))σ =
Fl→r(a(σ(x), σ(y))). Consequently, tn+1 = tn[a(Fl→r(x), y)σ] = tn[a(Fl→r(σ(x)), σ(y))].
Since σ(x), σ(y) ∈ T (Fbin) and ∀p′ ∈ Pos(tn) such that p 6= p′,
tn(p′) /∈ FNT , tn+1 satisfies also ∀p, p′ ∈ Pos(tn+1), if tn+1(p) =
tn+1(p

′) = Fl→r . More precisely, the unique position p′ of tn+1 such
that tn+1(p) = Fl→r is p′ = p.1.* Fl→r(a(x, y)) → a(x), Fl→r(y) is applied at position p: the proof case
is similar to the one above.* Fl→r(l) → r is applied at position p: So there exists a substitution σ :
X → T (Fbin) such that tn|p = Fl→r(l)σ = Fl→r(lσ). Consequently,
tn+1 = tn[rσ]. Since r ∈ T (Fbin,X) and σ : X → T (Fbin), rσ is
thus a term of T (Fbin) and tn+1 ∈ T (Fbin). So, tn+1 satisfies the
property: ∀p, p′ ∈ Pos(tn+1), if tn+1(p) = tn+1(p

′) = Fl→r.
We have just shown that each term within the rewriting path contains exactly
one symbol Fl→r and as soon as the rule Fl→r(l) → r is applied, a term of
T (Fbin) is obtained. So the FTRS Rλ cannot be applied anymore. Proving
the claim.
So, the rewriting path leading us from Fl→r(α) to β is of the following form:
t0 = Fl→r(α) →Rλ\{Fl→r(l)→r} t1 →Rλ\{Fl→r(l)→r} . . . tn−1 →{F (l)→r} tn =
β. With an induction very close to the previous one, one can show that
there exist a position p of α and a substitution σ : X → T (Fbin) such that
tn−1 = α[F (l)σ]p. One can show also that tn−1|p.1 = α|p. Consequently,

lσ = α|p. (16)

Moreover, tn = β = tn−1[rσ]p. Thus,

β = α[rσ]p. (17)

By construction of Rλ, l → r ∈ R. So, according to (16) and (17), there
exist a rule l → r ∈ R, a position p ∈ Pos(α) and a substitution σ : X →
T (Fbin) such that lσ = α|p and β = α[rσ]p. Consequently, α →{l→r} β. To
summarize, we have shown that α →{l→r} β ⇐ Fl→r(α) →∗

Rλ
β, concluding

the proof.

Thus, the main result of this section is given in Theorem 1 i.e. for any TRS
R, one can build a FTRS Rλ simulating R.

Theorem 1. Let R be a TRS over T (Fbin,X)×T (Fbin,X), E ⊆ T (Fbin). Let
l → r be a rule of R and Rl→r be the FTRS such that Rl→r = {Fl→r(a(x, y)) →

8 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

a(Fl→r(x), y), Fl→r(a(x, y)) → a(x, Fl→r(y)) | a ∈ Fbin} ∪ {Fl→r(l) → r}. Let
RFP be the FTRS such that RFP = {G(x) → G(Fl→r(x)) | l → r ∈ R} ∪
{G(x) → x}. Let Rλ be the FTRS such that Rλ =

⋃

l→r∈R Rl→r ∪RFP . Thus,

R∗(E) = R∗
λ(E′)

with E′ = {G(t)|t ∈ E}.

Proof. – R∗(E) ⊆ R∗
λ(E′): Let α ∈ E and β ∈ R∗({α}). By Definition of

R∗, there exist l1 → r1, . . . ln → rn ∈ R and t0, . . . , tnsuch that α →{l0→r0}

t0 →{l1→r1} . . . →{ln−1→rn−1} tn−1 →{ln→rn} tn = β. The FTRS Rl0→r0 ful-
fills the expected conditions specified in Proposition 1. Consequently, accord-
ing to Proposition 1, t0 →l0→r0 t1 implies that Fl0→r0(t0) →

∗
Rl0→r0

t1. Unfor-

tunately, Fl0→r0(t0) 6∈ E′. However, t0 = α and α ∈ E. So, G(t0) ∈ E′. Triv-
ially, G(t0) →G(x)→G(Fl0→r0

(x)) G(Fl0→r0(α)). Consequently, G(t0) →∗
Rλ

G(t1) →G(x)→x t1 implies that t1 ∈ R∗
λ(E′). By generalizing the process, one

obtains the following rewriting path: G(t0) →∗
Rλ

G(t1) . . . →∗
Rλ

G(tn) →G(x)→x

tn = β. Consequently, β ∈ R∗
λ(E′).

So, one can deduce that

R∗({α}) ⊆ R∗
λ({G(α)}). (18)

– R∗
λ(E′) ⊆ R∗(E): Let us study R∗

λ({G(α)}).
• Suppose that one rule of the form G(x) → G(Fl→r(x)) is applied. So,

G(α) →G(x)→G(Fl→r(x)) G(Fl→r(α))). Note that G(x) → G(Fl→r(x))
cannot be applied as long as the symbol Fl→r occurs. If R∗

l→r(Fl→r(α)) =
∅ then no term of T (Fbin) can be reached from Fl→r(α). Thus, since
Rl→r follows the definition of Rλ in Proposition 1, one can deduce that
the rule l → r ∈ R cannot be applied on α.
If R∗

l→r(Fl→r(α)) 6= ∅ then there exists one term of t1 ∈ T (Fbin) that can
be reached from Fl→r(α). Since Fl→r(α) →∗

Rl→r
t1, one has G(α) →+

Rλ

G(t1). Moreover, according to Proposition 1, α →{l→r} t1. Note that
t1 ∈ R∗

λ(E′) since the rule G(x) → x can be applied on G(t1). Thus, this
process can be iterated and on can build a sequence such that G(α) →+

Rλ

G(t1) →
+
Rλ

G(t2) . . . →+
Rλ

G(tn) with ti ∈ R∗
λ(E′) if the rule G(x) → x is

applied on each term G(ti) (this is possible since ti ∈ T (Fbin)). Moreover,
according to Proposition 1, one has ti →{l→r} ti+1 for i = 1, . . . , n − 1.
So one can deduce that tn ∈ R∗({α}). Finally, one can deduce that

R∗({α}) ⊇ R∗
λ({G(α)}). (19)

• Suppose that no rule of the form G(x) → G(Fl→r(x)) is applied. Conse-
quently, no rule of

⋃

l→r∈R Rl→r can be applied. The unique reachable
term of T (Fbin) is then obtained by applying the rules G(x) → x. So,
α ∈ R∗

λ({G(α)}). By definition, α ∈ R∗({α}).
To conclude, for any α ∈ E, from (18) and (19), one obtains that R∗(E) =
R∗

λ(E′).

Functional Term Rewriting Systems 9

5 Elementary Functional Term Rewriting Systems

In this section, given a TRS R over T (Fbin,X) × T (Fbin,X) and a term t ∈
T (Fbin), we show that it is possible to compute exactly the same set of reachable
terms using a FTRS of a particular form i.e. elementary functional TRS.

Definition 2. Let Rλe be a FTRS. Rλe is said to be elementary (also called
EFTRS) iff each rule of Rλe is of one of the following forms:

1. F (a(x, y)) → α with a ∈ Fbin, F ∈ FNT , x, y ∈ X , x 6= y, α ∈ T (Fbin ∪
FNT , X) and Var(α) = {x, y}

2. F (⊥) → α with α ∈ T (Fbin ∪ FNT)
3. F (a(x,⊥)) → x with x ∈ X , F ∈ FNT and a ∈ Fbin.

Actually, EFTRSs, presented in Definition 2, are expressive enough for the
specification of the whole rewriting mechanism for a rule l → r ∈ R: 1. to find
a position for rewriting, 2. to check if l matches with the current subterm, then
3. to compute the resulting substitution σ, and 4. to replace the subterm by rσ.

Consequently, one has the following result.

Proposition 2. Let R be a TRS over T (Fbin,X) × T (Fbin,X), α ∈ T (Fbin),
β ∈ T (Fbin) and l → r ∈ R. There exists an EFTRS Rλe such that

α →{l→r} β ⇔ Fl→r(α) →∗
Rλe β.

Proof (Sketched proof).
The key point is to construct an EFTRS Rλe implementing the whole rewrit-

ing process. The EFTRS Rλe is build as follows:
Rλe = Rl→r

visit ∪Rl→r
TV ∪Rl→r

check ∪Rl→r
σ ∪Rl→r

GS ∪
Rl→r

σ−apply

where

– Rl→r
visit = {Fl→r(a(x, y)) → a(Fl→r(x), y), Fl→r(a(x, y)) → a(x, Fl→r(y))}

– Rl→r
TV = {Fl→r(x) → F l→r

rewrite(Checkl→r(F
l→r
copy(F ε

l→r(x))))}.

– Rl→r
check is an EFTRS allowing us to check if a term of T (Fbin) matches with

l. The application of this EFTRS is fired by the presence of the non-terminal
symbol F ε

l→r . Given a term t ∈ T (Fbin) matching with l, (Rl→r
check)∗({F ε

l→r(t)})
is {t′} where

• for all p ∈ PosF(l), t(p) = t′(p);
• for all p ∈ PosX (l), t′(p) = ⊕x,p ∈ Fbin;
• for all p ∈ FPos(l)\PosX (l), and for all p′ ∈ Pos(t|p), t(p.p′) = t′(p.1.p′).

