Heuristic Method for Discriminative Structure Learning of Markov Logic Networks

Quang-Thang DINH
LIFO, Universié d’Orléans, France

Matthieu EXBRAYAT
LIFO, Universié d'Orléans, France

Christel VRAIN
LIFO, Universié d'Orléans, France

Email: thang.dinh@univ-orleans.fr Email: matthieu.exbrayat@univ-orleans.tEmail: christel.vrain@univ-orleans.fr

Abstract—Markov Logic Networks (MLNs) combine Markov
Networks and first-order logic by attaching weights to first-
order formulas and viewing them as templates for features
of Markov Networks. Learning a MLN can be decomposed
into structure learning and weights learning. In this paper,
we present a heuristic-based algorithm to learn discriminéive
MLN structures automatically, directly from a training dat aset.
The algorithm heuristically transforms the relational dataset
into boolean tables from which to build candidate clauses fo
learning the final MLN. Comparisons to the state-of-the-art
structure learning algorithms for MLNs in the three real-world
domains show that the proposed algorithm outperforms them
in terms of the conditional log likelihood (CLL), and the area
under the precision-recall curve (AUC).

Keywords-Markov Logic Network, Structure Learning, Dis-
criminative learning, Relational Learning.

I. INTRODUCTION

of X; in x. Discriminative approaches rely on the opti-
mization of the conditional log-likelihood (CLL) of query
given evidence [11]. LeY be the set of query atoms and
X be the set of evidence atoms, CLL of given X is:

log P(Y = y|X = z) = log 7, log P(Y; = y;|X = x).
Methods for MLN discriminative weights learning were
based on the voted-perceptron algorithm [13], the scaled
conjugate gradient method (PSCG) [8], the max-margin [4].
All these algorithms only focus on parameter learning, the
structure being supposed given by an expert or previously
learned. This can lead to suboptimal results when these
clauses do not capture the essential dependencies in the
domain in order to improve classification accuracy [2]. This
hence requires to learn MLN structure directly from data.
Further, MLN structure learning is a very important task
because it allows us to discover novel knowledge. However,
it is also a challenging one because of its super-exporentia

Markov Logic Networks (MLNs) [11] are a first-order search space, hence only a few practical approaches have
logic extension of Markov Networks (MNs). A Markov been proposed to date. They are the top-down approaches
Network is a graph, where each vertex corresponds to g.g., Kok and Domingos, 2005), the bottom-up BUSL
random variable, each edge indicates that two variablealgorithm (e.g., Mihalkova and Mooney, 2007), the ILS
are conditionally dependent. Each clique of this graph iglterated Local Search) algorithm (e.g., Biba et al. 2008),
associated to a weight. In the case of boolean randorthe LHL (Learning via Hyper-graph Lifting) algorithm (e,g.
variables, this weight is a real number, the value of whichKok and Domingos, 2009) for generative structure learning.

is directly log-proportional to the probability of the clig

For discriminative structure learning, to the best of our

(i.e. the conjunction of its random variables) to be true. Aknowledge, there only exists two systems. The first one uses

Markov Logic Network consists of a set of pair§;(w;),

the ALEPH system to learn a large set of potential clauses,

whereF; is a formula in First Order Logic (FOL), to which then learns the weights and prunes useless clauses [5]. The

a weightw; is associated. The higher;, the more likely

second method, called Iterated Local Search - Discrimiaati

a grounding ofF; to be true. Given a MLN and a set of Structure Learning (ILS-DSL), chooses the structure by
constantsC' = {c1,¢cz,...¢|c|}, @ MN can be generated. maximizing the CLL and sets the parameters by the L-BFGS
The nodes (vertices) of this MN correspond to all groundalgorithm maximizing the PLL [2].

predicates that can be generated by grounding any formula In this paper we propose a heuristic approach, in order to
F; with constants ofC. This set can be restricted when learn discriminatively the structure of a MLN. This apprbac

constants and variables are typed.

consists of three main steps. First, for each query prealicat

Both generative and discriminative learning can be apthe algorithm applies a heuristic technique to build a set of
plied to MLNs. Regarding MLN weights learning, genera- variable literals, then for each variable literal of the ue
tive approaches optimize the log-likelihood or the pseudopredicate it heuristically transforms the learning datése
log-likelihood (PLL) [11] using the iterative scaling [10] boolean table. Second, by applying the Grow-Shrink Markov
algorithm or a quasi-Newton optimization method suchNetwork (GSMN) [14] algorithm to these boolean tables,
as theL-BFGS [12] algorithm. The PLL of the possible the algorithm extracts a set tdmplateclauses. We define a

worlds z given bylog P,,(X = z) = Y.} log P,(X; =
x;|MB,(X;)), whereX; is a ground atomg; is the truth

template clause as a disjunction of positive variablediter
Last, candidate clauses are built from the template clauses

value (0 or 1),M B, (X;) is the state of the Markov blanket to add into the MLN.

