
Heuristic Method for Discriminative Structure Learning of Markov Logic Networks

Quang-Thang DINH
LIFO, Universit́e d’Orléans, France
Email: thang.dinh@univ-orleans.fr

Matthieu EXBRAYAT
LIFO, Universit́e d’Orléans, France

Email: matthieu.exbrayat@univ-orleans.fr

Christel VRAIN
LIFO, Universit́e d’Orléans, France

Email: christel.vrain@univ-orleans.fr

Abstract—Markov Logic Networks (MLNs) combine Markov
Networks and first-order logic by attaching weights to first-
order formulas and viewing them as templates for features
of Markov Networks. Learning a MLN can be decomposed
into structure learning and weights learning. In this paper,
we present a heuristic-based algorithm to learn discriminative
MLN structures automatically, directly from a training dat aset.
The algorithm heuristically transforms the relational dataset
into boolean tables from which to build candidate clauses for
learning the final MLN. Comparisons to the state-of-the-art
structure learning algorithms for MLNs in the three real-world
domains show that the proposed algorithm outperforms them
in terms of the conditional log likelihood (CLL), and the area
under the precision-recall curve (AUC).

Keywords-Markov Logic Network, Structure Learning, Dis-
criminative learning, Relational Learning.

I. I NTRODUCTION

Markov Logic Networks (MLNs) [11] are a first-order
logic extension of Markov Networks (MNs). A Markov
Network is a graph, where each vertex corresponds to a
random variable, each edge indicates that two variables
are conditionally dependent. Each clique of this graph is
associated to a weight. In the case of boolean random
variables, this weight is a real number, the value of which
is directly log-proportional to the probability of the clique
(i.e. the conjunction of its random variables) to be true. A
Markov Logic Network consists of a set of pairs (Fi,wi),
whereFi is a formula in First Order Logic (FOL), to which
a weightwi is associated. The higherwi, the more likely
a grounding ofFi to be true. Given a MLN and a set of
constantsC = {c1, c2, . . . c|C|}, a MN can be generated.
The nodes (vertices) of this MN correspond to all ground
predicates that can be generated by grounding any formula
Fi with constants ofC. This set can be restricted when
constants and variables are typed.

Both generative and discriminative learning can be ap-
plied to MLNs. Regarding MLN weights learning, genera-
tive approaches optimize the log-likelihood or the pseudo-
log-likelihood (PLL) [11] using the iterative scaling [10]
algorithm or a quasi-Newton optimization method such
as theL-BFGS [12] algorithm. The PLL of the possible
worlds x given by logPw(X = x) =

∑n

l=1 logPw(Xl =
xl|MBx(Xl)), whereXl is a ground atom,xl is the truth
value (0 or 1),MBx(Xl) is the state of the Markov blanket

of Xl in x. Discriminative approaches rely on the opti-
mization of the conditional log-likelihood (CLL) of query
given evidence [11]. LetY be the set of query atoms and
X be the set of evidence atoms, CLL ofY given X is:
logP (Y = y|X = x) = log

∑n

j=1 logP (Yj = yj |X = x).
Methods for MLN discriminative weights learning were
based on the voted-perceptron algorithm [13], the scaled
conjugate gradient method (PSCG) [8], the max-margin [4].
All these algorithms only focus on parameter learning, the
structure being supposed given by an expert or previously
learned. This can lead to suboptimal results when these
clauses do not capture the essential dependencies in the
domain in order to improve classification accuracy [2]. This
hence requires to learn MLN structure directly from data.
Further, MLN structure learning is a very important task
because it allows us to discover novel knowledge. However,
it is also a challenging one because of its super-exponential
search space, hence only a few practical approaches have
been proposed to date. They are the top-down approaches
(e.g., Kok and Domingos, 2005), the bottom-up BUSL
algorithm (e.g., Mihalkova and Mooney, 2007), the ILS
(Iterated Local Search) algorithm (e.g., Biba et al. 2008),
the LHL (Learning via Hyper-graph Lifting) algorithm (e.g.,
Kok and Domingos, 2009) for generative structure learning.
For discriminative structure learning, to the best of our
knowledge, there only exists two systems. The first one uses
the ALEPH system to learn a large set of potential clauses,
then learns the weights and prunes useless clauses [5]. The
second method, called Iterated Local Search - Discriminative
Structure Learning (ILS-DSL), chooses the structure by
maximizing the CLL and sets the parameters by the L-BFGS
algorithm maximizing the PLL [2].