The symbol ⊕x,p is a marker meaning that the term under this marker is the
value that the variable x at position p in l takes when matching occurs. When
the matching between t and l is not possible, (Rl→r

check)∗({F ε
l→r(t)}) = ∅. Note

that, at this point, we do not check the case that two identical variables have
to share the same value. So (Rl→r

check)∗({F ε
l→r(t)}) = ∅ iff t and l are different

structurally speaking.

10 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

– Rl→r
σ is an EFTRS allowing us to construct an ordered list of terms indexed

by variables of l. This list is represented by a term and semantically speaking,
one can see this list as the substitution resulting from the matching step. Let
t′ be the term resulting from (Rl→r

check)∗({F ε
l→r(t)}). (Rl→r

σ)∗(F l→r
copy(t′)) leads

to a unique term t′′ representing the substitution resulting from the matching
between t and l.

– Rl→r
GS is an EFTRS specifying the verification of a well-formed substitution.

Indeed, if l is not linear then a variable x appears two times at least. If
all occurrences of x share the same term as value then the substitution
is well-formed. (Rl→r

check)∗(Checkl→r(t
′′)) = {t′′} is the substitution is well-

formed, ∅ otherwise. Rl→r
GS handles each variable occurring more than once

as mentionned above.
– Rl→r

σ−apply is an EFTRS specifying the application of the well-formed substitu-

tion resulting from t and l on the term r. Thus, (Rl→r
σ−apply)∗(F l→r

rewrite(t
′′)) =

{rσ}.

The EFTRSs listed above are fully defined in Appendix.

– α →{l→r} β ⇒ Fl→r(α) →∗
Rλe

β: Trivially, if α →{l→r} β then there
exist a position p of α and a substitution σ : X → T (Fbin) such that
α|p = lσ and β = α[rσ]p. From the definition of Rλe , one can deduce
that Fl→r(α) →∗

Rλe
α[Fl→r(α|p)]p. Thus, applying the rule Fl→r(x) →

F l→r
rewrite(Checkl→r(F

l→r
copy(F ε

l→r(x)))) on α[Fl→r(α|p)]p , one obtains α[F l→r
rewrite(Checkl→r(

F l→r
copy(F ε

l→r(α|p))))]p. Since σ is a substitution from X to T (Fbin), and ac-

cording to the set of rules Rl→r
TV ∪Rl→r

check∪R
l→r
σ ∪Rl→r

GS , α[F l→r
rewrite(Checkl→r(F

l→r
copy(F ε

l→r(α|p))))]p
can be rewritten in α[F l→r

rewrite(t)]p where t is defined as follows:
• t(p) = σ(xi), t(p′) = ⊤X ∈ Fbin with p′ = (2.)i p = p′.1 and xi is the ith

variable of l read from the left of l
• t(prmp) =⊥X∈ Fbin with prmp = (2.)m2 and m is the number of variables

occurring in l
Thus, the term t represents as a term the substitution σ. Finally, the EFTRS
Rl→r

σ−apply allows us to reconstruct r and the value of variables are copied sym-
bol per symbol. The unique reachable terms is then rσ. So, to summarize,
F l→r

rewrite(t) →
∗
Rl→r

σ−apply

rσ ∈ T (Fbin). Consequently, α[F l→r
rewrite(t)]p →∗

Rl→r
σ−apply

α[rσ]p ∈ T (Fbin) and since α[rσ]p = β, β ∈ R∗
λe ({Fl→r(α)}).

– α →l→r β ⇐ Fl→r(α) →∗
Rλe

β: The proof for this case is close to the sim-
ilar case handled in the proof of Proposition 1 in the sense that rewrite
steps are ordered and depending on the initial term i.e. Fl→r(α). Eventually,
since by hypothesis Fl→r(α) →∗

Rλe
β, due to the definitions of Rl→r

visit and

Rl→r
TV , there exists a position p ∈ Pos(α) such that Fl→r(α) →∗

Rl→r
visit∪Rl→r

T V

α[F l→r
rewrite(Checkl→r(F

l→r
copy(F ε

l→r(α|p))))]p and F l→r
rewrite(Checkl→r(F

l→r
copy(F ε

l→r(α|p)))) →
∗
Rλe

β. Due to the stack of symbols of FNT over α|p, one can show that F l→r
rewrite(Checkl→r(F

l→r
copy(F ε

l→r(α|p))))

β ⇔ (Rl→r
σ−apply)∗((Rl→r

GS)∗((Rl→r
σ)∗((Rl→r

check)∗(F l→r
rewrite(Checkl→r(F

l→r
copy(F ε

l→r(α|p)))))))) =

{β}. Consequently, according to definitions of Rl→r
σ , Rl→r

GS and Rl→r
check, for a

term t ∈ T (Fbin), one can show that if (Rl→r
check)∗({Checkl→r(F

l→r
copy(F ε

l→r(t)))}) 6=

Functional Term Rewriting Systems 11

∅ then there exists a substitution σ : X → T (Fbin) such that lσ = t. Apply-
ing such a result to our study case, there exists σ : X → T (Fbin) such that
lσ = α|p. Not only (Rl→r

check)∗({Checkl→r(F
l→r
copy(F ε

l→r(t)))}) 6= ∅, but there

exists also a term t′ of T (Fbin) such that (Rl→r
check)∗({Checkl→r(F

l→r
copy(F ε

l→r(t)))}) =

{t′}. The term t′ is a representation of σ, and applying the EFTRS Rl→r
σ−apply

on t′ allows us to reconstruct r by substituting each variable xi of r by
σ(xi). The unique reachable term from t′ is then rσ. So, to summarize,
there exist a position of α and a substitution σ : X → T (Fbin) such
that α|p = lσ, β = α[rσ]p and Fl→r(α) →∗

Rλe
β. One can deduce that

α →l→r β ⇒ Fl→r(α) →∗
Rλe

β which concludes the proof.

Trivially, one obtains the more general result presented below.

Theorem 2. Let R be a TRS over T (Fbin,X)×T (Fbin,X) and E ⊆ T (Fbin).
Thus, there exists a EFTRS Rλe and a symbol G ∈ FNT such that:

R∗(E) = R⋆
λe(E′),

where E′ = {G(α)|α ∈ E}.

Proof. Considering the EFTRS Rλe =
⋃

l→r∈R(Rl→r
visit ∪Rl→r

TV ∪Rl→r
check ∪Rl→r

σ ∪

Rl→r
GS ∪Rl→r

σ−apply)∪RFP with RFP = {G(a(x, y)) → G(Fl→r(a(x, y))) | l → r ∈
R∧ a ∈ Fbin} ∪ {G(a(x, y)) → a(x, y) | a ∈ Fbin}, the proof is very close to the
one of Theorem 1.

6 Specification with EFTRS and Benchmarks

In Section 6.1, we present how the Tree Arbiter Protocol is encoded using EFTRS
and Section 6.2 describes how the verification of the property φ defined in Sec-
tion 3 can be entirely encoded in EFTRS. Finally, benchmarks are presented in
Section 6.3.

6.1 Specification TAP using EFTRSs

Let FNT be the set of non-terminal symbols such that FNT = {H, R, RT, T I, I, Arbiter}.
The set Fbin is the one defined in Section 3, i.e., {i, r, t, b,⊥}.

The rewriting rules (1), (2) and (3) given in Section 3 are translated as follows
in EFTRS rules.

H(i(x, y)) → r(x, R(y)) (20)

H(i(x, y)) → r(R(x), y) (21)

R(r(x, y)) → r(x, y) (22)

R(⊥) → ⊥ (23)

Let us illustrate the rewriting of the following configuration t0 = H(t(i(⊥
,⊥), i(⊥,⊥))). None of rules mentioned above can be applied. So, no term of
T (Fbin) is reachable from H(t(i(⊥,⊥), i(⊥,⊥))).

12 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

So we need rules for specifying the circulation of the symbol H before apply-
ing the rules (20), . . . ,(23). These rules are given below and are defined for each
symbol of Fbin except ⊥.

H(i(x, y)) → i(H(x), y) (24)

H(i(x, y)) → i(x, H(y)) (25)

H(r(x, y)) → r(H(x), y) (26)

H(r(x, y)) → r(x, H(y)) (27)

H(b(x, y)) → b(H(x), y) (28)

H(b(x, y)) → b(x, H(y)) (29)

H(t(x, y)) → t(H(x), y) (30)

H(t(x, y)) → t(x, H(y)) (31)

Now, let us illustrate the use of the rules (24),. . . , (31). Let us apply the rule
(24) (resp. (25)) on t0. So, the term t′1 = t(H(i(⊥,⊥)), i(⊥,⊥)) (resp. t′′1 = t(i(⊥
,⊥), H(i(⊥,⊥)))) is obtained. By applying rule (20) and rule (23) on t′1 (resp.
t′′1), one obtains the term t′2 = t(r(⊥,⊥), i(⊥,⊥)) (resp. t′′2 = t(i(⊥,⊥), r(⊥,⊥))).