In the following, we present our method in Section II, Algorithm 1 HDSM(DB, QP, MLN)
Section Ill is devoted to experiments and Section 1V is the Set of template clauseST'C = ()
conclusion of this paper. for each query predicat@P do
Heuristically form a sefSL of possible variable literals
for each variable literalop € SL do

Il. PROPOSAL OF AHEURISTICMETHOD

Let us first recall some basic notions of first order logic Build a boolean tableBT(Lgp)
and make precise the task at hand. We consider a function- Create Template Clauses STC
free first order language composed of a Bebf predicate end for
symbols, a set’ of constants and a set of variables. &om end for
is an expressiop(t1,. . .,t;), wherep is a predicate and; Add clauses from5T'C into M LN

are either variables or constantsli#ral is either a positive Return(MLN)
or a negative atom; it is ground literalwhen it contains no
variable; it is avariable literalwhen it contains all variables.
A clauseis a disjunction of literals; &lorn clausecontains
at most a positive literal. Two ground atoms are said to
be connected if they share at least one ground term (or
argument). A clause (resp. a ground clausefasnected
when there is an ordering of its literals; v ... VvV Ly,
such that for eactL;, j = 2...p, there exists a variable
(resp. a constant) occurring both ity and L;, ¢ < j. A
variabilization of a ground clause, denoted byvar(e), is
obtained by assigning a new variable to each constant and
replacing all its occurrences accordingly.

We have as inputs a database DB composed of true/false
ground atoms and a query predicate QP (several quenyay this set SL is built in Subsection II-A. For each literal
predicates can be given). A set of clauses defining backlqor € SL, HDSM generates a set of template clauses
ground knowledge may also be given. We aim at learningrom which it extracts a set of relevant candidate clauses.
a MLN that correctly discriminates between true and falseA template clause is built from the variable liteta, » and
groundings of QP. We describe in this section our algorithnits neighbors Once every predicate has been considered we
for Heuristic Discriminative Structure learning foLNs ~ get a set of template clauses STC. To find the neighbors of
calledHDSM the variable literalLgp, HDSM correspondingly transforms

In a MLN, if two variable literalsL; and L; occur in a the relational dataset into a boolean table in order to apply
same clause, then they are conditionally dependent/and the GSMN algorithm. We present techniques to build the
must be in the Markov blanket df; (or L; is one of the boolean table in Subsection II-B and detail how template
neighbors oﬂ;j)’ and vice versa. As a basis of our algorithm, clauses are composed in Subsection II-C. In Subsection 1I-D
a MLN is built from the training dataset by first forming we present how the set STC can be used to learn the MLN.
a set of possible variable literals, and then finding links We must emphasize that our approach is, at a first
among them (in the discriminative fashion, it means findingglance, somewhat similar to the principle underlying the
neighbors of each variable literal of the query predicat¢. QP BUSL [9] algorithm. Both of them consist of three mains
Template clauses are generated from each query variab&eps: Transforming the relational dataset into the baolea
literal and its neighbors. Candidate clauses will be extghc tables, building candidate clauses using these booledestab
from template clauses. It is obvious that the set of possibl@nd putting clauses into the MLN. Methods using in the
variable literals is as small as possible to save time foffirst phase can be viewed as different propositionalization
constructing candidate clauses. However, this setisaige| approaches [15] idLP. As it is shown in [15], they are
enough to be able to describe relations of ground atoms ia kind of incomplete reduction, hence the quality of the
the dataset as well as to compose good clauses. boolean table affects the results of the next steps of both