In this paper we propose a heuristic approach, in order to
learn discriminatively the structure of a MLN. This approach
consists of three main steps. First, for each query predicate,
the algorithm applies a heuristic technique to build a set of
variable literals, then for each variable literal of the query
predicate it heuristically transforms the learning dataset to a
boolean table. Second, by applying the Grow-Shrink Markov
Network (GSMN) [14] algorithm to these boolean tables,
the algorithm extracts a set oftemplateclauses. We define a
template clause as a disjunction of positive variable literals.
Last, candidate clauses are built from the template clauses
to add into the MLN.

In the following, we present our method in Section II,
Section III is devoted to experiments and Section IV is the
conclusion of this paper.

II. PROPOSAL OF AHEURISTIC METHOD

Let us first recall some basic notions of first order logic
and make precise the task at hand. We consider a function-
free first order language composed of a setP of predicate
symbols, a setC of constants and a set of variables. Anatom
is an expressionp(t1, . . . , tk), wherep is a predicate andti
are either variables or constants. Aliteral is either a positive
or a negative atom; it is aground literalwhen it contains no
variable; it is avariable literal when it contains all variables.
A clauseis a disjunction of literals; aHorn clausecontains
at most a positive literal. Two ground atoms are said to
be connected if they share at least one ground term (or
argument). A clause (resp. a ground clause) isconnected
when there is an ordering of its literalsL1 ∨ . . . ∨ Lp,
such that for eachLj, j = 2 . . . p, there exists a variable
(resp. a constant) occurring both inLj and Li, i < j. A
variabilization of a ground clausee, denoted byvar(e), is
obtained by assigning a new variable to each constant and
replacing all its occurrences accordingly.

We have as inputs a database DB composed of true/false
ground atoms and a query predicate QP (several query
predicates can be given). A set of clauses defining back-
ground knowledge may also be given. We aim at learning
a MLN that correctly discriminates between true and false
groundings of QP. We describe in this section our algorithm
for Heuristic Discriminative Structure learning forMLNs,
calledHDSM.

In a MLN, if two variable literalsLi andLj occur in a
same clause, then they are conditionally dependent andLi

must be in the Markov blanket ofLj (or Li is one of the
neighbors ofLj), and vice versa. As a basis of our algorithm,
a MLN is built from the training dataset by first forming
a set of possible variable literals, and then finding links
among them (in the discriminative fashion, it means finding
neighbors of each variable literal of the query predicate QP).
Template clauses are generated from each query variable
literal and its neighbors. Candidate clauses will be extracted
from template clauses. It is obvious that the set of possible
variable literals is as small as possible to save time for
constructing candidate clauses. However, this set is also large
enough to be able to describe relations of ground atoms in
the dataset as well as to compose good clauses.

We sketch the global structure of HDSM in Algorithm 1.
HDSM tries to find existing clauses containing query pred-
icate QP by building a set SL of variable literals, then
forming template clauses from SL, each of them has at least
an occurrence of QP. To build the set SL of variable literals,
HDSM constructs the largest possible set of connected
ground atoms corresponding to every true ground atom of
QP, then heuristically variabilizes them. We describe the

Algorithm 1 HDSM(DB, QP, MLN)

Set of template clausesSTC = ∅
for each query predicateQP do

Heuristically form a setSL of possible variable literals
for each variable literalLQP ∈ SL do

