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Abstract

In this paper we focus on semi-supervised dimensionality reduction. Projecting and visual-
izing objects in a low dimension space is a current data analysis task. From another point of
view, several works have been conducted recently, that constrain the projection space in order to
optimize a given criteria (e.g. classification according to nearest neighbors). Nevertheless, none
of those offers a satisfying interaction level. We thus propose an approach that offers to the user
the ability to interactively add knowledge in the form of (di)similarity constraints among objects,
when those appear either to close or to far in the current observation space. Such constraints can
be added iteratively, the projection being modified after each new constraint. We propose several
kinds of constraints and present a resolution method that derives from PCA.

Experiments have been performed with both synthetic and usual datasets. They show that
a satisfying representation (w.r.t a given quality criterion) can be obtained with a small set of
constraints.

1 Introduction
Machine learning techniques do generally aim at making out, according to a given objective, what is
relevant in a given amount of data. Automated classification, both supervised and unsupervised, does
especially fit to this definition. Objects to be classified are usually described by a -potentially large-
set of features, which might be noisy, redundant, or simply non relevant according to the expected
classification. Moreover, a large set of features might affect the readability of the classification
criteria (as far as the underlying method offers readability).

Two kinds of approaches can be used to drop down the number of features. The first one, named
feature selection [7], consists in choosing which features are the most relevant according to a given
criteria. The second one, named dimensionality reduction, consists in combining the original fea-
tures into a much smaller set of synthetic variables. These latter are computed in order to limit the
distortion, in term of global distribution of objects, amongst the original and resulting spaces. We
will hereafter use equivalently the terms of feature and variable. We should underline that dimen-
sionality reduction is sometimes considered as being a subcase of feature selection (namely, a filter
method) [3].

In this paper we will focus on dimensionality reduction methods, as they often lead to a much
restricted set of features at the price of a reasonable lost of information. As a consequence, machine
learning (distance-based comparison, estimation of gaussian mixtures,. . . ) can be achieved at a lower
cost, while visualization in a two- or three-dimensional space becomes available. Duality amongst
classification and visualization is a remarkable aspect of dimensionality reduction: visualization can
be considered as an intuitive tool, somehow open to non-expert users, while automated classification
offers a quantitative and objective evaluation of the projection technique.
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Many such approaches have been developed during the past decades, one of the most famous
being Principal Component Analysis (PCA). Let us remind that, this unsupervised method does lin-
early combine the original features, in order to produce orthogonal dimensions that preserve the
original variance at most. PCA is solved by identifying the most significant eigenvalues (and their
associated eigenvectors) of the objects’ covariance matrix in the original space. In the case of super-
vised classification, the label of training data will modify the criteria to be optimized. For instance,
the Linear Discriminant Analysis (LDA, [6]) will project data in order to maximize the Fisher’s
criteria, i.e. the ratio of inter- and intra-class variance.

In some cases, data might spread along a given topological structure. Methods based on the
concept of manifold have thus been developed. A first category of methods proceed in two steps:
pairs of nearby objects are first identified; a projection is then computed, that optimizes a global cri-
teria (e.g. variance) while limiting the distortion, in term of distance, for the pairs of nearby objects
identified during the first step. Projection can be computed either by determining eigenvalues [9],
or by solving a constrained system [8, 11]. A second group of methods uses a single step approach,
such as the Curvilinear Component Analysis [5], which aims at minimizing the sum of differences
between original and projected distance. A weight is associated to each pair of object. The closer
the two points in the original space, the greater the weight affected to their pair. As a consequence,
the projection will be distortion-tolerant for objects that are distant in the original space.

Concerning projection techniques, recent works have been focusing on semi-supervised meth-
ods, that imply distance criteria, either local or global, among objects that should belong to the same
class or not. Relevant Component Analysis and Large Margin Nearest Neighbors can be considered
as two representative proposals for this domain.