We sketch the global structure of HDSM in Algorithm 1. approaches. Our approach differs from BUSL not only in the
HDSM tries to find existing clauses containing query pred-first step but also in the remaining ones. In Subsection II-E
icate QP by building a set SL of variable literals, thenwe will then discuss these differences in more details.
forming template clauses from SL, each of them has at least . . _
an occurrence of QP. To build the set SL of variable literalsA- FOrming Variable Literals
HDSM constructs the largest possible set of connected Finding variable literals is difficult since the database is
ground atoms corresponding to every true ground atom obnly a set of ground literals (no templates are given), hence
QP, then heuristically variabilizes them. We describe thea heuristic technique is used. Given a training database DB

Algorithm 2 Form literals (DB, QP)
1 = —1; mI = the number of true ground atoms of QP
for each true ground atorya of QP do
i =1+ 1; Chainsli] = MakeChain(tga)
end for
Sort Chains by decreasinguidth
SL = Variablize(Chains|0])
SL = SLU CaptureLiteral(Chains[j]), 1 < j < mlI
Return(SL)

and a predicate QP, Algorithm 2 returns a set SL of variablestored in rowr. Let us assume that column c corresponds
literals. For each true ground atotga of QP in DB, the to a given variable literabl.. Matrix[r][c] = true means
set of ground atoms of DB connected tiga is built by starting fromg, we can reach a literal that is variabilized
the functionMakeChain Such a set is called ehain, the aswvl.. In other words, there exists at least a v-chain
width of a chain being the number of ground atoms in it. containing the variable literall., a g-chaingc, starting from
The set SL is then built so that for each chain, there existthe ground atony,., and a variabilization ofjc,. such that
a variabilization of it with all variable literals belonginto ve C var(ge,).
SL. It must be noted that the functidvlakeChainwill stop Let us consider a connected cladse= A,V A5V---VAy,
whenever all the ground atoms connectedg@are already where the number of literals i is k. Since the clause is
in the chain, hence it does not take so much time even whegonnected, from any literall;,1 < i < k we can reach
the dataset is large. some other literald;,1 < j < k,j # ¢ with at mostk

Regarding this variabilization problem, the replacementinks. For instance, considering the claudér)V!Q(z,y) Vv
of constants by variables can be achieved using varioug(y, z), R(y,z)can be reached from(x) through two links:
strategies such asimple variabilization complete variabi- link(P(x),Q(x,y)) and link(Q(x,y),R(y,z)) This implies that
lization, etc. Here, we use tr@mple variabilization strategy to find information related to a query variable litetad, p
to variabilize each chain ensuring that different constamt of the query predicate QP, we only need to consider the
a chain are replaced by different variables. subset of variable literals appearing in the S&C = {v-

In more details, the algorithm initially variabilizes thesti chains(Lgp)}, which is much smaller than the complete
element chains[0](the largest one) using funcianiabilize. set SL, especially when the database is large.
Different constants in chains[0] are replaced with différe For each variable literaLop of QP, the algorithm finds
variables. The resulting variable literals form the basihe the setSVC of v-chains(Lgp) from the set SL. Each
setSL The remaining elements ehainsare then explored column of the boolean tablBlatrix corresponds to a pre-
by decreasingvidth. Function CaptureLiteral heuristically cise variable literal appearing i8VC For each true/false
carries their variabilization ensuring that there exists aground atomgga of QP, the algorithm fills values for the
variabilization s.t.var(chain(j)) € SL, 1 < j < mlI, corresponding row of the boolean table. It will take so
wheremI is the number of true ground atoms of QP in themuch time if we try to find all g-chains starting frogya
DB. Each new element athainsbeing less wide than the then check the fitness of each g-chain to every v-chain
preceding ones, we can reasonably expect that the numbgge cause the number of g-chains is much greater than the
of new variables, and thus of variable literals introduced i number of v-chains. Here, we perform inversely by first
SL decreases rapidly. In other words, the existing patternfinding the set of v-chains then finding g-chains guided
of variable literals already stored in SL are more likely to by every v-chain. For each-chain(Lgp), the algorithm
fit the new ones, hence the algorithm keeps the set SL asearches for everg-chain(qga)to check whether it fits that
small as possible. v-chain(Lgp) (i.e. there exists a variabilization such that
v-chain(Lgp) C var(g-chain(gga)). If it does, value at
every columnL is set to 1 {rue) where L is a variable

To facilitate the presentation, we use here conceplislof jiteral occurring in the-chain(Lgp). By this way, for each
g-chain andv-chain The link of two atomg ands, denoted -chain(Lgp), the algorithm has already known the chain
by link(g,s) is a set of its shared arguments.gichain(v- of continuous predicates, thus finding the set of g-chains

chain) of ground (variable) literals starting from a ground guided by thisv-chain(Lgp) is much faster than finding
(variable) literalg; is an ordered list of the ground (variable) a|| arbitrary g-chains ofjga.