Build a boolean tableBT (LQP)
Create Template Clauses→ STC

end for
end for
Add clauses fromSTC into MLN

Return(MLN)

Algorithm 2 Form literals (DB, QP)
i = −1; mI = the number of true ground atoms of QP
for each true ground atomtga of QP do
i = i+ 1; Chains[i] = MakeChain(tga)

end for
SortChains by decreasingwidth
SL = V ariablize(Chains[0])
SL = SL∪ CaptureLiteral(Chains[j]), 1 ≤ j ≤ mI

Return(SL)

way this set SL is built in Subsection II-A. For each literal
LQP ∈ SL, HDSM generates a set of template clauses
from which it extracts a set of relevant candidate clauses.
A template clause is built from the variable literalLQP and
its neighbors. Once every predicate has been considered we
get a set of template clauses STC. To find the neighbors of
the variable literalLQP , HDSM correspondingly transforms
the relational dataset into a boolean table in order to apply
the GSMN algorithm. We present techniques to build the
boolean table in Subsection II-B and detail how template
clauses are composed in Subsection II-C. In Subsection II-D
we present how the set STC can be used to learn the MLN.

We must emphasize that our approach is, at a first
glance, somewhat similar to the principle underlying the
BUSL [9] algorithm. Both of them consist of three mains
steps: Transforming the relational dataset into the boolean
tables, building candidate clauses using these boolean tables
and putting clauses into the MLN. Methods using in the
first phase can be viewed as different propositionalization
approaches [15] inILP. As it is shown in [15], they are
a kind of incomplete reduction, hence the quality of the
boolean table affects the results of the next steps of both
approaches. Our approach differs from BUSL not only in the
first step but also in the remaining ones. In Subsection II-E
we will then discuss these differences in more details.

A. Forming Variable Literals

Finding variable literals is difficult since the database is
only a set of ground literals (no templates are given), hence
a heuristic technique is used. Given a training database DB

and a predicate QP, Algorithm 2 returns a set SL of variable
literals. For each true ground atomtga of QP in DB, the
set of ground atoms of DB connected totga is built by
the functionMakeChain. Such a set is called achain, the
width of a chain being the number of ground atoms in it.
The set SL is then built so that for each chain, there exists
a variabilization of it with all variable literals belonging to
SL. It must be noted that the functionMakeChainwill stop
whenever all the ground atoms connected totga are already
in the chain, hence it does not take so much time even when
the dataset is large.

Regarding this variabilization problem, the replacement
of constants by variables can be achieved using various
strategies such assimple variabilization, complete variabi-
lization, etc. Here, we use thesimple variabilization strategy
to variabilize each chain ensuring that different constants in
a chain are replaced by different variables.

In more details, the algorithm initially variabilizes the first
element chains[0](the largest one) using functionVariabilize.
Different constants in chains[0] are replaced with different
variables. The resulting variable literals form the basis of the
setSL. The remaining elements ofchainsare then explored
by decreasingwidth. FunctionCaptureLiteral heuristically
carries their variabilization ensuring that there exists a
variabilization s.t.var(chain(j)) ⊆ SL, 1 ≤ j ≤ mI,
wheremI is the number of true ground atoms of QP in the
DB. Each new element ofchainsbeing less wide than the
preceding ones, we can reasonably expect that the number
of new variables, and thus of variable literals introduced in
SL decreases rapidly. In other words, the existing patterns
of variable literals already stored in SL are more likely to
fit the new ones, hence the algorithm keeps the set SL as
small as possible.

B. Building Boolean Table

To facilitate the presentation, we use here concepts oflink,
g-chain, andv-chain. The link of two atomsg ands, denoted
by link(g,s), is a set of its shared arguments. Ag-chain (v-
chain) of ground (variable) literals starting from a ground
(variable) literalg1 is an ordered list of the ground (variable)
literals<g1, ..., gk, ...> such that∀i > 1, link(gi−1, gi) 6= ∅
and any shared argument in thelink(gi−1, gi) is not in the
link(gj−1, gj), 1 < j < i. The definitions of g-chain and v-
chain ensures that a g-chain or a v-chain is also a connected
clause. This is related to the relational pathfinding [16] and
the relational cliché [17].