Relevant Component Analysis [2] consists in a semi-supervised technique. Only a small subset of
objects is labeled, according to which the projection matrix has to be computed. To be more precise,
the user only indicates pairs of objects that belong to the same class (i.e. must-link constraints).
Using the transitive closure principle, the algorithm builds so-called chunklets, i.e. groups of objects
of the same class (we must remind that these chunklets do only contain a small subset of the input set
of objects X). An intra-chunklet covariance matrix Ĉ is built, that can either serve as a basis object
projection (Xnew = Ĉ−1/2X) or to compute a Mahalanobis distance d(x1,x2) = (x1−x2)tĈ−1(x1−x2).
As a variant, an intermediate dimensionality-reduction step, based on Ĉ, can e added.

Large Margin Nearest Neighbors (LMNN) is a supervised method that focuses on neighbor-
hood [10, 12]. It does first identify the neighbors of each point, in the original space, according to
a given radius. A set of constraints is then built, that expresses that each object should be closer to
its same-class neighbors than from its different-class ones. Such a constraint is based on a minimum
margin between the two kinds of neighbors. The authors implement this approach as a semi defi-
nite program, which produces a matrix M that serves as a basis for a Mahalanobis distance among
objects. From M, a low-dimension projection matrix L can be computed such that M = LtL.

Both RCA and LMNN show limitations. The number of constraints introduced in LMNN can be
large. Solving them might be costly, especially if classes are mixed in (some parts of) the original
space. RCA limits to must-link constraints, while other kinds of constraints could be used, that ex-
press that objects should be moved closer or away. Moreover, these techniques, as most of existing
techniques, use a static set of constraints. No additional knowledge can be added during the dimen-
sionality reduction step. We thus estimate that achieving both the simplicity of RCA and the power
of LMNN would be worth, especially if we can also propose an intuitive and iterative way to inject
knowledge .

In this paper we focus on semi-supervised learning, where objects are globally unlabeled. We
propose three kinds of constraints, both intuitive and easy to use:

• relative position of two objects : inter object distance is bounded by a (upper or lower) limit;

• relative position of two objects (b,c) according to a third one (a): distance(a, c)/ distance(a,
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b) is bounded.

• object neighborhood : a given object should be placed in the neighborhood of a given set of
objects. This can be seen as a generalization of the former case.

It should be possible to add all of these constraints iteratively. According to a 2- or 3D projection,
the user should be able to introduce constraints that indicate additional correction to the current
projection. For instance, when two “similar” objects appear far away one from the other.

We must underline that this approach aims at using distance constraints in order to reduce di-
mensionality so that object should be comfortably viewed in a 2- or 3D space. It thus differs from
RCA and LMNN, not only by its set of constraint types, but also by its obvious graphical interaction
abilities. On the contrary, it differs from classical visual exploration tools, such as Grand Tour and
Projection Pursuit [4], as it does not limit to moving the user’s point of view. Projection is directly
guided by the user.

This paper is organized as follows: in section 2, we formally describe the three kinds of con-
straints introduced. In section 3, we detail a solving mechanism based on the Uzawa algorithm.
Validation tests and their results are presented and discussed in section 4. We sum up and propose
various directions for further researches in section 5.

2 Constraints Formalization
Let a set of (observed) objects x1, ...,xn described in Rd , d being the dimensionality. In the remainder
we will denote as X = (x1, ...,xn)T the matrix of observed objects, where row i contains the features
describing object xi. We aim at finding a k-dimensional representation of these objects, k� d, such
that:

• information loss remains limited, which can be expressed as a maximal variance projection
(as in PCA),

• user-specified constraints are satisfied as much as possible.

k = 3 will be of particular interest, in order to offer a 3D graphical interface.
This representation will be achieved through a projection in a k-dimension subspace (k� d).

We must thus identify k vectors u1,u2 ... uk associated with the projection matrix L = (u1,u2, . . .uk),
such that the rows of X .L correspond to the projections of the original objects in the k-dimension
subspace. Let h(xi) = LT .xi the projection of object xi. In this context, the (squared) euclidean
distance among xi and x j after projection, d2(h(xi)h(x j)), can be expressed as:

d2(h(xi),h(x j)) = < h(xi)−h(x j),h(xi)−h(x j) > (1)
= (h(xi)−h(x j))T .(h(xi)−h(x j))
= (LT .xi−LT .x j)T .(LT .xi−LT .x j)
= (LT .(xi− x j))T .(LT .(xi− x j))
= (xi− x j)T .L.LT .(xi− x j) (2)