Note that t′2 and t′′2 do not contain symbol of FNT . So the EFTRS can not
be applied anymore. Thus, we introduce the symbol Arbiter whose semantics is
described by rules (42) to (45). In other words, this symbol allows us to rewrite as
much as needed. The rules below fill out the specification of TAP by an EFTRS.

H(t(x, y)) → b(x, RT (y)) (32)

H(t(x, y)) → b(RT (x), y) (33)

RT (r(x, y)) → t(x, y) (34)

H(b(x, y)) → t(x, TI(y)) (35)

H(b(x, y)) → t(TI(x), y) (36)

TI(t(x, y)) → i(I(x), I(y)) (37)

TI(t(x, y)) → r(R(x), I(y)) (38)

TI(t(x, y)) → r(I(x), R(y)) (39)

I(i(x, y)) → i(x, y) (40)

I(⊥) → ⊥ (41)

Arbiter(t(x, y)) → t(x, y) (42)

Arbiter(t(x, y)) → Arbiter(H(t(x, y))) (43)

Arbiter(b(x, y)) → b(x, y) (44)

Arbiter(b(x, y)) → Arbiter(H(b(x, y))) (45)

Now, consider the starting term t0 = Arbiter(t(i(⊥,⊥), i(⊥,⊥))). From t0
and applying the rules (43), (24), (20) and (23), the term t1 = Arbiter(t(i(⊥
,⊥), r(⊥,⊥))) is computed. Applying the rules (32) and (34) from t1, the term
t2 is computed with t2 = Arbiter(b(i(⊥,⊥), t(⊥,⊥))). Note that from t1 (resp.
t2), we can also apply the rule (42) (resp. 44) and then obtain the term t(i(⊥,⊥
), r(⊥,⊥)) (resp. b(i(⊥,⊥), t(⊥,⊥))). The two terms mentioned above represent
two configurations actually reachable.

We note RTAP
λe the whole EFTRS defined in this section.

Functional Term Rewriting Systems 13

6.2 Invariant Verification of TAP in Functional Reachability

In Section 3, we have defined the following property φ: there is always only one
token circulating in the hierarchy tree. Let us consider ¬φ. In words, ¬φ specifies
that there may exists one configuration containing zero token or two tokens at
least.

The following EFTRS R¬φ
λe specifies the property ¬φ.

No t(r(x, y)) → r(No t(x), No t(y)) (46)

No t(b(x, y)) → b(No t(x), No t(y)) (47)

No t(i(x, y)) → i(No t(x), No t(y)) (48)

No t(⊥) →⊥ (49)

Two t(r(x, y)) → r(Two t(x), y) (50)

Two t(r(x, y)) → r(x, Two t(y)) (51)

Two t(b(x, y)) → b(Two t(x), y) (52)

Two t(b(x, y)) → b(x, Two t(y)) (53)

Two t(i(x, y)) → i(Two t(x), y) (54)

Two t(i(x, y)) → i(x, Two t(y)) (55)

Two t(t(x, y)) → i(x, Two t(y)) (56)

Semantically speaking, the symbol No t ∈ FNT is introduced for checking
that a term does not contain the symbol t. Indeed, there is no rule of the form
No t(t(x, y)) → β. Consequently, for a term α ∈ T (Fbin) for which there exists

p ∈ Pos(α) such that α(p) = t, (R¬φ
λe)∗({No t(α)}) = ∅.

The symbol Two t ∈ FNT is introduced for checking that the symbol t occurs
in a term one time at least. So, for a term α ∈ T (Fbin),

– (R¬φ
λe)∗({Two t(Two t(α))}) = ∅ means that the symbol t occurs in α only

once or never;
– (R¬φ

λe)∗({Two t(Two t(α))}) 6= ∅ means that the symbol t occurs in α at
least two time.

Consequently,

the TAP satisfies φ ⇔ (R¬φ
λe)∗((RTAP

λe)∗({Two t(Two t(t′0)), No t(t′0)})) = ∅

where t′0 = Arbiter(t0) and t0 is the initial configuration of the TAP.
Using our tool, we have been able to check that φ is true for the TAP handling

2400 processors in 2.933s.

6.3 Some Experiments

Hereafter reported results have been obtained on a PC 1.7GHz 1GB RAM. We
have compared our tool with Timbuk [31, 27] and Maude [19]. Timbuk is a collec-
tion of tools for achieving proofs of reachability over TRSs. This tool manipulates
tree automata for representing possibly infinite set of terms. Maude is rewrite
engine which is often used in a verification context. The table below summarizes

14 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

some results obtained on well-known protocols i.e. Tree Arbiter Protocol (TAP),
Percolate Protocol (PP) and Leader Election Protocol (LEP). For this exper-
iments, we have adapted local fixpoint techniques in our EFTRS framework.
Of course, acceleration techniques are well adapted for this kind of protocols
where the number of configurations may be huge but finite. The acceleration
techniques can be implemented automatically for all of these study cases. Thus,
it explains the difference in terms of computation times between tools. However,
Maude and Timbuk can be used for the verification of infinite systems [23, 28,
29, 41, 5]. For now, our technique is exclusively defined for finite systems (and
thus terminating TRS).

In the following table, Σ denotes the study case, N the number of processors
at the bottom of the trees and Confs the size of the state space to explore. The
number of configurations is evaluated with a Java program, thus, ”?” denotes
that the library java.math.BigDecimal we used cannot return the result within
three hours. For further details of model descriptions and the benchmarks, see
[4].

Σ N Confs
TRS EFTRS

Timbuk Maude Our Tool

TAP

25 8.539 E+8 > 3h > 3h 0.109
210 1.989 E+273 - - 0.196
220 5.350 E+278807 - - 0.256
2400 ? - - 2.866

PP

25 11047 0.138 1.479 0.018
210 8.445 E+135 24.179 > 3h 0.053
220 4.508 E+139402 > 3h - 0.102
2500 ? - - 0.396

LEP

25 16 > 3h 0.457 0.093
210 512 - > 3h 0.159
220 5.243 E+5 - - 0.256
2400 1.291 E+120 - - 138.699

7 Applications of EFTRS

7.1 Application on Petri net and Experimental results

First, we show how to simulate some Petri net models (presented in [15, 14, 11])
such as Round-Robin Mutex Protocol, Slotted Ring Protocol, and the Dining
Philosophers problem on EFTRSs. Then we compare our EFTRS Model-checker
(written in JAVA) with some available tools like SPIN (downloadable from
http://spinroot.com/spin/whatispin.html), NuSMV [17] (downloadable from
http://nusmv.irst.itc.it/), SMART (http://www.cs.ucr.edu/ ciardo/SMART/),
DDD, SDD and HSDD (downloadable from http://move.lip6.fr/ software/DDD/,
http://sourceforge.net/projects/buddy/, http://vlsi.colorado.edu/ fabio/CUDD/).

Dining philosophers problem is an illustrative example of a common com-
puting problem in concurrency. This classic model is obtained by connecting N

Functional Term Rewriting Systems 15

identical submodels (see Figure 2), one per philosopher, in a circular fashion.
Each philosopher starts in the idle state and occasionally decides to eat: to do
so he must acquire both his left and right forks, which he then releases when he
has finished eating.

Fig. 2: Petri subnet Pi

On the first phase, construct a term for sub-net level: local(u, v) where u and v
is the encoding of the identical model, e.g. local(⊥, hasL(false(⊥, ⊥), hasR(true(⊥, ⊥), ...))).
On the second phase, construct a hierarchical model by combining two sub-nets
like sys(local(u, v), local(u, v)). From this 1-level model, we can construct 2-level by
the same way, and so forth.

There is relations between two neighbours. So we have a synchronization op-
erator by going down from root to sub-net levels:
H(sys(x, y)) → SyncIIPP (sys(x, y))
H(sys(x, y)) → Sync1N(sys(x, y))
Sync1(sys(x, y)) → sys(Sync1(x), y)
SyncN(sys(x, y)) → sys(x, SyncN(y))

Go down from k-level to k-1-level of model:
SyncIIPP (sys(x, y)) → sys(SyncIIPP (x), SyncIIPP (y))

Then at each level of the model:
SyncI(sys(x, y)) → sys(x, SyncI(y))
SyncIPP (sys(x, y)) → sys(SyncIPP (x), y)

Finally, at sub − net levels of the model:

Sync1(local(x, y)) → α1(x, y) SyncN(local(x, y)) → αN (x, y)
SyncI(local(x, y)) → βI(x, y) SyncIPP (local(x, y)) → βIPP (x, y)

In the other hand, at sub − net levels of the model:
Local(local(x, y)) → γ(x, y)

where α, β, γ are compositions of some primitive rules Postp and Prep for each
place p:

Postp(p(x, y)) → p(Post(x), y) Pre(true(x, y)) → false(x, y)
Prep(p(x, y)) → p(Pre(x), y) Post(false(x, y)) → true(x, y)

Our implementation shows that our automatical Petri-EFTRS transforma-
tion gives the same configurations number of some Petri net model with other
approachs.

16 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

The following experiments deal with Petri Net problems. We also compare
our tool with some tools like SPIN [35], NuSMV [17], SMART [10, 15, 11] and
HSDD [46, 47]. These values concerning the other tools are directly taken from
[16, 9, 22, 46, 47]. Some missing results are indicated by ”N/A”.