The next step in our approach transforms the relational
database into a boolean table. For the task of discriminative
learning, this boolean table needs to catch as much informa-
tion related to the query predicate as possible. This boolean
table, calledMatrix, is organized as follows: each column
corresponds to a variable literal; each row corresponds to a
true/false ground atom of the query predicate. Let us assume
that the data concerning a given ground atomqr of QP is

stored in rowr. Let us assume that column c corresponds
to a given variable literalvlc. Matrix[r][c] = true means
starting fromqr we can reach a literal that is variabilized
as vlc. In other words, there exists at least a v-chainvc

containing the variable literalvlc, a g-chaingcr starting from
the ground atomqr, and a variabilization ofgcr such that
vc ⊆ var(gcr).

Let us consider a connected clauseC = A1∨A2∨· · ·∨Ak,
where the number of literals inC is k. Since the clause is
connected, from any literalAi, 1 ≤ i ≤ k we can reach
some other literalAj , 1 ≤ j ≤ k, j 6= i with at mostk
links. For instance, considering the clauseP (x)∨!Q(x, y)∨
R(y, z), R(y,z)can be reached fromP(x) through two links:
link(P(x),Q(x,y))and link(Q(x,y),R(y,z)). This implies that
to find information related to a query variable literalLQP

of the query predicate QP, we only need to consider the
subset of variable literals appearing in the setSV C = {v-
chains(LQP)}, which is much smaller than the complete
set SL, especially when the database is large.

For each variable literalLQP of QP, the algorithm finds
the setSV C of v-chains(LQP) from the set SL. Each
column of the boolean tableMatrix corresponds to a pre-
cise variable literal appearing inSVC. For each true/false
ground atomqga of QP, the algorithm fills values for the
corresponding row of the boolean table. It will take so
much time if we try to find all g-chains starting fromqga
then check the fitness of each g-chain to every v-chain
be cause the number of g-chains is much greater than the
number of v-chains. Here, we perform inversely by first
finding the set of v-chains then finding g-chains guided
by every v-chain. For eachv-chain(LQP), the algorithm
searches for everyg-chain(qga)to check whether it fits that
v-chain(LQP) (i.e. there exists a variabilization such that
v-chain(LQP) ⊆ var(g-chain(qga)). If it does, value at
every columnL is set to 1 (true) whereL is a variable
literal occurring in thev-chain(LQP). By this way, for each
v-chain(LQP), the algorithm has already known the chain
of continuous predicates, thus finding the set of g-chains
guided by thisv-chain(LQP) is much faster than finding
all arbitrary g-chains ofqga.

C. Creating Template Clauses

Let us remind that there exists a link between two variable
literals if they are conditional dependent. As a consequence,
we aim at building the Markov blanket of each query
variable literalLQP . For this purpose we propose, as in
[9], to use the Grow-Shrink Markov Network algorithm
(GSMN) [14], which is based on the Pearson’s conditional
independence chi-square (χ2) test to determine whether two
variables are conditional independent or not. The algorithm
applies GSMN on the boolean tableMatrix to find the
Markov blanketMB(LQP) of the query variable literal
LQP .

Having gotMB(LQP), the algorithm composes template
clauses. As we have mentioned above, a template clause is
simply a disjunction of positive literals. A set of template
clauses is created from the query variable literalLQP and
its neighbors, i.e. the variable literals forming its Markov
blanketMB(LQP). Each template clause is built fromLQP

and a subsetS ⊆ 2MB(LQP) such that this template clause
is also a connected clause.