In the remainder, we will denote M = L.LT as the distance matrix. We will aim at solving this
dimensionality-reduction problem, while preserving variance at best, under the hereafter proposed
constraints.
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2.1 Relative Position of Two Objects (C2 Constraints)
Let us first consider the case, where a user wishes to modify the distance among two objects xa and
xb. Let d̃ the expected distance after modification. Two subcases can be identified :

• (C2c) xa and xb should be moved closer: d2(h(xa),h(xb))≤ d̃

• (C2a) xa and xb should be moved away: d2(h(xa),h(xb))≥ d̃

Such constraints can be expressed by a quadruplet (a,b, d̃,α), having α = 1 for constraints of type
C2c, and α = −1 for constraints of type C2a. Thus, the constraint corresponding to (a,b, d̃,α)
expresses:

α ∗ [d2(h(xa),h(xb))− d̃]≤ 0 (3)

The set of such constraints will be denoted as C2 in the remainder.

2.2 Relative Position of Two Objects Regarding a Third One (C3)
This second kind of constraint aims at modifying the relative position of a given object xc with
respect to two objects xa and xb. Two subcases might occur:

• xc should be moved closer to xa than xb, so that d2(h(xa),h(xc))≤ d2(h(xa),h(xb)). Let δ the
strength of this ratio: d2(h(xa),h(xc))≤ δ ∗d2(h(xa),h(xb))

• xb should be moved closer to xa than xc, so that d2(h(xa),h(xc))≥ d2(h(xa),h(xb)). Introduc-
ing a strength δ we have: d2(h(xa),h(xc))≥ δ ∗d2(h(xa),h(xb))

Let C3 the set of such constraints. Such a constraint can be defined as a quintuplet (a,b,c,δabc,α),
with α = 1 for the first subcase, α = −1 for the second one. Thus, if (a,b,c,δ ,α) ∈ C3, the
corresponding constraint can be expressed as:

α ∗ [d2(h(xa),h(xc))−δ ∗d2(h(xa),h(xb))]≤ 0 (4)

2.3 Neighborhood Modification (Cn)
This third kind of constraints aims at modifying the neighborhood of a given object xa. Let Nca
the current neighborhood of xa and Nea its expected neighborhood. In other terms, xa should both
get near the objects in Nea and away from those in Nca. This can be expressed through a set of
constraints on xa and objects in both neighborhoods.
Concerning Nea, the set of objects ka ∈ Nea is given by the user. Nca, the current neighborhood,
consists of the k nearest neighbors of xa in the source space. k can either be arbitrarily fixed (e.g. k =
3) or set to the value of ka. For the sake of simplicity, we consider that Nca∩Nea = /0. Neighborhood
modification constraints can be expressed as follows:

• ∀xi ∈ Nca, let dai the observed distance, in the current space, between xa and xi. The modified
distance is expected to be greater than the current one. This can be expressed as follows:
∀xi ∈ Nca d2(h(xa),h(xi))≥ β ∗dai , β being a parameter to be set (e.g. β = 5).

Let d(xa,xi), the distance between xa and xi in the source space (before any projection). By
definition, this distance is an upper bound of d(h(xa),h(xi)). Our constraint can thus be modi-
fied to express that d2(h(xa),h(xi)) should be close to d2(xa,xi): ∀xi ∈Nca d2(h(xa),h(xi))≥
γ ∗ d2(xa,xi) ,γ ∈ [0,1] being a parameter to be set (e.g. 0.75). We will use this formulation
hereafter.
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• Concerning objects in Nea, a first approach would consist in minimizing their distance to xa:
d2(h(xa),h(xi)). A second one would consist in giving a fixed upper bound on d2(h(xa),h(xi)),
using a constraint. We propose an upper bound based on the average distance dNea between
objects in Nea :

∀xi ∈ Nea d2(h(xa),h(xi))≤ ε ∗dVa

ε being a parameter to be set (e.g. 1.5). This kind of constraints is very similar to the one
defined for objects in Nca. We will thus use it hereafter.

Let Cn the set of constraints of this third kind. A constraint in Cn is a quintuplet (a, i,d,θ ,α) such
that:

α ∗ [(d(h(xa),h(xi))−θ ∗d)]≤ 0 (5)

with:

• θ = γ , α =−1 and d = d(xa,xi) for current neighborhood constraints, and

• θ = ε , α = 1 and d = dNea for expected neighborhood constraints.