literals<g, ..., gk, ...> such that/i > 1, link(g;—1, g;) # 0
and any shared argument in thek(g,—1, ¢g;) is not in the
link(g;j—1,9;),1 < j <. The definitions of g-chain and v-
chain ensures that a g-chain or a v-chain is also a connectedLet us remind that there exists a link between two variable
clause. This is related to the relational pathfinding [16] an literals if they are conditional dependent. As a consegegnc
the relational cliché [17]. we aim at building the Markov blanket of each query

The next step in our approach transforms the relationabariable literal Lgp. For this purpose we propose, as in
database into a boolean table. For the task of discrimiaativ[9], to use the Grow-Shrink Markov Network algorithm
learning, this boolean table needs to catch as much informgdGSMN) [14], which is based on the Pearson’s conditional
tion related to the query predicate as possible. This baoleaindependence chi-squarg?) test to determine whether two
table, calledMatrix, is organized as follows: each column variables are conditional independent or not. The algarith
corresponds to a variable literal; each row corresponds to applies GSMN on the boolean tabMatrix to find the
true/false ground atom of the query predicate. Let us assumidarkov blanket A/ B(Lgp) of the query variable literal
that the data concerning a given ground atgmof QP is Lgp.

B. Building Boolean Table

C. Creating Template Clauses

Having gotM B(Lgp), the algorithm composes template allowed per TNode, the size of the database and the links
clauses. As we have mentioned above, a template clause éxisting amongst ground atoms. On the contrary, HDSM
simply a disjunction of positive literals. A set of template produces a set of variable literals, enough for reflectithg al
clauses is created from the query variable liteiglp and possible links amongst ground atoms. For thé ground
its neighbors, i.e. the variable literals forming its Marko atom of the learning predicat®|P[r][t] = true if and only
blanketM B(Lgp). Each template clause is built frofiy, if the conjunction of the set of literals ihis true, while
and a subsef C 2MB(Ler) sych that this template clause Matrix[r][l] = true if there exists at least a g-chain starting

is also a connected clause. from ther-th ground atom and containing a ground atonh. of
)) These differences influence the performance when applying
D. Adding Clauses into the MLN x2-test and the GSMN algorithm.

Candidate clauses are considered in turn. We build £omposition of the set of candidate clausesBUSL
MLN consisting of this clause and the initial MLN given as composes candidate clauses from cliques of TNodes hence it
input (which might be empty). A weight learning algorithm could miss some clauses that are not in the cliques. HDSM
is then applied on the resulting MLN. The score of theuses just the MB of the considering variable literal in order
weighted MLN is then measured by computing either itsto get a little more clauses. Moreover, candidate clauses in
CLL or WPLL (depending on the testing purpose) given theBUSL must contain all the literals appearing in a TNode,
database DB. Because every clause created from a templateeaning that, concerning our example, battvBy(C,Ajland
clause composes the similar cliques of the network, for eacpub(D,C) of the TNodet3 occur together in the clause.
connected template clause, HDSM only keeps at most on€his might not be flexible enough as it might occur that
clause, which is the one associated to the MLN having the relevant clause contains only one of these two literals. On
highest score. the contrary, HDSM just composes clauses from variable

The final candidate clauses are sorted by decreasing scoliterals.
and considered in turn in this order. Each of them is added té\ddition of clauses into theMLN: For each clique, BUSL
the current MLN (for the first clause considered, this MLN creates all possible candidate clauses then removes the
is initiated to the input MLN). The weights of the resulting duplicated clauses and finally considers them one-by-one to
MLN are learned and this latter is scored using the choseput into the MLN. HDSM just keeps at most one clause for
measure. Each clause that improves the score is kept in tleetemplate clause in the set of candidate clauses.
current MLN, otherwise it is discarded.