N Confs SPIN SMV SMART HSDD EFTRS

Dining Philosophers.

25 1.15E+20 N/A 0.4 0.01 0.00 0.65

210 1.02E+642 N/A - 1.8 0.00 1.25

215 2.09E+20544 N/A - 65.5 0.00 1.96

220 1.8E+657418 N/A - - 0.01 2.77

235 ? N/A - - 0.02 135.4

Slotted Ring Protocol.

22 5136 0.0 0.0 0.0 0.0 1.13

23 6.80E+7 8.2 0.13 0.06 0.0 18.53

24 1.65E+16 - 2853 0.18 0.03 2398

Round Robin Mutex Protocol [32].

24 2.359E+6 43.0 0.34 0.01 0.0 3.316

26 2.656E+21 - 11.7 0.09 0.2 30.91

28 6.696E+79 - - 7.04 1.0 1115

1. Dining philosophers problem. The hierarchical model can resolve prob-
lem having size until N = 235.

N #Confs EFTRS

25 1.155 E+20 0.654
210 1.023 E+642 1.251
215 2.094 E+20544 1.966
220 1.868 E+657418 2.779
225 ? 3.661
230 ? 4.782
235 ? 135.407

We can also compare model size N with some related results 1:

EFTRS SPIN NuSMV SDD SMART HSDD

235 - 200 5000 5000 220000

2. Slotted Ring Protocol. The hierarchical model can resolve problem having
size until N = 24.

N #Confs EFTRS

22 5136 1.131
23 6.802 E+7 18.537
24 1.651 E+16 2398.754

1 Some are missing as indicated by ”-”.

Functional Term Rewriting Systems 17

We can also compare model size N with some related results:

EFTRS SPIN NuSMV SDD SMART HSDD

24 6 15 50 300 200

3. Round Robin Mutex Protocol (presented in [32]).

This protocol solves a specific type of mutual exclusion problem among N
processes organized in a circular fashion, requiring access to a shared re-
source.

N #Confs EFTRS

21 18 1.719
22 144 1.602
23 4608 2.108
24 2.359 E+ 6 3.316
25 3.092 E+ 11 8.003
26 2.656 E+ 21 30.914
27 9.800 E+ 40 171.321
28 6.696 E+ 79 1115.704

The hierarchical model can resolve problem having size until N = 28. We
can also compare model size N with some related results 2:

EFTRS SPIN NuSMV SDD SMART HSDD

28 16 60 - 1100 1000

Saturation approach (presented by Ciardo et al. in [13] for MDD, a BDD-like
structure). This technique is also called local fixed point (LFP) technique which
fights the intermediate peak size effect in the structure liked-BDD as DDD [21],
SDD [22], HSDD [46, 45].

7.2 Application of EFTRS on LTL model-checking

[48, 20] show us how transform a LTL formula to Büchi Automata. The problem
now is to encode a Büchi automaton into FTRS (or EFTRS) like buchi(u, v)

then construct the synchronized product of Büchi automaton and the system is
ltl(buchi(u, v), sys(w, t)) where sys(w, t)) is an encoding of system and u, v, w, t ∈ Fbin.

Operations on the synchronized product is defined for each property ϕ as the
following: Syncϕ(ltl(buchi(u, v), sys(w, t))) → ltl(Buchiϕ(buchi(u, v)), Sysϕ(sys(w, t))) where

– Buchiϕ is Change
s

ϕ
−→s′

(s(x, y)) → s′(x, y)

– Sysϕ is a composition of some operations on the system: Succ compute the
next sytem states and Testϕ works as a filter keeping only states satifying ϕ.

2 These values were not measured by us, but are directly taken from [16, 22, 9].

18 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

In Dining philosophers problem, since forks can be acquired in any order, this
model is known to have two deadlock states, the one where each philosopher has
acquired his left fork and waits for his right fork (which, being also the left fork
of his right neighbor, will never be released), and the symmetric state where
each philosopher has acquired his right fork.

Thus, we are interested in the behavior such as: In a moment in the future,
the first philosopher has the left but he never has the right by using the LTL
formula F1 = F (p1.hasL ∧ G(¬p1.hasR)) (See Büchi automaton in Figure 3a).

We are also interested in the behavior such as: First the first philosopher has
the right then put this fork and finally his neighbor has the left by using the LTL
formula F2 = (p1.hasR ∪ (p1.Fork ∪ pN .hasL)). See this Büchi automaton in
Figure 3b.

An first implementation of LTL model-checker based on EFTRS of these LTL
formulas is in the below table.

N #ConfsF1 F1 #ConfsF2 F2

23 28657 3.139 1.036 E+5 1.777
24 2.971 E+9 46.584 1.074 E+10 8.936
25 3.194 E+19 5486.060 1.155 E+20 251.871

Fig. 3: Büchi automatons a) F1 and b) F2

8 Conclusion

In this paper, we have introduced a new formalism, so called FTRS, for the
specification of transition relation for finite system verification. We have shown
that the expressiveness of FTRSs and EFTRSs is the same as classical FTRSs.
By adapting acceleration techniques for our new formalism and for the protocol
to study, the computation times are really convincing. Moreover, the exploration
of huge state spaces has been possible with our tool when some others fail. Some
experiments have been carried out in the field of Petri nets. Actually, our results
are not so good as expected, but we plan to refine the transformation Petri nets
towards EFTRS [4] in a couple of months.

A first step towards the verification of invariants on finite systems has been
initiated also in this paper. Some investigations are carried out on the field of
the LTL model-checking. And it would look like possible to express the whole
LTL model-checking with FTRS [4].

Functional Term Rewriting Systems 19

References

1. P. A. Abdulla, A. Legay, J. d’Orso, and A. Rezine. Tree regular model checking:
A simulation-based approach. The Journal of Logic and Algebraic Programming,
2006.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E.Macii, A.Pardo, and
F.Somenzi. Algebraic decision diagrams and their applications. In ICCAD’93,
volume 2860, pages 188–191, 1993.

4. Y. Boichut, J-M Couvreur, and D-T Nguyen. Functional term rewriting systems.
Research report, LIFO, 2010.

http://eftrs.svn.sourceforge.net/viewvc/

eftrs/.

5. Y. Boichut, T. Genet, T. Jensen, and L. Le Roux. Rewriting Approximations for
Fast Prototyping of Static Analyzers. In Proceedings of the 18th Conference on
Rewriting Techniques and Applications, volume 4533 of LNCS, pages 48–62, 2007.

6. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on computers, C-35(8):677–691, August 1986.

7. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv., 24(3):293–318, 1992.

8. J.R. Burch, E.M. Clarke, and K.L. McMillan. Symbolic model checking: 1020

states and beyond. Information and Computation (Special issue for best papers
from LICS90), 98(2):153–181, 1992.

9. G. Ciardo. Reachability set generation for petri nets: Can brute force be smart?
In ICATPN, pages 17–34, 2004.

10. G. Ciardo, R. L. Jones III, Marmorstein R. M., A. S. Miner, and R. Siminiceanu.
Smart: Stochastic model-checking analyzer for reliability and timing. In DSN, page
545, 2002.

http://www.cs.ucr.edu/ ciardo/SMART/.

11. G. Ciardo, G. Lüttgen, and A. S. Miner. Exploiting interleaving semantics in
symbolic state-space generation. Formal Methods in System Design, 31(1):63–100,
2007.

12. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Efficient symbolic state-space con-
struction for asynchronous systems. In ICATPN’2000, volume 1825 of LNCS, pages
103–122. Springer Verlag, 2000.

13. G. Ciardo, R. Marmorstein, and R. Siminiceanu. The saturation algorithm for
symbolic state-space exploration. Int. J. Softw. Tools Technol. Transf., 8(1):4–25,
2006.

14. G. Ciardo, R. M. Marmorstein, and R. Siminiceanu. Saturation unbound. In
TACAS, pages 379–393, 2003.

15. G. Ciardo and R. Siminiceanu. Using edge-valued decision diagrams for symbolic
generation of shortest paths. In FMCAD ’02: Proceedings of the 4th International
Conference on Formal Methods in Computer-Aided Design, pages 256–273, London,
UK, 2002. Springer-Verlag.

16. G. Ciardo and A. J. Yu. Saturation-based symbolic reachability analysis using
conjunctive and disjunctive partitioning. In CHARME, pages 146–161, 2005.

17. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic

20 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

Model Checking. In Proc. International Conference on Computer-Aided Verifi-
cation (CAV 2002), volume 2404 of LNCS, Copenhagen, Denmark, July 2002.
Springer.
http://nusmv.irst.itc.it/.

18. E. Clarke, D. Long, and K. McMillan. Compositional model checking. In Pro-
ceedings of the Fourth Annual Symposium on Logic in computer science, pages
353–362, Piscataway, NJ, USA, 1989. IEEE Press.

19. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewriting logic. Theoretical
Computer Science, 2001.
http://maude.cs.uiuc.edu.

20. J.-M. Couvreur. On-the-fly verification of linear temporal logic. In Springer Verlag,
editor, Proc. of FM’99, pages 253–271, 1999. Lecture Notes in Computer Science.

21. J-M. Couvreur, E. Encrenaz, E. PaviotAdet, D. Poitrenaud, and P. Wacrenier.
Data decision diagram for petri net analysis. In ICATPN, volume 2360, pages
1–101. Springer Verlag, 2002.