3 Constraints Solving
Our global optimization problem can be expressed as:

MaxL ∑i, j(xi− x j)t .L.Lt .(xi− x j)
∀i, j < ui,u j >= δ (i, j)
∀(a,b, d̃,α) ∈C2 α ∗ [d2(h(xa),h(xb))− d̃]≤ 0
∀(a,b,c,δ ,α) ∈C3 α ∗ [d2(h(xa),h(xc))−δ ∗d2(h(xa),h(xb))]≤ 0
∀(a, i,d,θ ,α) ∈Cn α ∗ [d2(h(xa),h(xi))−θ ∗d]≤ 0

Each constraint uses d2(h(xa),h(xi)), which depends on the problem solution (i.e. the matrix L).
Once again, we can express this distance using the matrix formulation d2(h(xa),h(xi)) = (xa −
xi)t .L.Lt .(xa− xi) and note that:

d2(h(xa),h(xi)) = (xa− xi)t .L.Lt .(xa− xi) (6)
= ∑

j=1..k
ut

j.(xa− xi).(xa− xi)t .u j (7)

where (xa− xi).(xa− xi)t is a n×n matrix. Let Xa,i this matrix. Thus:
d2(h(xa),h(xi)) = ∑ j=1..k ut

j.Xa,i.u j
Unlike the constraint-free case, an iterative search of u1,u2 . . .uk does not apply any more, due to
the global nature of user-defined constraints: these latter should not be achieved on each projection
dimension independently, but rather globally in the projection space. Computing the k u j vector
must be processed simultaneously.
The criteria to be maximized can be expressed as:

∑
i, j

(xi− x j)t .L.Lt .(xi− x j) = ∑
j=1..k

ut
j.X

t .X .u j (8)
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Let us first consider the Lagrangian L of this problem, ignoring orthogonality constraints amongst
vectors u j:

L (L,λ ,µ,ψ,ρ) = ∑
j=1..k

ut
j.X

t .X .u j+ ∑
j=1..k

λ j(ut
j.u j−1)

+ ∑
(ai,bi,d̃i,αi)∈C2

µi ∗ (( ∑
j=1..k

ut
j.Xai,bi .u j)− d̃i)∗αi)

+ ∑
(ai,bi,ci,δi,αi)∈C3

ψi ∗ (( ∑
j=1..k

ut
j.Xai,ci .u j)

− (δi ∗ ( ∑
j=1..k

ut
j.Xai,bi .u j))∗αi)

+ ∑
(ai,ii,di,θi,αi)∈Cn

ρi ∗ ((( ∑
j=1..k

ut
j.Xai,ii .u j)−θ∗di)∗αi)

Let us derive L according to u j (to simplify the writing, we consider twice the derivative):

2
∂L (L,λ ,µ,ψ,ρ)

∂u j
= −X t .X .u j +λ j.u j + ∑

(ai,bi,d̃i,αi)∈C2

µiαiXai,bi .u j

+ ∑
(ai,bi,ci,δi,αi)∈C3

ψiαi ∗ (Xai,ci .u j−δi ∗ (Xai,bi .u j))

+ ∑
(ai,ii,di,θi,αi)∈Cn

ρiαi ∗ (Xai,ii .u j)

Let XC such that:

XC = X t .X− ∑
(ai,bi,d̃i,αi)∈C2

µiδiXai,bi

− ∑
(ai,bi,ci,δi,αi)∈C3

ψiδi ∗ (Xai,ci −δi ∗ (Xai,bi))

− ∑
(ai,ii,di,θi,αi)∈Cn

ρiαi ∗ (Xai,ii)

the partial derivative of L is then:

2
∂L (L,λ ,µ,ψ,ρ)

∂u j
=−XC.u j +λ j.u j (9)

We can notice that L can be expressed as:

L (L,λ ,µ,ψ,ρ) =− ∑
j=1..k

ut
jXC.uk + ∑

j=1..k
λ j(ut

j.u j−1) (10)