D. Adding Clauses into the MLN

Candidate clauses are considered in turn. We build a
MLN consisting of this clause and the initial MLN given as
input (which might be empty). A weight learning algorithm
is then applied on the resulting MLN. The score of the
weighted MLN is then measured by computing either its
CLL or WPLL (depending on the testing purpose) given the
database DB. Because every clause created from a template
clause composes the similar cliques of the network, for each
connected template clause, HDSM only keeps at most one
clause, which is the one associated to the MLN having the
highest score.

The final candidate clauses are sorted by decreasing score
and considered in turn in this order. Each of them is added to
the current MLN (for the first clause considered, this MLN
is initiated to the input MLN). The weights of the resulting
MLN are learned and this latter is scored using the chosen
measure. Each clause that improves the score is kept in the
current MLN, otherwise it is discarded.

Finally, as adding a clause into the MLN might drop down
the weight of clauses added before, once all clauses has been
considered, HDSM tries to prune some clauses of the MLN.
As was done in [7], this pruning is based on their weight: a
clause with a weight less than a givenminWeightis discarded
from the MLN if removing it increases the MLN’s score.

E. Discussion

The outline of our method, at a first glance, presents
several similarities with the generative structure learning
algorithm BUSL [9]. Nevertheless, it differs deeply in the
ways to create the boolean tables, to compose the set of
candidate clauses and to put clauses into the MLN:
Creation of the boolean table:The boolean tables respec-
tively constructed by BUSL and our method are different in
the meaning of columns, hence in the meaning of values of
entries. Each column in the tableMP of BUSL for a TNode
which can be either a single literal or a conjunction of several
literals, while each column in the tableMatrix of HDSM for
a variable literal. For instance, starting from the ground atom
stu(a), knowingadvBy(b,a)and thenpub(t, b), BUSL would
produce three TNodest1 = {stu(A)}, t2 = {advBy(B,A)}
and t3 = {advBy(C,A), pub(D,C)}, while HDSM would
produce tree separated variable literalsl1 = {stu(A)}, l2 =
advBy(B,A)and l3 = pub(T,B). The number of TNodes in
BUSL can be very high, depending on the number of atoms

allowed per TNode, the size of the database and the links
existing amongst ground atoms. On the contrary, HDSM
produces a set of variable literals, enough for reflecting all
possible links amongst ground atoms. For ther-th ground
atom of the learning predicate,MP[r][t] = true if and only
if the conjunction of the set of literals int is true, while
Matrix[r][l] = true if there exists at least a g-chain starting
from ther-th ground atom and containing a ground atom ofl.
These differences influence the performance when applying
χ2-test and the GSMN algorithm.
Composition of the set of candidate clauses:BUSL
composes candidate clauses from cliques of TNodes hence it
could miss some clauses that are not in the cliques. HDSM
uses just the MB of the considering variable literal in order
to get a little more clauses. Moreover, candidate clauses in
BUSL must contain all the literals appearing in a TNode,
meaning that, concerning our example, bothadvBy(C,A)and
pub(D,C) of the TNode t3 occur together in the clause.
This might not be flexible enough as it might occur that
a relevant clause contains only one of these two literals. On
the contrary, HDSM just composes clauses from variable
literals.
Addition of clauses into theMLN: For each clique, BUSL
creates all possible candidate clauses then removes the
duplicated clauses and finally considers them one-by-one to
put into the MLN. HDSM just keeps at most one clause for
a template clause in the set of candidate clauses.

III. E XPERIMENT

A. Datasets

We use three publicly-available datasets1 called IMDB,
UW-CSE and CORA respectively in order of increasing
number of constants as well as increasing number of true
ground atoms in the dataset. IMDB dataset describes a movie
domain containing 1540 ground atoms of 10 predicates and
316 constants. In this dataset, we predict the probability of
pairs of person occurring in the relation WorkedUnder. UW-
CSE dataset describes an academic department consisting
of 2673 ground atoms of 15 predicates and 1323 constants.
We have chosen the discriminative task of predicting who is
advisorof who. CORA dataset is a collection of citations to
computer science papers including 70367 true/false ground
atoms of 10 predicates and 3079 constants. We learn four
discriminative MLNs, respectively according to four predi-
cates:sameBib, sameTitle, sameAuthor, sameVenue.