22. J-M. Couvreur and Y. Thierry-Mieg. Hierarchical decision diagrams to exploit
model structure. In FORTE, pages 443–457, 2005.

23. G. Denker, J. Meseguer, and C. Talcott. Protocol Specification and Analysis in
Maude. In Proc. 2nd WRLA Workshop, Pont à Mousson (France), 1998.

24. N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science,
volume B, chapter 6: Rewrite Systems, pages 244–320. Elsevier Science Publishers
B. V. (North-Holland), 1990. Also as: Research report 478, LRI.

25. D. L. Dill. Trace theory for automatic hierarchical verification of speed-independent
circuits. MIT Press, Cambridge, MA, USA, 1989.

26. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker.
In Fabio Gadducci and Ugo Montanari, editors, Fourth Workshop on Rewriting
Logic and its Applications, WRLA ’02, volume 71 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2002.

27. G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis over Term
Rewriting Systems. JAR, 33 (3-4):341–383, 2004.

28. T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In Proc.
17th CADE Conf., Pittsburgh (Pen., USA), volume 1831 of LNAI. Springer-Verlag,
2000.

29. T. Genet, Y.-M. Tang-Talpin, and V. Viet Triem Tong. Verification of Copy Pro-
tection Cryptographic Protocol using Approximations of Term Rewriting Systems.
In In Proceedings of Workshop on Issues in the Theory of Security, 2003.

30. T. Genet and V. Viet Triem Tong. Reachability analysis of term rewriting systems
with timbuk. In In: LPAR Proceedings. (2001, pages 691–702. Springer-Verlag,
2001.
http://www.irisa.fr/celtique/genet/timbuk/.

31. T. Genet and V. Viet Triem Tong. Reachability Analysis of Term Rewriting
Systems with timbuk. In Proc. 8th LPAR Conf., Havana (Cuba), volume 2250 of
LNAI, pages 691–702. Springer-Verlag, 2001.
http://www.irisa.fr/celtique/genet/timbuk/.

32. S. Graf, B. Steffen, and G. Lüttgen. Compositional minimisation of finite state
systems using interface specifications. Formal Asp. Comput., 8(5):607–616, 1996.

33. A. Gupta. Inductive Boolean Function Manipulation. PhD thesis, Carnegie Mellon
University, 1994.

34. A. Gupta and A. L. Fisher. Representation and symbolic manipulation of linearly
inductive boolean functions. In ICCAD’93, pages 111–116, 1993.

Functional Term Rewriting Systems 21

35. G.J. Holzmann. The model checker SPIN. IEEE Trancastions on Software Engi-
neering, 23(5), may 1986.
http://spinroot.com/spin/whatispin.html.

36. H. Hulgaard, P. F. Williams, and H. R. Andersen. Equivalence checking of combina-
tional circuits using boolean expression diagrams. IEEE Transactions of Computer-
Aided Design, 18(7), 1999.

37. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model check-
ing with rich assertional languages. In THEORETICAL COMPUTER SCIENCE,
pages 424–435. Springer, 1997.

38. T. Kolks, B. Lin, and H. De Man. Sizing and verification of communication buffers
for communicating processes. In ICCAD’93, volume 1825, pages 660–664, 1993.

39. L. Mauborgne. Binary decision graphs. In SAS’99, volume 1694 of LNCS, pages
101–116. Springer-Verlag, 1999.

40. L. Mauborgne. An incremental unique representation for regular trees. Nordic
Journal of Computing, 7(4):290–311, 2000.

41. J. Meseguer, M. Palomino, and N. Mart-Oliet. Equational Abstractions. In Proc.
19th CADE Conf., Miami Beach (Fl., USA), volume 2741 of LNCS, pages 2–16.
Springer, 2003.

42. S. Minato, N. Ishiura, and S. Yajima. Shared binary decision diagrams with at-
tributed edges for efficient boolean function manipulation. In DAC’90, pages 52–57.
ACM/IEEE, IEEE Computer Society Press, 1990.

43. A.S. Miner and G. Ciardo. Efficient reachability set generation and storage using
decision diagrams. In ICATPN’99, volume 1639 of LNCS, pages 6–25. Springer
Verlag, 1999.

44. F. Reffel. BDD-Nodes Can Be More Expressive. In ASIAN’99, volume 1742 of
LNCS, pages 294–307. Springer Verlag, 1999.

45. Y. Thierry-Mieg. Techniques pour le model-checking de spécifications de haut
niveau. Thèse de doctorat en Informatique, LIP6, Univ. Paris VI, 2004.

46. Y. Thierry-Mieg, A. Hamez, and F. Kordon. Building efficient model checkers
using hierarchical set decidion diagrams and automatic saturation. Fundamenta
Inforaticae Petri Nets, 1-25, 2008.

47. Y. Thierry-Mieg, D. Poitrenaud, A. Hamez, and F. Kordon. Hierarchical set deci-
sion diagrams and regular models. In TACAS, pages 1–15, 2009.
http://move.lip6.fr/ software/DDD/

http://sourceforge.net/projects/buddy/

http://vlsi.colorado.edu/ fabio/CUDD/ .
48. P. Wolper. Constructing automata from temporal logic formulas: A tutorial. In

Lectures on Formal Methods in Performance Analysis (First EEF/Euro Summer
School on Trends in Computer Science), volume 2090 of Lecture Notes in Computer
Science, pages 261–277. Springer-Verlag, July 2001.

22 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

A EFTRS

Definition 3 (Rl→r
check). Let l → r be a rule of T (Fbin,X) × T (Fbin,X). We

denote by Rl→r
check the elementary FTRS built from l as follows:

1. F p
l→r(x) → ⊕l|p(x) ∈ Rl→r

check if p ∈ PosX (l) and where ⊕l|p is a special
symbol that we consider to be in Fbin

2. F p
l→r(a(x, y)) → a(F p.1

l→r(x), F p.2
l→r(y)) ∈ Rl→r

check if p ∈ Pos(l) \ FPos(l) and
a = l(p)

3. F p
l→r(⊥) →⊥∈ Rl→r

check if p ∈ FPos \ PosX (l)

Example 1. Consider the term a(b(x,⊥), c(d(⊥, y), z)) → r be a rewrite rule,
x, y, z ∈ X and Var(r) ⊆ {x, y, z}. For a matter of readability, we denote this
term by l. Thus,

Rl→r
check =

F ε
l→r(a(x, y)) → a(F 1

l→r(x), F 2
l→r(y))

F 1
l→r(b(x, y)) → a(F 11

l→r(x), F 12
l→r(y))

F 11
l→r(x) → ⊕x(x)

F 12
l→r(⊥) →⊥

F 2
l→r(c(x, y)) → c(F 21

l→r(x), F 22
l→r(y))

F 21
l→r(d(x, y)) → c(F 211

l→r(x), F 212
l→r(y))

F 211
l→r(⊥) →⊥

F 212
l→r(x) → ⊕y(x)

F 22
l→r(x) → ⊕z(x)

.

We now introduce the notion of variable tree build from a term.

Definition 4. Let t be a term of T (Fbin,X). Let x0, . . . , xn be the variables of
t occurring in t from the the leftmost variable of t to the rightmost variable of
t. The empty variable tree (variable tree for short) of t, denoted by ⊤X (t), is
defined by the following term: ⊤(⊕x0(⊥),⊤(⊕x1(⊥), . . . ,⊤(⊕xn

(⊥),⊥⊤) . . .)).

Definition 5 (Rl→r
σ). Let l → r be a rule of T (Fbin,X) × T (Fbin,X). Let

x0, . . . , xn be the set of variables occurring in l and that can be read from the left
to the right in l. Thus, the EFTRS Rl→r

σ−compute is defined as follows:

1. F l→r
copy(x) → Dcopy(RWx0 (RWx1 (. . . RWxn (⊤(F ε

t (x),⊤X (t))) . . .)))