The partial derivative cancellation gives XC.u j = λ j.u j. In other words, solutions u∗j are eigenvectors
of matrix XC, associated to eigenvalues λ j. From this we can deduce two noticeable facts. First
although no orthogonality constraint was expressed, the solution vectors u j are orthogonal. Second,
the dual function q(λ ,µ,ψ,ρ) of our problem is:

q(λ ,µ,ψ,ρ) = MinLL (L,λ ,µ,ψ,ρ)
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Indeed, using the optimality conditions defined above:

q(λ ,µ,ψ,ρ) = MinL− ∑
j=1..k

ut
jXC.u j + ∑

j=1..k
λ j(ut

j.u j−1)

= MinL− ∑
j=1..k

uT
j .(λ ju j)+ ∑

j=1..k
λ j(ut

j.u j−1)

= MinL− ∑
j=1..k

λ j||u j||2 + ∑
j=1..k

λ j(||u j||2−1)

= MinL− ∑
j=1..k

λ j

||u j||2 = 1 being a constraint for the optimal solution.
Last, as the dual problem consists in maximizing the dual function, the optimal solution corresponds
to maximizing the sum of the k first eigenvalues of matrix XC, i.e. the λ j corresponding to them.
Nevertheless, to compute these eigenvalues we should give the value of the dual variables µ , ψ and
ρ , whereas they are currently unknown. Due to this, we propose to compute these latter by the mean
of the Uzawa iterative algorithm. We present this algorithm in the next section.

3.1 The Uzawa Algorithm
Uzawa algorithm was first introduced by [1]. Its main idea consists in determining a saddle point of
the Lagrangian by the mean of successive approximations. Basically, this algorithm considers the
following optimization problem:  MinxJ(x)

h(x) = 0
g(x)≤ 0

where h and g do actually refer to families of functions hi and g j. Its Lagrangian is thus:
L (x,λ ,µ) = J(x)+∑i λihi(x)+∑ j µ jg j(x)

Uzawa algorithm consists in setting the initial values of Lagrange coefficients (λ 0,µ0), then com-
puting the Lagrangian optimum, then modifying the coefficients according to this solution, and so
forth. It iterates until convergence (which is guaranteed).

1 - Set λ 0,µ0,
2 - Iterate for n≥ 0 (ρ is a parameter):

2.1 Compute solution xn for: MinxL(x,λ n,µn)
2.2 Update (λ n,µn) so that:

λ
n+1
i = λ n

i +ρ ∗hi(xn)
µ

n+1
j = max(0,µn

j +ρ ∗g j(xn))
2.3 Check for convergence: ||xn+1− xn||< ε

3.2 Implementation of the Uzawa Algorithm
In the context of our optimization problem, the Uzawa algorithm can be slightly simplified. λi do
not need to be approximated: the xn solutions being there the eigen vectors u1 . . .uk, the eigen values
are a direct consequence of them. We will thus only set values for coefficients µn, i.e., in our case,
µ and ψ .

Let µ0 = ψ0 = 0. The first iteration consists in a classical PCA, as XC = X t .X ,
Afterward, unsatisfied constraints will be used to modify the matrix XC: according to Uzawa

algorithm, if (g j(xn) ≤ 0) is not satisfied, then g j(xn) > O, which implies the following update:
µ

n+1
j = max(0,µn

j +ρ ∗g j(xn)), in order to verify µ
n+1
j > 0. XC will thus be computed according to
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g j(xn). This update of XC is rather intuitive: let us consider a C2 constraint: d2(h(xa),h(xb)) ≥ d̃.
If this constraint is not satisfied, when computing XC, we should add cXa,b (c being a constant) to
XT .X . Noticing that Xa,b is already present in XT .X , this update can be viewed as increasing the
“weight” of d2(h(xa),h(xb)) in the (unconstrained) criteria to be optimized. This weight will be
increasing as long as the constraint remains unsatisfied...

To sum up, XC is updated at each iteration by adding to it a set of matrices cXa,b, and then
diagonalized.

We should underline that this approach allows for “soft constraints”, were convergence can be
achieved having some constraints still unsatisfied. This is of interest in the case of hard-to-achieve,
on even contradictory constraints.