B. Systems and Methodology

HDSM is implemented over the Alchemy package using
the L-BFGS [12] algorithm maximizing PLL to set weights
and the CLL measure to choose clauses. We ourself perform
experiments to answer the following questions:

1Available at http://alchemy.cs.washington.edu

1) How does HDSM carry out with Horn clauses instead
of arbitrary clauses?

2) Is HDSM really better than the state-of-the-art algo-
rithms for discriminative MLN structure learning?

3) Is HDSM really better than the state-of-the-art algo-
rithms for generative MLN structure learning?

4) Is the boolean tables created by HDSM better than the
one created by BUSL?

To answer question 1, we configure to run HDSM twice
for performing respectively with Horn clauses (HDSM-H)
and with arbitrary clauses (HDSM-A). To answer question
2, we compare HDSM to the state-of-the-art discriminative
system ISL-DSL [2]. To answer question 3, we choose to run
the state-of-the-art generative system ILS [1] and also refer
to the results of LHL published in [6]. To answer question
4, we implement HDSM using the L-BFGS algorithm to set
weights and the WPLL measure to choose clauses, called
HDSM-W. HDSM-W also creates template clauses from
cliques and considers all possible clauses from a template
clause. We configure BUSL to run only for single predicates.
In this case, BUSL and HDSM-W are different only in the
step of building boolean tables, hence we can compare the
“good” of the boolean tables created by them.

For all the domains, we performed5-fold cross-validation.
We measured the CLL and the area under the precision-recall
curve (AUC). The CLL of a query predicate is the average
log-probability over all its groundings given evidence. The
precision-recall curve is computed by varying the threshold
above which a ground atom is predicted to be true. Param-
eters for the ILS-DSL and the ILS were respectively set as
in [1], [2]. We set the maximum number of literals per clause
to 5 for all the systems as it is shown in [2]. We used the
package provided in [3] to computeAUC. We ran our tests
on a Dual-core AMD 2.4 GHz CPU - 4GB RAM machine.

C. Results

We performed inference on the learned MLN for each test
fold, for each dataset using theLazy-MC-SATalgorithm. It
returns the probability for every grounding of the learning
predicate on the test fold, which is used to compute the
average CLL over all the groundings and the relative AUC.
Table I presents the average CLL, AUC measures for the
learning predicates over test folds for all the algorithms
estimating on the three datasets. It must be noted that, while
we used the same parameter setting, our results do slightly
differ from the ones in [2]. This comes from the fact that
we conducted inference using the Lazy-MC-SAT instead of
the MC-SAT algorithm, and in the training process ILS-
DSL only uses one of the training folds for computing the
CLL [2]. Table II exposes the average runtimes over train
folds for the datasets IMDB and UW-CSE, over four learning
predicates for the CORA dataset.

First, we compare HDSM-H to HDSM-A. We can easy
realize that HDSM-A performs only better than HDSM-