2. RWxi
(x) → RWxi

(RWxi
(x))

3. RWxi
(x) → NMAxi

(x)
4. {NMAxi

(a(x, y)) → a(NMAxi
(x), NMAxi

(y)) | a ∈ Fbin}
5. {NMAxi

(⊕xj
(x)) → ⊕xj,(x) | xi 6= xj}

6. NMAxi
(⊥) →⊥

7. NMAxi
(⊤(x, y)) → ⊤(NMAxi

(x), NMAxi
(y))

8. NMAxi
(⊥⊤) →⊥⊤

9. RWxi
(x) → RWxi,a(x) with a ∈ Fbin

10. RWxi,a(⊤(x, y)) → ⊤(Rxi,a(x), SW
xi
xi,a(y)) with a ∈ Fbin

11. {SW x
x0,a(⊤(x, y)) → ⊤(Wx,a(x), y)} ∪ {SW x

xi,a(⊤(x, y)) → ⊤(x, SW x
xi−1,a(y)) | i > 0 ∧ i ≤

n ∧ x ∈ Var(t)}
12. Rx,a(g(x, y)) → g(Rx,a(x), y) with g ∈ Fbin

13. Rx,a(g(x, y)) → g(?x(x), Rx,a(y)) with g ∈ Fbin

14. Rx,a(⊕x(x)) → R⊕x,a (x) with a ∈ Fbin

15. R⊕x,a (a(x, y)) → a(⊕x(x),⊕x(y))

16. R⊕x,⊥
(⊥) →⊥

Functional Term Rewriting Systems 23

17. Wx,a(g(x, y)) → g(Wx,a(x), y) with g ∈ Fbin

18. Wx,a(g(x, y)) → g(?⊕x (x), Wx,a(y)) with g ∈ Fbin

19. Wx,a(⊕x(⊥)) → a(⊕x(⊥),⊕x(⊥))
20. Wx,⊥(⊕x(⊥)) →⊥
21. Dcopy(⊤(x, y)) → D′

copy(⊤(y, D(x))

22. D′
copy(⊤(x,⊥)) → x

23. D(x) → D(D(x))
24. D(⊥) →⊥
25. D(x) → D′(x)
26. D′(g(x, y)) → g(D′(x), D′(y))
27. D′(⊥) →⊥
28. D′(g(x,⊥)) → x
29. ?⊕x (g(x, y)) → g(?⊕x (x), ?⊕x (y)) with g ∈ Fbin and x ∈ Var(t)
30. ?⊕x (⊥) →⊥

Definition 6 (Rl→r
GS). Let l → r be a rule of T (Fbin,X) × T (Fbin,X). Let

x0, . . . , xn be the variables from the leftmost one of l to the rightmost one. Let
Indexes be the set of pairs of variable indexes corresponding to the same initial
variable. Let Rl→r

GS be the EFTRS dedicated to check that two variables have
the same term on the instantiated variable tree. Thus, Rl→r

GS is composed of the
following rules:

1. Checkl→r(x) → CForin,jn (CForin−1,jn−1
(. . . CFori1,j1 (x) . . .)) with Indexes = {(i1, j1), . . . , (in, jn)}

2. PutMarksi(⊤(x, y)) → ⊤(x, PutMarksi−1(y)) for i > 1
3. PutMarks0(⊤(x, y)) → ⊤(⊕=(x), y)
4. CFori,j(x) → Test=i,j

(PutMarksi(PutMarksj (x)))

5. Test=i,j
(x) → Test=i,j

(RRi,j(x))

6. Test=i,j
(x) →?x,p(x)

7. {RRi,j(x) → RRi,j,g(x)} with g ∈ Fbin

8. {RRi,j,g(⊤(x, y)) → ⊤(x, RRi−1,j−1,g (y))} with g ∈ Fbin and i > 0
9. {RR0,j,g(⊤(x, y)) → ⊤(Rg(x), Rj−1,g(y))} with g ∈ Fbin and i > 0

10. {RRi,g(⊤(x, y)) → ⊤(x, Ri−1,g(y))} with g ∈ Fbin and i > 0
11. {RR0,g(⊤(x, y)) → ⊤(Rg(x), y)} with g ∈ Fbin and i > 0
12. {Rg(g(x, y)) → g(Rg(x), y), Rg(g(x, y)) → g(?⊕= (x), Rg(y))} with g ∈ Fbin

13. Rg(⊕=(x)) → Rg,⊕= (x)
14. Rg,⊕= (g(x, y)) → g(⊕=(x),⊕=(y))
15. R⊥,⊕= (⊥) →⊥

Definition 7 (Substitution of variables by markers). Let l → r be a
rewrite rule of T (Fbin,X) × T (Fbin,X). We denote by σl→r a marker substitu-
tion built such that:

σl→r = {x 7→ ⊕x(⊥) |x ∈ Var(r)}.

Definition 8 (Rl→r
σ−apply). Let l → r be a rule of T (Fbin,X)×T (Fbin,X). Thus,

Rl→r
σ−apply contains the following rules:

1. F l→r
rewrite(x) → D⊤(RW rew

x0
(RW rew

x1
(. . . RW rew

xn
(⊤(rσl→r, x)) . . .)))

2. RW rew
xi

(x) → RW rew
xi

(RW rew
xi

(x))

3. RW rew
xi

(x) → NMAxi
(x)

4. RW rew
xi

(x) → RW rew
xi,a(x) with a ∈ Fbin

5. RW rew
xi,a(⊤(x, y)) → ⊤(Wxi,a(x), SRxi,a(MS

xi
xi

(?⊕xi
y))) with a ∈ Fbin

6. {MSz
x0

(⊤(x, y)) → ⊤(⊕z(x), y)} ∪ {MSz
xi

(⊤(x, y)) → ⊤(x, MSz
xi−1

(y)) | i > 0 ∧ i ≤ n ∧ z ∈

Var(r)}
7. {SRx0,a(⊤(x, y)) → ⊤(Rx0,a(x), y)}∪{SRxi,a(⊤(x, y)) → ⊤(x, SRxi−1,a(y)) | i > 0∧ i ≤ n}

8. D⊤(⊤(x, y)) → D⊤(⊤(x, D(y))
9. D⊤(⊤(x,⊥)) → x

10. D′(⊤(x, y)) → ⊤(D′(x), D′(y))
11. D′(⊤(x,⊥⊤)) → x
12. D′(⊤(x,⊥)) → x

24 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

Fig. 4 illustrates the copy of the value stored in the variable x2. The process
is the same for the variables x1 and x0.

Functional Term Rewriting Systems 25

Rules 25, 27, 27, 29, 30, 49

⊕x0

a

RWx2

RWx2

RWx1

RWx0

Dcopy

RWx2

RWx2

RWx1

RWx0

Dcopy

RWx1

RWx0

Dcopy

RWx1

RWx0

Dcopy

RWx2RWx2

RWx2

RWx1

RWx0

Dcopy

RWx2RWx2

RWx2

RWx1

RWx0

Dcopy

c

⊕x2
⊕x2

⊥ ⊥

RWx2

RWx1

RWx0

Dcopy

RWx2

RWx1

RWx0

Dcopy

⊕x2

c

⊥ ⊥

c

⊤

⊤

⊤

⊤⊕x1

⊕x0

⊥

⊥

⊥

⊥⊤

a

c

⊥⊤

⊤

⊤

⊤

⊤⊕x1

⊥

⊕x0

⊥

c

⊕x2
⊕x2

⊥ ⊥

Rx2,⊥(a)

c

⊥⊤

⊤

⊤

⊤

⊤⊕x1

⊥

⊕x0

⊥

c

⊥

⊥

c

⊥ ⊕x2

⊥

a

c

⊥⊤

⊤

⊤

⊤

⊤⊕x1

⊥

⊕x0

⊥

c

⊥ ⊥

c

⊥ ⊥

Rx2,c(⊕x2)

Wx2,c(⊕x2)

Wx2,⊥(⊕x2)

a

⊥

⊥ ⊥ b

⊥ ⊥

⊕x1

⊥ d ⊕x2

c

⊥ ⊥

b c

RWx2RWx2RWx2

RWx2

RWx1

RWx0

Dcopy

⊤

⊤

⊤

⊤

⊕x2

⊕x1

⊕x0

⊥

⊥

⊥

⊥⊤

c

⊥⊤

⊤

⊤

⊤

⊤⊕x1

⊥

⊕x0

⊥

c

⊕x2

⊥ ⊥

c

⊕x2
⊕x2

⊥ ⊥

a

c

⊥⊤

⊤

⊤

⊤

⊤⊕x1

⊥

⊕x0

⊥

c

⊥ ⊕x2

⊥

c

⊥ ⊕x2

⊥

a

c

⊥⊤

NMAx2(⊤)

⊤

⊤

⊤⊕x1

⊥

⊕x0

⊥

c

⊥ ⊥

c

⊥ ⊥

a

c

⊥⊤

⊤

⊤

⊤

⊤⊕x1

⊥

⊕x0

⊥

c

⊥ ⊥

c

⊥ ⊥

Rx2,⊥(a)

Rules 1, 3, 5, 6, 7

Wx2,⊥(⊕x2)

Rules 15, 17, 19, 20, 39

Rules 2, 4, 8, 9, 10, 43

Rules 25, 27, 23, 29, 30, 49

Rules 2, 4, 8, 9, 10, 47

Fig. 4: Copy of the value stored in x2

26 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

B Model-checking of TRS, FTRS and EFTRS

B.1 Simple models

Tree Arbiter Protocol In paper submitted to FMCAD2010.

Percolate Protocol Program percolate consists of a tree of processes, each
of them has its local label, which ranges over the set of values ”p”, ”n”, ”u”.
The values ”p” (or ”n”) should be interpreted as ”positif” (or ”negatif”), the
value ”u” should be interpreted as ”undefined yet”, which implies that it will
eventually change to either ”p” or ”n”.

Initially, all the leaf processes in the tree are presented as ”p”(⊥,⊥) or
”n”(⊥,⊥), and all other processes have value ”u”. The purpose of this model is
to percolate to the root of the tree a value ”p” if at least one of the leaves has
value ”p”, and a value of ”n”, if all leaves have value ”n”. If a process does not
yet have a defined value but all its childrens’ values are defined then the process
sets its value to the disjunction of the values of its children.

Consequently, we can represent a configuration of program percolate as a
tree over the alphabet {”p”, ”n”, ”u”,⊥} where ”p”, ”n”, ”u” are binary symbols
and ⊥ is a special nullary symbol (see the figure 5).