4 Experiments
One of the main goals of the method we introduce consists in providing a graphical, interactive
tool, for which users can iteratively add constraints and visualize their impact on the distribution of
objects in the projection space. Nevertheless, the objective efficiency of a graphical tool is in essence
difficult to evaluate. We thus propose a validation protocol in order to evaluate whether a satisfying
projection can be achieved given a reasonably small number of constraints.

The criterion we propose consists in comparing the (3D) representation obtained with a reference
one. Let us consider a set of objects. Intuitively, a user will consider a projection as satisfying if
objects, that are very similar from her point of view, are projected nearby in the 3D space. In other
words, if there exists a relevant classification of the objects, then objects of the same class will
tend to be closer than objects of different classes. Fisher’s criterion is a very well known criterion
that precisely expresses this ratio: intra−class variance

inter−classes variance . Moreover, there exists a well known linear
projection method, that optimizes this criterion, i.e. the Linear Discriminant Analysis (LDA). As a
consequence, we could consider a LDA to produce a reference 3D organization of objects, regarding
a relevant criterion.

We must underline that our projection method is not supervised in the sense that the projection
mechanism is not aware of an existing classification of objects. It is semi-supervised in the sense
that the user introduces constraints, that might be an expression of a class property, which is only
materialized in the user’s mind. We thus propose the following protocol: The raw input dataset
consists of objects, described by a set of attributes together with a class attribute.

From this raw dataset we build an unlabeled one, i.e. we keep the description attributes while
removing the class’s one. This unlabeled dataset will serve as the input of our projection method.

Second, we simulate a user. This user is supposed to have some knowledge on the similarity
of objects. In a real case, this knowledge might be materialized by additional attributes, such as
pictures. In our simulated case, this knowledge comes from the class attribute. Our user is also
supposed to be able to observe some strong distortion between her classification knowledge and the
observed projection. We can suppose he would first try to overcome these strong distortions. The last
point we have to make clear consists in identifying these distortions. Fortunately, the LDA can be
considered as a very good tool, as it produces an optimal projection according to Fisher’s criterion.
For each pair of objects, we can compare its distance both in our projection and in the LDA one and
then obtain a sorted list of their distortions. The user will then identify the most noticeable distortion,
and introduce a (set of) constraint(s) in order to correct it.

Once again, the class knowledge is only used to simulate the user’s way of highlighting distor-
tions, not as a direct input for our algorithm.

Let dlda the distance in the 3D space corresponding to the projection according to the three most
significant dimensions of the LDA (the user being supposed to work in a 3D space). In the next
section we introduce the various kinds of constraints we propose to study.
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4.1 Constraints Generation
Let us remind that our initial projection corresponds to a PCA. Let d(a,b) the distance between
objects a and b after projection. We will implicitly consider we work on a three dimension projection.
We propose to study five kinds of constraints:

C2in f : in order to generate a d(a,b)≤ d̃ constraint, we must choose a pair of objects a and b along
with a threshold distance value d̃. As we expect to move closer together a and b (more pre-
cisely, their projections in the subspace), we should choose objects that are currently projected
far away from each other, while close according to dlda. Thus, the bigger distortion corre-
sponds to the pair such that d(a,b)

dlda(a,b) is maximal. The threshold distance is then d̃ = dlda(a,b);

C2sup : Similarly, we can introduce a constraint d(a,b)≥ dlda(a,b), considering the pair of objects
that minimizes d(a,b)

dlda(a,b) ;

C3lda : C3 constraints express as d(a,c)≤ δd(a,b). We thus have to choose three objects along with
a threshold. We propose to generate such constraints triples a,b,c such that, a and c belong to
the same class, and b belongs to another one. The goal thus consists in moving c (projected)
close to a (projected), depending on its distance to b. We thus choose the triple a,b,c that
maximizes d(a,c)

d(a,b) . The threshold is set to δ = dlda(a,c)
dlda(a,b) ;

C31 : Rather than setting δ according to the LDA, we set it to 1. The corresponding constraint is
then d(a,c)≤ d(a,b), i.e. c should be closer to a than b is to a. The triple a, b, c is chosen in
the same way as for C3lda;

C31/2 : δ is set to 1/2. This aims at observing a clear separation of classes.