Table I
CLL, AUC MEASURES

Algorithms→ ISL BUSL HDSM-W

Datasets Predicates CLL AUC CLL AUC CLL AUC

IMDB WorkedUnder -0.036±0.006 0.312 -0.225±0.011 0.129 -0.035±0.007 0.315

UW-CSE AdvisedBy -0.031±0.005 0.187 -0.044±0.006 0.204 -0.029±0.008 0.215

SameBib -0.173±0.005 0.346 -0.325±0.009 0.229 -0.154±0.011 0.394

CORA SameTitle -0.144±0.009 0.415 -0.284±0.009 0.418 -0.127±0.006 0.411

SameAuthor -0.234±0.007 0.369 -0.356±0.008 0.347 -0.176±0.007 0.410

SameVenue -0.145±0.006 0.427 -0.383±0.010 0.276 -0.121±0.007 0.327

Algorithms→ ILS-DSL HDSM-H HDSM-A

Datasets Predicates CLL AUC CLL AUC CLL AUC

IMDB WorkedUnder -0.029±0.007 0.311 -0.028±0.006 0.323 -0.028±0.008 0.325

UW-CSE AdvisedBy -0.028±0.006 0.194 -0.023±0.004 0.231 -0.025±0.010 0.230

SameBib -0.141±0.009 0.461 -0.140±0.008 0.480 -0.140±0.011 0.480

CORA SameTitle -0.134±0.010 0.427 -0.110±0.007 0.502 -0.108±0.010 0.498

SameAuthor -0.188±0.008 0.560 -0.155±0.008 0.581 -0.146±0.009 0.594

SameVenue -0.132±0.009 0.297 -0.115±0.009 0.338 -0.115±0.011 0.342

Table II
RUNTIMES(HOUR)

Algorithms→ ILS ILS-DSL HDSM-H HDSM-A HDSM-W BUSL

IMDB 0.34 0.49 0.56 1.09 0.42 0.38

UW-CSE 2.28 4.30 7.00 9.30 8.56 8.05

CORA 28.83 30.41 33.71 50.15 38.24 34.52

H in several predicates in terms of both CLL and AUC.
HDSM-A is even worse than HDSM-H for the predicate
advisedBy (UW-CSE). It is a bit strange because HDSM-A
and HDSM-H share the same set of template clauses and
HDSM-A considered more clauses than HDSM-H does. We
can explain this issue that, in our method, for each template
clause the algorithm keeps at most one candidate clause with
the highest score, thus the one keeping by HDSM-A with
the score greater than or equal the score of the one keeping
by HDSM-H. The set of candidate clauses of HDSM-A
is hence different to the one of HDSM-H. Therefore, we
can conclude that, in the method of HDSM, the order of
template clauses and the order of candidate clauses affect the
final learned MLN. In addition, when candidate clauses are
considered in turn, the set of candidates clauses of HDSM-A
is not always better than the one of HDSM-H because the
algorithm has to learn the weights again for each considering
candidate clause, and it may affect the weights of clauses
added before into the MLN. It is interesting that HDSM
performing with Horn clauses is much faster than performing
with arbitrary clauses while it gets a little loss in the CLL
and AUC measures. This is the answer for the question 1.

Second, we compare HDSM to ILS-DSL. Both versions of
HDSM perform better than ILS-DSL in terms of both CLL
and AUC. Since CLL determines the quality of the prob-
ability predictions output by the algorithm, our algorithm
outperforms this state-of-the-art discriminative algorithm
in the sense of the ability to predict correctly the query

predicates given evidences. Since AUC is useful to predict
the few positives in the data, we can conclude that HDSM
enhances the ability of predicting the few positives in the
data. The question 2 is answered.

Third, we compare HDSM to ILS. HDSM gets really
better values in both CLL and AUC for all predicates for all
datasets. Referring to results of LHL [6], HDSM gets better
CLL values and worse AUC values. As described in [6], in
the process of evaluation the authors have evaluated ground-
ings for the two predicatesActor andDirector (IMDB), the
two predicatesStudentand Professor(UW-CSE) together,
which is a bit harder than we did. In spite of that, with
the better results than ILS and the better CLL values for
CORA dataset than LHL, we believe in the domination
of our method compared to the state-of-the-art generative
structure learning algorithms for MLNs, especially for the
task of classification.

