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ON REMOVABLE EDGES IN 3−CONNECTED CUBIC GRAPHS

J.L. FOUQUET AND H. THUILLIER

Abstract. A removable edge in a 3−connected cubic graph G is an edge

e = uv such that the cubic graph obtained from G \ {u, v} by adding an
edge between the two neighbours of u distinct from v and an edge between
the two neighbours of v disctinct from u is still 3−connected. Li and Wu [3]
showed that a spanning tree in a 3−connected cubic graph avoids at least

two removable edges, and Kang, Li and Wu [4] showed that a spanning tree
contains at least two removable edges. We show here how to obtain these
results easily from the structure of the sets of non removable edges and we
give a characterization of the extremal graphs for these two results.

1. Introduction

In 1961 Tutte [5] gave a structural characterization for 3−connected graphs by
using the existence of contractible or removable edges. A cubic graph is a simple
3-regular graph. From now on, all graphs considered here are cubic graphs. An
edge e of o 3−connected cubic graph G is said to be removable when the cubic
graph obtained from G by the following operations remains to be 3−connected.

• Delete u and v from V (G) and their incident edges from E(G)
• Add one edge between the two neighbours of u distinct from v as well as

between the two neighbours of v distinct from u

An edge which is not removable is said to be non removable. The set of removable
edges of G is denoted by R(G) and the set of non removable edges is denoted by
N(G) .

Conversely, we can get a new 3−connected cubic graph from a 3−connected
cubic graph G by inserting one edge between two existing edges. More formally,
let uv and u

′
v

′
be two edges of a 3−connected cubic graph G, we get a new

3−connected cubic graph G
′
when the three following operations are performed.

• Delete uv and u
′
v

′
from E(G)

• Add two new adjacent vertices x and y to V (G)
• Join x to u and v and y to u

′
and v

′
.

We shall say that we have proceeded to the insertion (of the edge xy). Obviously
the new edge xy is removable in the obtained graph.

Li and Wu [3] showed that a spanning tree in a 3−connected cubic graph avoids
at least two removable edges:

Theorem 1.1. [3] Let G be a 3−connected cubic graph with at least six vertices.
Then every spanning tree of G avoids at least two removable edges.
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Kang, Li and Wu [4] showed that a spanning tree contains at least two removable
edges:

Theorem 1.2. [4] Let G be a 3−connected cubic graph with at least six vertices.
Then every spanning tree of G contains at least two removable edges.

We shall show in Section 3 how to obtain these results easily from the structure
of the set of non removable edges (Corollaries 3.4 and 3.7) and we give a charac-
terization of the extremal graphs for these two theorems. More precisely, we shall
exhibit two infinite families of 3−connected cubic graphs, the PR-graphs and the
3T -graphs (defined below in Subsection 1.2) and we shall prove that a 3−connected
cubic graph having a spanning tree avoiding exactly two removable edges is a PR-
graph (Corollary 3.6), and that a 3−connected cubic graph having a spanning tree
containing exactly two removable edges is a 3T -graph (Corollary 3.8).

1.1. Edge cut. Let {V1, V2} be a partition of the vertex set V (G) of G. The set
F of edges joining V1 to V2 denoted by (V1, V2) is an edge cut and the partition
{V1, V2} of V (G) is the associated partition. An edge cut F of k edges is a k−edge
cut. An edge cut F is minimal if no proper subset of F is an edge cut, it is trivial
if it is minimal and one component of G \ F is a single vertex.

Obviously, a 3−connected cubic graph has no 2−edge cut. Moreover, any non
trivial 3−edge cut F is a matching of three edges and the edges of this edge cut are
contained in N(G) (non removable edges). By deleting the edges of F , we get two
connected graphs (the subgraphs G[V1] and G[V2] of G induced respectively by V1

and V2) and we remark that these two subgraphs are 2−connected. By contracting
G[V2] in a single new vertex u and G[V1] in a single new vertex v, we get two
smaller 3−connected cubic graphs G1 and G2. Conversely, let G1 and G2 be two
3−connected cubic graphs and u ∈ V (G1), v ∈ V (G2) with Nu = {u1, u2, u3}
and Nv = {v1, v2, v3}. We construct a new 3−connected cubic graph G where
V (G) = (V (G1 \ {u}) ∪ (V (G2 \ {v}) and E(G) = (E(G1) \ {uu1, uu2, uu3}) ∪
(E(G2) \ {vv1, vv2, vv3}) ∪ {u1v1, u2v2, u3v3} having {u1v1, u2v2, u3v3} as a non
trivial 3−edge cut (note that G may contain other non trivial 3−edge cuts).