In our experiments, each test does exclusively correspond to one of these categories of con-
straints. Constraints are introduced one by one according to the choice criterion defined above. We
first start from a PCA projection. We choose the first constraint according to that projection and then
compute a new projection. The second constraint is chosen according to this new projection, and so
on. We thus simulate a user that introduces a constraint, observes its effects, then add a second one,
and so forth.

4.2 Evaluation of Inertia on a Synthetic Dataset
We first consider a synthetic dataset, consisting of 75 objects. Each object corresponds to a word
described by 48 attributes: (14 syntactic ones, 4 categorical ones, 20 semantic ones and 10 noise
attributes). What makes this dataset interesting is the fact that various classifications can be achieved
(syntactic, semantic, categorical). Here we will consider the categorical classification. Words are
grouped into four disjoint classes, these classes being mostly induced by the 20 sementic attributes.

Our quality criterion is: Q = inter−class variance
total variance . The higher its value, the more moved away the

classes. This criterion corresponds to the 3D projection along the three most significant orthogonal
dimensions (which corresponds to a good visual organization).

Figure 1 presents the evolution of Q depending on the type and number of constraints. The upper
horizontal line corresponds to the value of Q obtained with LDA, i.e. the optimal value (94.2%).

We can notice that most of constraint categories improve this ratio compared to PCA, except
C2sup. Best results are achieved by C2in f constraints. Figure 2 presents the visual distribution of the
synthetic dataset resulting from 0, 5, 30 and 100 C2in f constraints respectively. The underlying con-
straints have been generated according to the formerly described protocol. To make this distribution
more understandable, each object has been colored and shaped according to the class it belongs to.
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Figure 1: inter−class variance
total variance depending on the number of constraints

We can observe that classes do move fast away as constraints are added. Concerning this dataset,
thirty constraints are enough to reach a near-optimal ratio. Defining one-by-one such a number of
constraints remains reasonable for a human user. Moreover, constraint solving is achieved in less
than one second, even with the case of one hundred constraints.

Concerning C2sup, this kind of constraints tends to move objects away, and should improve the
ratio. Nevertheless, no noticeable gain is achieved, and the ratio remains highly unstable, even with a
large number of constraints. Several elements can help to understand this counterperformance. First,
the original PCA maximizes the global variance. As a consequence, most of the work consisting in
moving objects away from each other has already been done. On the contrary, C2in f constraints
(and others) introduce constraints that tend to move objects closer, which is a criterion that was out
of the scope of PCA. Second, viewing the 3D projection highlights the impact of C2sup constraints.
Figure 3 presents the visual distribution of the synthetic dataset resulting from 50 and 300 C2sup
constraints respectively. Once again, the underlying constraints have been generated according to the
former protocol, and for the sake of readibility, each object has been colored and shaped according
to the class it belongs to. One can notice that using 50 C2sup constraints tends to globally stretch
the underlying classes along axes that come through or near the origin. Considering that most of
constraints concern objects that do not belong to the same class, we can easily see that objects will
organize according to a set of axis as “orthogonal” one from each other as possible. Classes will be
somehow characterized according to these axes, and barycenters will be globally moved away. But
the lack of contracting constraints such as C2in f will tend to let objects spread along the axis and
mix nearby the origin. With a larger set of constraints (i.e. 300) the graphical organization becomes
readable. Neverthless, observing the inter−class variance

total variance ratio, we can notice that this latter punctually
reaches 80 %, but still oscillates mostly between 30 and 70 % when the number of constraints grows
up to 300 and above.

We suggest that C2sup constraints might be more of interest in the case of datatets containing
many attributes that, while not consisting of noise, are still irrelevant regarding the classification
task, and thus the spatial distribution expected. In this case, moving objects away could help in
projecting objects in a manner that deeply differs from the one of PCA.

As best results are achieved by C2in f constraints, remaining tests will be based on this kind of
constraint.
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No constraint 5 constraints

30 constraints 100 constraints

Figure 2: 3D projections with a growing number of C2in f constraints
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50 constraints (highlight: classes’ stretch) 300 constraints (classes remain confused)

Figure 3: 3D projection with C2sup constraints

4.3 Evaluation of Inertia on Standard Datasets
We conducted the same kind of tests on six classical machine learning datasets, namely breast can-
cer, glass, iris, wine, yeast and zoo, available at the UCI repository. Figure 4 presents the value of
Q depending on the number of C2in f constraints. We can observe that these results are similar to the
ones observed with the synthetic dataset.