Finally, as adding a clause into the MLN might drop down I1l. EXPERIMENT
the weight of clauses added before, once all clauses has beg‘n
considered, HDSM tries to prune some clauses of the MLN.
As was done in [7], this pruning is based on their weight: a We use three publicly-available datasétsalled IMDB,
clause with a weight less than a giveinWeighis discarded UW-CSE and CORA respectively in order of increasing

from the MLN if removing it increases the MLN's score. number of constants as well as increasing number of true
ground atoms in the dataset. IMDB dataset describes a movie

E. Discussion domain containing 1540 ground atoms of 10 predicates and
The outline of our method, at a first glance, presents316 constants. In this dataset, we predict the probabifity o

several similarities with the generative structure leagni Pairs of person occurring in the relation WorkedUnder. UW-

algorithm BUSL [9]. Nevertheless, it differs deeply in the CSE dataset describes an academic department consisting

ways to create the boolean tab]esy to compose the set Qf 2673 grOUnd atoms of 15 predicates and 1323 constants.
candidate clauses and to put clauses into the MLN: We have chosen the discriminative task of predicting who is

Creation of the boolean table: The boolean tables respec- advisorof who. CORA dataset is a collection of citations to

tively constructed by BUSL and our method are different incomputer science papers including 70367 true/false ground
the meaning of C0|umnS, hence in the meaning of values (ﬂtoms of 10 predicates and 3079 constants. We learn four
entries. Each column in the tabidP of BUSL for aTNode discriminative MLNs, respectively according to four predi
which can be either a single literal or a conjunction of saver cates:sameBib, sameTitle, sameAuthor, sameVenue

literals, while each column in the tabléatrix of HDSM for

a variable literal. For instance, starting from the groutmha. B+ Systems and Methodology

stu(a) knowingadvBy(b,ajand therpub(t, b) BUSL would HDSM is implemented over the Alchemy package using
produce three TNodetl = {stu(A), t2 = {advBy(B,A} the L-BFGS [12] algorithm maximizing PLL to set weights
and t3 = {advBy(C,A), pub(D,G) while HDSM would and the CLL measure to choose clauses. We ourself perform
produce tree separated variable literdls= {stu(A)}, 12 = experiments to answer the following questions:
advBy(B,A)and I3 = pub(T,B) The number of TNodes in

BUSL can be very high, depending on the number of atoms Available at http:/alchemy.cs.washington.edu

Datasets

. . Table |
1) How does HDSM carry out with Horn clauses instead CLL, AU% SEASURES

of arbitrary clauses?

Algorithms — IsL BUSL HDSM-W
2) I; HDSM rgally b_ette_r than the state-of—the—grt algo- o — T oo e TR TR
rithms for discriminative MLN structure learning? WDB__| Workedunder | 0036500060312 | 0225500110120 | 00350007 0315
3) Is HDSM really better than the state-of-the-art algo- | uwcse | advisedsy | -0031:£00050187 | -0044:0.006 0204 | -0029+0.008 0215
rithms for generative MLN structure |earning? SameBib -0.173+0.005 0.346 | -0.325+:0.009 0.229 | -0.1544+0.011 0.394
CORA SameTile | -0.144£00090.415 | -0.284£0.000 0418 | -0.127£0.006 0.411
4) |s the boolean tables created by HDSM better than the
one created by BUSL? SameAuthor | -0.234+-0.007 0.369 | -0.356+0.008 0.347 | -0.176+0.007 0.410
) SameVenue | -0.145-00060.427 | -0.383£0.0100.276 | -0.121:£0.007 0327
To answer question 1, we configure to run HDSM twice
for performing respectively with Horn clauses (HDSM-H) Algorithms — ILSDSL HDSM-H HDSM-A
i i - i Datasets Predicates CLL AUC CLL AUC CLL AUC
and with arbitrary clauses (HDSM-A). To answer question
2, we Compare HDSM tO the State-Of-the-aI’t d|SCr|m|nat|Ve IMDB WorkédUnder -0.029+0.007 0.311 -0.028+0.006 0.323 | -0.0284+0.008 0.325
system ISL-DSL [2]. To answer question 3, we choose to run UW-CSE Adwsedl?y -0.028£0.006 0.194 | -0.0230.004 0.231 | -0.025+0.010 0.230
. SameBib | -0.141+0.0000.461 | -0.140+0.008 0.480 | -0.140+0.011 0.480
the state-of-the-art genera‘.tlve SYStem ILS [1] and alserr_ef CORA SameTitle | -0.134+0.010 0427 | -0.1104:0.007 0.502 | -0.108+0.010 0.498
to the results of LHL published in [6]. To answer question SameAuthor | -0.188+0.008 0.560 | -0.155+0.008 0.581 | -0.146+0.009 0.594
4, we implement HDSM using the L-BFGS algorithm to set SameVenue | -0.132£0.0090.297 | -0.115£0.0090.338 | -0.115+0.011 0.342

weights and the WPLL measure to choose clauses, called
HDSM-W. HDSM-W also creates template clauses from Table Il

cligues and considers all possible clauses from a template RUNTIMES(HOUR)
clause. We configure BUSL to run only for single predicates.