TRSs R1:
u(n(x, y), n(z, t)) → n(n(x, y), n(z, t))

u(p(x, y), z) → p(p(x, y), z)

u(x, p(y, z)) → p(x, p(y, z))

Corresponding FTRSs:

– Generated rules (Rules with the left side H(u(...)))
H(u(n(x, y), n(z, t))) → n(n(x, y), n(z, t))
H(u(p(x, y), z)) → p(p(x, y), z)
H(u(x, p(y, z))) → p(x, p(y, z))

– Circulation (Rules with the left side H(p(x, y)), H(n(x, y)) are not necessary generated here)
H(u(x, y)) → u(H(x), y)
H(u(x, y)) → u(x, H(y))

– Fixed point
Percolate(x) → x
Percolate(x) → Percolate(H(x))

Corresponding EFTRS:

– Generated rules
H(u(x, y)) → n(Neg(x), Neg(y))
H(u(x, y)) → p(Pos(x), y)
H(u(x, y)) → p(x, Pos(y))
Neg(n(x, y)) → n(x, y)
Pos(p(x, y)) → p(x, y)

– Circulation
H(u(x, y)) → u(H(x), y)
H(u(x, y)) → u(x, H(y))

– Fixed point
Percolate(u(x, y)) → u(x, y)
Percolate(u(x, y)) → Percolate(H(u(x, y)))

Functional Term Rewriting Systems 27

TRSs R1 and corresponding functional TRSs can give the same result set E1

from an initial set E0: E1 = R⋆
1(E0) = Percolate(E0).

We are interested only in a configuration of E1 or R⋆
1(E0) that contains only

labels ”n”, ”p” and ⊥ (see the figure 6). We can find the final result E′
1 by using

Inv(Percolate(E0)). Futher detail of FTRS about Inv in Section B.2.

Leader Election Protocol A set of processes, denoted by the leaves, want to
elect a leader. Each of them decides first whether to be a candidate or not. The
election process proceeds in two phases.

The first phase consists of the internal nodes polling their children nodes to
see if at least one of them is candidate. In such a case, the internal node becomes
a candidate as well and will be labelled ”p”, otherwise it will be labelled ”n”.

Similarly as the program Percolate, all the leaf processes in the tree have val
between n and p, and all other processes have val ”u”. The purpose of the first
phase is to percolate to the root of the tree a value p if at least one of the leaves
has value ”p”, and a value of ”n”, if all leaves have value n. If a process does not
yet have a defined value but all its childrens’ values are defined then the process
sets its value to the disjunction of the values of its children.

The second phase is the actual election procedure. In case the root assigned
”n”, we have no candidate and can not continue the election. From the result of
the first phase, we prepare for the second phase by marking root by a label ”c”
(see the figure 7). The root chooses (elects) one candidate non-deterministically
among its children labelled ”p”. An internal node that has been elected (noted
by the label ”c”), elects in turn one of its children that declared itself candidate.

TRSs R2:
c(p(x, y), p(z, t)) → c(c(x,y), p(z, t))

c(p(x, y), p(z, t)) → c(p(x, y), c(z, t))

c(p(x, y), n(z, t)) → c(c(x, y), n(z, t))

c(n(x, y), p(z, t)) → c(n(x, y), c(z, t))

Corresponding FTRS:

– Generated rules
H(c(p(x, y), p(z, t))) → c(c(x, y), p(z, t))
H(c(p(x, y), p(z, t))) → c(p(x, y), c(z, t))
H(c(p(x, y), n(z, t))) → c(c(x, y), n(z, t))
H(c(n(x, y), p(z, t))) → c(n(x, y), c(z, t))

– Circulation (Rules with the left side H(p(x, y)), H(n(x, y)) are not necessary generated here)
H(c(x, y)) → c(H(x), y)
H(c(x, y)) → c(x, H(y))

– Fixed point
Election(x) → x
Election(x) → Election(H(x))

Corresponding EFTRS:

– Generated rules
H(c(x, y)) → c(Elec(x), Neg(y))
H(c(x, y)) → c(Elec(x), Pos(y))

28 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

H(c(x, y)) → c(Pos(x), Elec(y))
H(c(x, y)) → c(Neg(x), Elec(y))
Elec(p(x, y)) → c(x, y)
Neg(n(x, y)) → n(x, y)
Pos(p(x, y)) → p(x, y)
Elec(⊥) → ⊥
Pos(⊥) → ⊥
Neg(⊥) → ⊥

– Circulation
H(c(x, y)) → c(H(x), Neg(y))
H(c(x, y)) → c(H(x), Pos(y))
H(c(x, y)) → c(Pos(x), H(y))
H(c(x, y)) → c(Neg(x), H(y))

– Fixed point
Election(c(x, y)) → c(x, y)
Election(c(x, y)) → Election(H(c(x, y)))

TRSs R2 and corresponding functional TRSs can give the same result set E2

from an initial set E”1: E2 = R⋆
2(E”1) = Election(E”1).

From R⋆
2(E”1), we are interested in tree having a path only ”c” from root

to leaf. We can find the final result by using Inv(Election(E”1)) (see the figure
8). Futher detail of FTRS about Inv in Section B.2.

B.2 Invariants

Invariants are the most common and useful of safety properties, that is, prop-
erties stating that some bad things should never happen. Given a system and
an initial state init, an invariant Inv is a predicate defining a subset of states
having two properties:

– it contains init,
– it contains all of reachable states from init.

We check if the set of bad states Bad = ¬Inv = R⋆(init)\Inv(R⋆(init)) is
empty.

For example, given a term clock = time(i(⊥,⊥),⊥), and a FTRS: R =
{H(time(x, y)) → time(H(x), y), H(0(x, y)) → 1(x, y), H(1(x, y)) → 2(x, y),...,
H(23(x, y)) → 0(x, y)} with i = 1..23 ∈ Fbin.

Here we want to verify if time(i(⊥,⊥),⊥) has i = 1..23 ∈ Fbin by launch-
ing a test Rtest = {Inv(time(x, y)) → time(Inv(x), y), Inv(0(x, y)) → 0(x, y),
Inv(1(x, y)) → 1(x, y),..., Inv(23(x, y)) → 23(x, y)}.

1. Tree Arbiter Protocol. In paper submitted to FMCAD2010.
We have another solution: Compute Inv = InvOnlyT (R⋆(init)):
InvOnlyT (a(x, y)) → a(InvOnlyT (x), InvNoT (y))

InvOnlyT (a(x, y)) → a(InvNoT (x), InvOnlyT (y))

InvOnlyT (t(x, y)) → t(InvNoT (x), InvNoT (y))

InvNoT (a(x, y)) → a(InvNoT (x), InvNoT (y))

InvNoT (⊥) → ⊥

Functional Term Rewriting Systems 29

with a ∈ {i, r, b}

We also show how we can find this results in TRS: We must use markers
that always provide an explosion of system states.
Let begin from the bottom and go upward step by step, we will replace each
node by ”conflict” if all of his children are ”onlyt” or at least one is ”conflict”,
by ”not” if all of his children are ”not”, and by ”onlyt” in otherwise.
TRS: a(⊥,⊥) → not(⊥,⊥) with a ∈ {i, r, b}
t(⊥,⊥) → onlyt(⊥,⊥)

a(conflict(x, y), z) → conflict(conflict(x, y), z)
a(x, conflict(y, z)) → conflict(x, conflict(y, z))

a(onlyt(x, y), onlyt(z, w))
→ conflict(onlyt(x, y), onlyt(z, w))
t(onlyt(x, y), onlyt(z, w))
→ conflict(onlyt(x, y), onlyt(z, w))

a(not(x, y), not(z, w)) → not(not(x, y), not(z, w))
t(not(x, y), not(z, w)) → onlyt(not(x, y), not(z, w))

a(not(x, y), onlyt(z, w)) → onlyt(not(x, y), onlyt(z, w))
a(onlyt(x, y), not(z, w)) → onlyt(onlyt(x, y), not(z, w))

t(not(x, y), onlyt(z, w)) → conflict(not(x, y), onlyt(z, w))
t(onlyt(x, y), not(z, w)) → conflict(onlyt(x, y), not(z, w))

2. Percolate Protocol. An initial set E0 can be depicted in the figure 5.

Fig. 5: Initial set E0

We are interested in tree containing only labels ”n”, ”p” and ⊥ (see the
figure 6):

E1 = (R⋆
1(E0) ∩ T ({n, p,⊥})) = Inv(Percolate(E0)).

Corresponding FTRSs is decribed below: Inv(⊥) → ⊥

Inv(p(x, y)) → p(Inv(x), Inv(y))

30 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

Inv(n(x, y)) → n(Inv(x), Inv(y))

Finally, we consider the sub tree whose root is labeled by ”p”:

E′
1 = (E1 ∩ {p(t1, t2)|t1, t2 ∈ T }) = P (E1).

where P (p(x, y)) → p(x, y).
For conclusion, E′

1 6= ∅ means that at least one of the leaves has value ”p”,
E′

1 = ∅ means that all leaves have value ”n”.

Fig. 6: E′

1 = Inv(Percolate(E0))

3. Leader Election Protocol. From the result of the first phase (see the
figure 6), we prepare for the second phase by by marking root by a label ”c”
(see E”1 the figure 7).