In order to present these results on a single figure, all values are relative to the quality value
QLDA achieved using LDA. Curves thus correspond to the evolution of the ratio Q/QALD, a value
near 100% thus corresponding to a value of the fisher criterion very similar to the one achieved with
LDA.

The curve profiles are quite similar to the one of the synthetic dataset. For most of datasets, a
optimal value of the quality criterion is reached using a very reduced set of constraints, except breast
cancer, where a set of about thirty constraints is required. An anomaly seems to occur with glass
where the quality criterion is above QLDA, whereas this latter is theoretically optimal. This can be
explained by computation limits. The total variance is here very low with LDA (0.18 vs 1.89 with our
approach). Thus the projection obtained trough LDA corresponds to a very low global dispersion,
and might be inaccurate due to the effect of floating point calculus on the matrix inversion process.

4.4 Flexibility of our Approach
In the former sections, the simulated user does systematically choose to put a constraint on the higher
distorsion observed w.r.t. the LDA projection. Such a strict strategy is likely to be inapplicable in the
case of a real world user. Figure 5 presents the evolution of inter−class variance

total variance with a relaxed strategy
: at each step, the user does not choose the higher distorsion, but the hundredth one in decreasing
order. We can observe that results remain quite similar to the ones on Figure 4. According to these
results, a real world user will reach a good projection as long as she chooses interesting distorsions
rather than the strictly most interesting ones w.r.t. her quality criterion (which might also not be
clearly formalized).
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total variance (UCI datasets)
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Figure 5: Evolution of inter−class variance
total variance (smoth constraint choice algorithm)

4.5 Additional Experiments
Here we propose two additional experiments based on the UCI datasets, concerning how distorsions
evolve while adding constraints. Figure 6 presents the evolution of the sum of observed distorsions
w.r.t. the ALD projection. As datasets are very different, this sum differs greatly among them, and
we thus use a log scale for the Y-axis. We can globally observe that, this sum decreases fast and then
remains stable after a number of constraints that seems proportional to the initial sum of distorsions.
One could thus consider that this initial sum is a good indicator of the number of constraints to define.
However, in the case of a real, semi-supervised use, there is no formal definition of the optimal
projection, and thus no way to automatically estimate (the initial sum of) distorsions. Nevertheless,
from this experiment we can estimate that a consistent choice of a small set of constraints will tend to
reduce the overall distorsions. We must underline that results using the relaxed strategy introduced
in Sect. 4.4 are similar to those presented here (based on the strict choice of the higher distorsion at
each step).

Figure 7 highlights the fast decreasing of distorsions when constraints are added. In order to draw
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Figure 7: Evolution of the number of strong distorsions

this curve, we first computed the initial set of distorsions (without constraints), and kept the value
of the thousandth one in decreasing order. We thus observed, after each addition of a constraint,
the number of distorsions the value of which remained over this threshold. We can observe that this
number does globally decrease fast. We can thus estimate that each new constraint has a great global
influence on distorsions. Once again, we obtained similar results using the relaxed strategy.

5 Summary
In this paper we proposed a dimensionality reduction method, that allows an iterative and interactive
definition of object positioning in the projection space. We observed that, for various datasets,
adding a rather small set of constraints can lead to a satisfying projection, according to a user-given
criteria. As a consequence, we estimate that such a method could be considered as a good way to
diffuse dimensionality reduction techniques to a much wider population of non-specialist end users.
Moreover, we introduce the concept of a progressive definition of constraints, and show how to solve
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it. As this concept helps to limit the size of the constraint set, we consider it as a promising approach.
Computing time is an important aspect of an interactive tool. We must notice that, while using a

standard laptop computer, processing remained quite fast, usually much order one second.
This work is part of a French government ANR research grant. One goal of this project consists

in proposing a visual organization of various middle age writing styles. In this context, each object
consists in a picture (containing a sample writing), processed as a set of descriptors, these latter being
automatically extracted from the picture. Most of these pictures are not associated to a class label,
but paleographers are able to quantify the similarity between two writing styles. A validation with
these experts is ongoing. Some additional types of constraints could be consequently introduced.
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