. . . Algorithms — ILS ILS-DSL HDSM-H HDSM-A HDSM-W BUSL
In this cas_e,_BUSL and HDSM-W are different only in the o oo T om P oo v P
step of building boolean tables, hence we can compare the [jucse 225 | 230 700 930 50 05
“good” of the boolean tables created by them. CcorA 2883 | 041 aan 5015 824 | 2482

For all the domains, we performédfold cross-validation
We measured the CLL and the area under the precision-recall
curve (AUC). The CLL of a query predicate is the average) _
log-probability over all its groundings given evidence.eTh H in several predicates in terms of both CLL and AUC.
precision-recall curve is computed by varying the threshol HDSM-A is even worse than HDSM-H for the predicate
above which a ground atom is predicted to be true. Paran@dvisedBy (UW-CSE). It is a bit strange because HDSM-A
eters for the ILS-DSL and the ILS were respectively set a@nd HDSM-H share the same set of template clauses and
in [1], [2]. We set the maximum number of literals per clauseHDSM-A considered more clauses than HDSM-H does. We
to 5 for all the systems as it is shown in [2]. We used theCan explain thls_lssue that, in our method, fo_r each templat_e
package provided in [3] to compuJC. We ran our tests clause the algorithm keeps at most one candidate clause with

on a Dual-core AMD 2.4 GHz CPU - 4GB RAM machine. the highest score, thus the one keeping by HDSM-A with
the score greater than or equal the score of the one keeping

C. Results by HDSM-H. The set of candidate clauses of HDSM-A
We performed inference on the learned MLN for each tesis hence different to the one of HDSM-H. Therefore, we
fold, for each dataset using theaizy-MC-SATalgorithm. It~ can conclude that, in the method of HDSM, the order of
returns the probability for every grounding of the learningtemplate clauses and the order of candidate clauses dfect t
predicate on the test fold, which is used to compute thdinal learned MLN. In addition, when candidate clauses are
average CLL over all the groundings and the relative AUC.considered in turn, the set of candidates clauses of HDSM-A
Table | presents the average CLL, AUC measures for thés not always better than the one of HDSM-H because the
learning predicates over test folds for all the algorithmsalgorithm has to learn the weights again for each considerin
estimating on the three datasets. It must be noted thatewhilcandidate clause, and it may affect the weights of clauses
we used the same parameter setting, our results do slightgdded before into the MLN. It is interesting that HDSM
differ from the ones in [2]. This comes from the fact that performing with Horn clauses is much faster than performing
we conducted inference using the Lazy-MC-SAT instead ofvith arbitrary clauses while it gets a little loss in the CLL
the MC-SAT algorithm, and in the training process ILS-and AUC measures. This is the answer for the question 1.
DSL only uses one of the training folds for computing the Second, we compare HDSM to ILS-DSL. Both versions of
CLL [2]. Table Il exposes the average runtimes over trainHDSM perform better than ILS-DSL in terms of both CLL
folds for the datasets IMDB and UW-CSE, over four learningand AUC. Since CLL determines the quality of the prob-
predicates for the CORA dataset. ability predictions output by the algorithm, our algorithm
First, we compare HDSM-H to HDSM-A. We can easy outperforms this state-of-the-art discriminative altfuri
realize that HDSM-A performs only better than HDSM- in the sense of the ability to predict correctly the query

predicates given evidences. Since AUC is useful to predicspecially gives us belief in developing HDSM performing

the few positives in the data, we can conclude that HDSMwith Horn clauses as well as in improving performance of
enhances the ability of predicting the few positives in theHDSM in terms of measures and of execution time. Indeed,
data. The question 2 is answered. considering that candidate clauses were selected dueito the