1.2. Two special families of 3−connected cubic graphs.

1.2.1. The family of PR-graphs. Let PR0,0 be the 3−connected cubic graph on
six vertices formed by two triangles joined by a matching of three edges. Let us
remark that these three edges are not removable. Starting from PR0,0 we proceed
to successive insertions between edges of non trivial 3-edge cuts or insertions of
claws (by adding three vertices of degree 2 on the edges of a non trivial 3-edge cut
and joining these 3 vertices to a fourth vertex). To proceed to an insertion of an
edge, we choose two edges of a 3−edge cut F and we insert an edge between these
two chosen edges. To proceed to an insertion of a claw, we proceed first to the
insertion of an edge as previously (let xy be the new edge obtained) and we insert
a new edge between xy and the last edge of the considered 3−edge cut F . Let k1

and k2 be two integers such that k1 ≥ 0, k2 ≥ 0 and k1 + k2 ≥ 1. A cubic graph
obtained from PR0,0 by k1 insertions of edges and k2 insertions of claws is said
to be a graph of type PRk1,k2 (or simply, a PRk1,k2). More precisely, a graph of
type PRk1+1,k2 is obtained from a PRk1,k2 by insertion of an edge and a graph of
type PRk1,k2+1 is obtained from a PRk1,k2 by insertion of a claw. It must be clear
that given k1 and k2, we may obtain several non isomorphic cubic graphs of type
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PRk1,k2 . Since the operation of insertion of an edge preserves the 3-connectivity,
it is easy to see that a PRk1,k2 is a 3−connected cubic graph. A PR − graph is
a graph G such that there exist integers k1 and k2 and G is of type PRk1,k2 . In
Figure 1, we give example of a graph of type PR2,1 and a graph of type PR1,2.

Figure 1. Type PR2,1 and Type PR1,2

It can be easily verified that the only non removable edges of a graph of type
PRk1,k2 are the edges of the three disjoint paths P1, P2 and P3 joining the two
triangles (drawn in bold in Figure 1). Then a graph G of type PRk1,k2 has n =
2k1+4k2+6 vertices and it verifies |R(G)| = k1+3k2+6 and |N(G)| = 2k1+3k2+3.

1.2.2. The family of 3T-graphs. A fundamental 3Tk+2 (with k ≥ 0) is a cubic graph
obtained from three isomorphic trees T1, T2 and T3 of maximum degree 3 and no
vertex of degree 2 with k + 2 vertices of degree one and k vertices of degree three
each. Each triple of pendent vertices (one in each tree) mapped by the isomorphism
are joined by a triangle. It must be clear that a fundamental 3Tk+2 is 3-connected.

A p−extended 3Tk+2 is a cubic graph obtained from a fundamental 3Tk+2 by
insertion of p edges. The family of p−extended 3Tk+2 shall be denoted by 3Tk+2,p.
As above, to proceed to the insertion of an edge, we choose a non trivial 3−edge
cut F and two distinct edges of F in the graph in construction. Note that given
k ≥ 0 and p ≥ 2, the family 3Tk+2,p may contain several non isomorphic cubic
graphs. Since the operation of insertion of an edge preserves the 3-connectivity, a
p−extended 3Tk+2 is a 3−connected cubic graph. In Figure 2 we give a fundamental
3T4 and in Figure 3 a 3−extended 3T4.

A fundamental 3Tk+2 can be seen as a 0−extended 3Tk+2. A 3T − graph is a
graph that belongs to the union

∪
k≥0,p≥0 3Tk+2,p.

Figure 2. A fundamental 3T4
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Figure 3. A 3−extended 3T4

Remark 1.3. A p−extended 3Tk+2, G, is obtained from a fundamental 3Tk+2, H,
by insertion of p edges. The three isomorphic trees of H (T1, T2 and T3 in our
description) are transformed into induced trees of G (still denoted T1, T2 and T3).
The edges of these three trees are the only non removable edges of G. Then, G
has n = 6k + 2p + 6 vertices and it verifies |R(G)| = 3k + p + 6 = n+6

2 and
|N(G)| = 6k + 2p + 3.