Last, we compare all systems together. Regarding runtime,
ILS is the fastest system, then are ILS-DSL, HDSM-H,
BUSL and HDSM-A. The runtime (of each system) includes
the time for finding candidate clauses, the time for learning
weight for each candidate clause and the time for choosing
clauses for the final MLN. From practice we verify that
the time spent for finding candidate clauses is much less
than the time for learning weights and for inference to
compute the measure (i.e. CLL). To set weights for clauses,
all system have involved the L-BFGS algorithm, the runtime
thus depends on the performance of this weights learning
algorithm. BUSL and HGSM change the MLN completely
at each step, thus calculating the WPLL (requires to learn
weights by L-BFGS) becomes very expensive. In ILS and
ILS-DSL, this does not happen because at each step L-BFGS
is initialized with the current weights (and zero weight for
a new clause) and it converges in a few iterations [1], [2].
ILS-DSL also use some tactics to ignore a candidate clause
whenever it needs so much time for inference [2]. We plan
to accelerate our systems in a more reasonable time as it has
been done in ILS-DSL, especially, find an effective solution
to filter candidate clauses. It is very interesting that HDSM-
H takes much less time than HDSM does while it gets only
a little loss in the sense of CLL and AUC. We also would
like to notice that the MLN produced by HDSM-H might
be an advantage, from the logic point of view, as a Horn-
clause MLN might integrate easier in further processing than
a MLN based on arbitrary-clauses.

IV. CONCLUSION AND FUTURE WORK

Contribution of this paper is an algorithm, HDSM, to
learn heuristically, discriminatively the structure of MLNs.
Comparative results show that HDSM performing with Horn
clauses is really better than performing with arbitrary clauses
because of a reasonable time for leaning, a little loss in
terms of CLL and AUC measures and the advantages of
Horn clauses (in the logic point of view). These comparisons

specially gives us belief in developing HDSM performing
with Horn clauses as well as in improving performance of
HDSM in terms of measures and of execution time. Indeed,
considering that candidate clauses were selected due to their
maximum CLL, their weights learned by L-BFGS, we will
seek further research on a way to associate both these values
to choose clauses. Concerning execution, we are thinking
of a more integrated organization of the successive steps.
We also plan to apply the discriminative weights learning
algorithm based on max-margin to evaluate the contribution
of the discriminative optimization method in our approach.

REFERENCES

[1] Biba, M., Ferilli, S., Esposito, F.: Structure Learningof MLNs
through Iterated Local Search. ECAI 2008.

[2] Biba, M., Ferilli S., Esposito, F.: Discriminative Structure
Learning of MLNs. ILP 2008.

[3] Davis, J., Goadrich, M.: The relationship between Precision-
Recall and ROC curves. ICML 2006.

[4] Huynh, N. T., Mooney, R. J.: Max-Margin Weight Learning
for MLNs. ECML 2009.

[5] Huynh, N. T., Mooney, R. J.: Discriminative structure and
parameter learning for MLNs. ICML 2008.

[6] Kok, S., Domingos, P.: Learning MLN structure via hypergraph
lifting. ICML 2009.

[7] Kok, S., Domingos, P.: Learning the structure of MLNs. ICML
2005.

[8] Lowd, D., Domingos P.: Efficient Weight Learning for MLNs.
PKDD 2007.

[9] Mihalkova, L., Mooney, R. J.: Bottom-up learning of MLN
structure. ICML 2007.

[10] Pietra, S. D., Pietra, V. D., Lafferty, J.: Inducing Features of
Random Fields. 1995.

[11] Richardson, M., Domingos, P.: Markov logic networks. Mach.
Learn. Vol. 62 (2006).

[12] Sha, F., Pereira, F.: Shallow parsing with CRFs. NAACL
2003.

[13] Singla, P., Domingos, P.: Discriminative training of MLNs.
AAAI 2005.

[14] Facundo, B., Margaritis, D., Honavar, V.: Efficient MN Struc-
ture Discovery Using Independence Tests. SIAM DM 2006.

[15] Raedt, L. D.: Logical and relational learning. Springer, 2008.

[16] Richards, B. L., Mooney, R. J.: Learning Relations by
Pathfinding. AAAI 1992.

[17] Silverstein, G., Pazzani, M.: Relational clichés: Constraining
constructive induction during relational learning. The 8-th
International Workshop on ML. (1991).