Third, we compare HDSM to ILS. HDSM gets really maximum CLL, their weights learned by L-BFGS, we will
better values in both CLL and AUC for all predicates for all seek further research on a way to associate both these values
datasets. Referring to results of LHL [6], HDSM gets betterto choose clauses. Concerning execution, we are thinking
CLL values and worse AUC values. As described in [6], inof a more integrated organization of the successive steps.
the process of evaluation the authors have evaluated groun@/e also plan to apply the discriminative weights learning
ings for the two predicateactor and Director (IMDB), the algorithm based on max-margin to evaluate the contribution
two predicatesStudentand Professor(UW-CSE) together, of the discriminative optimization method in our approach.
which is a bit harder than we did. In spite of that, with
the better results than ILS and the better CLL values for
CORA dataset than LHL, we believe in the domination[1] Biba, M., Ferilli, S., Esposito, F.: Structure Learnin§ MLNs
of our method compared to the state-of-the-art generative through lterated Local Search. ECAI 2008.
structure learning algorithms for MLNs, especially for the 5] giba, M., Ferili S., Esposito, F.: Discriminative Stiure
task of classification. Learning of MLNs. ILP 2008.

Last, we compare all systems together. Regarding runtime, . . .) o
ILS is the fastest system, then are ILS-DSL, HDSM-H,[3] Davis, J., Goadrich, M.: The relationship between PFsieci-
BUSL and HDSM-A. The runtime (of each system) includes Recall and ROC curves. ICML 2006.
the time for finding candidate clauses, the time for learning4] Huynh, N. T., Mooney, R. J.: Max-Margin Weight Learning
weight for each candidate clause and the time for choosing for MLNs. ECML 2009.
clauses for the final MLN. From practice we verify that
the time spent for finding candidate clauses is much Iesgs]
than the time for learning weights and for inference to
compute the measure (i.e. CLL). To set weights for clausegg] Kok, S., Domingos, P.: Learning MLN structure via hypegh
all system have involved the L-BFGS algorithm, the runtime lifting. ICML 2009.
thus depends on the performance of this weights learnin . . :
algorithm. BUSL and HGSM change the MLN completely b 58:;’5.8" Domingos, P.: Learning the structure of MLNsMC
at each step, thus calculating the WPLL (requires to learn
weights by L-BFGS) becomes very expensive. In ILS and8] Lowd, D., Domingos P.: Efficient Weight Learning for MLNs
ILS-DSL, this does not happen because at each step L-BFGS PKDD 2007.
is initialized with the_ current Weights (and. zero weight for [9] Mihalkova, L., Mooney, R. J.: Bottom-up learning of MLN
a new clause) and it converges in a few iterations [1], [2]. ~ structure. ICML 2007.

ILS-DSL also use some tactics to ignore a candidate clause

whenever it needs so much time for inference [2]. We plard10] Pietra, S. D., Pietra, V. D., Lafferty, J.: Inducing s of

to accelerate our systems in a more reasonable time as it has Random Fields. 1995.

been done in ILS-DSL, especially, find an effective solution[11] Richardson, M., Domingos, P.: Markov logic networksadh.

to filter candidate clauses. It is very interesting that HDSM Learn. Vol. 62 (2006).

H takes much less time than HDSM does while it gets only .) .

a little loss in the sense of CLL and AUC. We also would [12]2382’ F.. Pereira, F.: Shallow parsing with CRFs. NAACL
like to notice that the MLN produced by HDSM-H might '

be an advantage, from the logic point of view, as a Horn{13] Singla, P., Domingos, P.: Discriminative training ofLMs.
clause MLN might integrate easier in further processingtha AAAI 2005.

a MLN based on arbitrary-clauses.

REFERENCES

Huynh, N. T., Mooney, R. J.: Discriminative structuredan
parameter learning for MLNs. ICML 2008.

[14] Facundo, B., Margaritis, D., Honavar, V.: Efficient MNr&c-
IV. CONCLUSION AND FUTURE WORK ture Discovery Using Independence Tests. SIAM DM 2006.

Contribution of this paper is an algorithm, HDSM, to [15] Raedt, L. D.: Logical and relational learning. Spring2008.
learn heuristically, discriminatively the structure of Mk.
Comparative results show that HDSM performing with Horn
clauses is really better than performing with arbitraryuskes
because of a reasonable time for leaning, a little loss if17] Silverstein, G., Pazzani, M.: Relational clichés:n8training
terms of CLL and AUC measures and the advantages of constructive induction during relational learning. Theth8-
Horn clauses (in the logic point of view). These comparisons ~ Ntérnational Workshop on ML. (1991).

[16] Richards, B. L., Mooney, R. J.: Learning Relations by
Pathfinding. AAAI 1992.