Fig. 7: Initial set E”1 of the second phase

In the second phase we tried to go down and selected the candidate (labeled
by ”p”) if possible: E2 = R⋆

2(E”1) = Election(E”1).
From the result of the second phase R⋆(E”1), we are interested in tree
having a path only ”c” from root to leaf. The filtration is computed by
E′

2 = Inv(E2).
EFTRSs is decribed below:
O(a(x, y)) → a(x, y) with a ∈ {n, p}

Inv(⊥) → ⊥

Functional Term Rewriting Systems 31

O(⊥) → ⊥

Inv(c(x, y)) → c(O(x), Inv(y))

Inv(c(x, y)) → c(Inv(x), O(y))

This trees set E′
2 is depicted in the figure 8.

We also show how we can find this results in TRS: We can count the number
of ”c” in the leaves, etc.
We have another solution: We begin from the bottom, replace each label ”c”
by ”o” and go back step by step. The sub tree that has a root labeled ”o”
is the result we need but now it is tree having a path where there are only
the labels ”o” from root to leaf.
TRS: c(⊥,⊥) → o(⊥,⊥)

c(o(x, y), z) → o(o(x, y), z)

o(x, o(y, z)) → o(x, o(y, z))

FTRS:
– Generated rules O(o(x, y)) → o(x, y)

O(⊥) → ⊥
H(c(x, y)) → o(O(x), y)
H(c(x, y)) → o(x, O(y))

– Circulation H(c(x, y)) → c(H(x), y)
H(c(x, y)) → c(x, H(y))

– Fixed point Inv(x) → x
Inv(x) → Inv(H(x))

Finally, we consider the sub tree whose root is labeled by ”o”.

E”2 = (E′
2 ∩ {o(t1, t2)|t1, t2 ∈ T (Fbin)}) = O(E′

2).

where O(o(x, y)) → o(x, y)

Fig. 8: E2 = Inv(Election(E”1))

This tree is exactly liked the set of trees in the figure 8 except that the path
of labels ”c” is replaced by the path of labels ”o”.

B.3 Experimental results of TRSs, FTRSs and EFTRSs

In this section, we aim at comparing our EFTRS Model-checker (written in
JAVA) with two available tools like timbuk ([30], downloadable from
http://www.irisa.fr/celtique/genet/timbuk/), maude([26], downloadable from
http://maude.cs.uiuc.edu), etc by testing on some communication protocols [1,
37] like Percolate Protocol, Leader Election Protocol and Tree Arbiter Protocol.

32 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

Hereafter reported results were obtained on a PC 1.7GHz 1GB RAM. More
details of the representations of tests in Timbuk, Maude can be found in Section
C.

1. Tree Arbiter Protocol. These models are decribed in the paper. We begin
by compute R⋆(v) without the requests rules.
In the below table the computation time is computed by second. It should
be noted that on the table the exponential increase of the model size N leads
to the drammatical increase of reachability configuration number #Confs.

N #Confs Timbuk Maude EFTRS

25 43264 56.430 3.672 N/A
210 - > 3h > 3h N/A

TRSs

N/A means that our EFTRS model-checker does not support for TRSs and
FTRSs.

N #Confs Timbuk Maude EFTRS

25 43264 > 3h 82.373 N/A
210 - - > 3h N/A

FTRSs

Maude is efficient in either TRS or FTRSs while Timbuk can not realize
FTRSs and EFTRSs.

N #Confs Timbuk Maude EFTRS

25 43264 > 3h 379.816 0.139
210 4.758 E+16 - > 3h 0.184
220 2.173 E+63 - - 0.218
250 8.591 E+383 - - 0.308

2150 1.929 E+3409 - - 0.634
2250 8.648 E+9444 - - 1.075
2350 7.732 E+18490 - - 1.418
2450 1.379 E+30547 - - 1.809

EFTRSs

Maude for EFTRSs are broken very soon while EFTRSs-checker latency re-
mains quasi constant for this model. It can be explained by the speeding up
of LFP approach intergrated in our EFTRSs-checker.

In the other hand, we also have Benchmarks of the model with the requests
rules.

N #Confs Timbuk Maude EFTRS

25 8.539 E+8 > 3h > 3h N/A
210 - - - N/A

TRSs

Functional Term Rewriting Systems 33

This problem now becomes so difficult that neither Maude nor Timbuk can
reach to the model size N = 25.

N #Confs Timbuk Maude EFTRS

25 8.539 E+8 > 3h > 3h N/A
210 - - - N/A

FTRSs

But LFP technique still brings to our checker a surprise performance 3 to
reach to the model size N = 2400.

N #Confs Timbuk Maude EFTRS

25 8.539 E+8 > 3h > 3h 0.109
210 1.989 E+273 - - 0.196
220 5.350 E+278807 - - 0.256
250 ? - - 0.430

2100 ? - - 0.789
2200 ? - - 1.453
2300 ? - - 2.137
2400 ? - - 2.866

EFTRSs

2. Percolate Protocol. Their descriptions and models occur in Section B.1.

N #Confs Timbuk Maude EFTRS

25 11047 0.138 1.479 N/A
210 8.445 E+135 24.179 > 3h N/A
220 - > 3h - N/A

TRSs

For this example, Timbuk has alway the best performance in either TRSs or
FTRSs.

N #Confs Timbuk Maude EFTRS

25 11047 0.380 6.804 N/A
210 8.445 E+135 2.956 > 3h N/A
220 - > 3h - N/A

FTRSs

N #Confs Timbuk Maude EFTRS

25 11047 0.165 19.041 0.018
210 8.445 E+135 0.555 > 3h 0.053
220 4.508 E+139402 248.830 - 0.102
250 ? > 1G - 0.139

2100 ? - - 0.183
2200 ? - - 0.293
2500 ? - - 0.396

3 The configurations count is noted ”?” when the library java.math.BigDecimal we
used can not return the result within three hours.

34 Yohan Boichut, Jean-Michel Couvreur, Duy-Tung Nguyen

EFTRSs

Like the Tree Arbiter Protocol, EFTRSs-checker latency also remains quasi
constant while the others are broken very soon. It can be explained by the
speed up of LFP approach for EFTRSs.

3. Leader Election Protocol. Their descriptions and models occur in Sec-
tion B.1. The performance of the LFP approach is shown on the table below
with the Election Leader Protocol. Notice that in the worst case, the problem
size (2n) will produce 2(n−1) election possibilities. N/A in the below table
means that our EFTRS model-checker does not support for TRSs.

N #Confs Timbuk Maude EFTRS

25 16 0.159 0.014 N/A
210 512 7.595 71.981 N/A
220 - > 3h > 3h N/A

TRSs

Like the Tree Arbiter Protocol, the tables also show that Timbuk tool is
efficient in TRS but it can not realize FTRSs and EFTRSs as Maude.

N #Confs Timbuk Maude EFTRS

25 16 > 3h 0.457 N/A
210 512 - > 3h N/A
220 5.243 E+5 - - N/A

FTRSs

N #Confs Timbuk Maude EFTRS

25 16 > 3h 0.920 0.093
210 512 - > 3h 0.159
220 5.243 E+5 - - 0.256
250 5.629 E+14 - - 0.956

2100 6.338 E+29 - - 3.194
2200 8.035 E+59 - - 18.355
2300 1.019 E+90 - - 57.430
2400 1.291 E+120 - - 138.699

EFTRSs

The tables also shows that our EFTRS model-checker is alway efficient than
Maude.

C Timbuk, Maude tests

This section we show how we can build the tests in Timbuk, Maude. Here is the
representations of tests in Timbuk, Maude:

– Timbuk There is no problem in classic TRSs but we must add the equations
Rules H(H(X))=H(X) to ensure the termination of the fixpoint in FTRSs.

– Maude There is no problem in classic TRSs but if we want to use the fixpoint
in FTRSs, we should define Fbin and FNT to ensure the termination.

Functional Term Rewriting Systems 35

C.1 Timbuk

1. Classical TRS.
2. FTRS with Timbuk. Add the equations Rules H(H(X))=H(X) to ensure

the termination of the fixpoint.

F (X) ->X

F (X) ->F (H (X))

3. EFTRS with Timbuk. Add the equations Rules H(H(X))=H(X) to ensure
the termination of the fixpoint.

F (b (X,Y)) ->b (X,Y)

F (t (X,Y)) ->t (X,Y)

F (b (X,Y)) ->F (H (b (X,Y)))

F (t (X,Y)) ->F (H (t (X,Y)))

Further details see at http://eftrs.svn.sourceforge.net/viewvc/eftrs/timbuk/

C.2 Maude

load arbiter.frs.maude$

search F(t(r(T,T),r(T,T))) =>* t(X:Terminal, Y:Terminal) .

1. Classical TRS.
2. FTRS with Maude. We should distinguish reducible and irreducible sym-

bols to ensure the termination.

rl F (X) =>X .

rl F (X) =>F (H (X)) .

3. EFTRS with Maude. We should distinguish reducible and irreducible
symbols to ensure the termination.

rl F (b (X,Y)) =>b (X,Y) .

rl F (t (X,Y)) =>t (X,Y) .

rl F (b (X,Y)) =>F (H (b (X,Y))) .

rl F (t (X,Y)) =>F (H (t (X,Y))) .

Further details see at http://eftrs.svn.sourceforge.net/viewvc/eftrs/maude/