2. Some technical lemmas

Throughout this section G is a 3−connected cubic graph and F = {e, f, g} and
F

′
= {e′

, f
′
, g

′} are two distinct non trivial 3−edge cuts of G. The two associated
partitions are {V1, V2} and {V ′

1 , V
′

2}. Moreover these two edge cuts partition the
vertex set of G in four sets V1 ∩ V

′

1 , V1 ∩ V
′

2 , V2 ∩ V
′

1 and V2 ∩ V
′

2 .

Lemma 2.1. If a cycle C intersects F then C contains exactly two edges of F

Proof An edge cut is a so called co-cycle and it is well known that the intersection
of a cycle and a co-cycle is an even set. The result follows. �

Lemma 2.2. One of the two subgraphs G[V1] or G[V2] either contains the three
edges of F ′ or contains exactly two edges of F ′ and the remaining edge of F ′ is an
edge of F .

Proof Without loss of generality, suppose that the subgraph G[V2] contains an
edge of F

′
. Since this subgraph is 2−connected it has no isthmus, and hence

|F ′ ∩ E(G[V2])| 6= 1. Then, either G[V2] contains the three edges of F
′

or it con-
tains exactly two edges of F

′
. Since as above |F ′ ∩ E(G[V1])| 6= 1, the remaining

edge of F
′
must be an edge of F . �

Lemma 2.3. There is a partition of V (G) in three sets A,B and C such that
• A and B are connected by the three edges of F and B and C are connected

by the three edges of F
′

• or A and B are connected by two edges of F , B and C are connected by
two edges of F

′
while the edge of F ∩ F

′
connects A and C.

Proof There exists an edge of the 3-edge cut F
′
that is contained in G[V1] or in

G[V2] (say in G[V2]). By Lemma 2.2, either G[V2] contains the three edges of F ′

(F ∩F
′
= ∅) or it contains exactly two edges of F ′ and the remaining edge of F ′ is
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also an edge of F (|F ∩F
′ | = 1). It is easy to see that, one of the sets V

′

1 or V
′

2 (say
V

′

1 ) contains the whole set V1, so V1 ∩ V
′

2 = ∅. We let A = V1 ∩ V
′

1 (hence A = V1),
B = V2 ∩ V

′

1 and C = V2 ∩ V
′

2 (hence C = V
′

2 ) and we can check that the first item
is verified when F ∩ F

′
= ∅ while the second item is verified when |F ∩ F

′ | = 1. �

An end 3-edge cut is a 3−edge cut such that every edge of the subgraph induced
on one of the two sets of the associated partition is removable. This subgraph
without any non removable edge will be called an extremity (it may happens that
the two sets of the associated partition are extremities). Let us remark that an
extremity of a 3−connected cubic graph G is a 2−connected induced subgraph of
G.

Lemma 2.4. Each set of the associated partition of any 3−edge cut F contains an
extremity.

Proof If every edge of G[V2] is a removable edge then V2 is an extremity. If G[V2]
contains a non removable edge e then let F ′ be a 3−edge cut containing e. Clearly,
F ′ is disctinct from F . By Lemma 2.3, we have the partition A = V1 ∩ V

′

1 = V1,
B = V2 ∩ V

′

1 and C = V2 ∩ V
′

2 = V
′

2 . We have thus obtained a refining of the
partition {V1,V2}. If every edge of G[V

′

2 ] is removable then V
′

2 is an extremity,
otherwise we can proceed to a new refinement of V

′

2 . Since the number of 3−edge
cuts is finite, we shall be left with an extremity in V2. The same holds for V1 and
the Lemma follows. �

Lemma 2.5. Let P = u1u2 . . . uk (k ≥ 3) be a path contained in N(G) and let F
be a 3−edge cut of G. Then F has at most one edge in P .

Proof Assume to the contrary that there exists a 3-edge cut F containing two
edges of P , uiui+1 and ujuj+1 (i 6= j, 1 ≤ i ≤ k − 2, i + 1 ≤ j ≤ k − 1). Since F
is a matching, the edge ui+1ui+2 is distinct from ujuj+1. Assume moreover that
the subpath P

′
= ui+1ui+2 . . . uj of P does not contained the third edge of F . We

can suppose that F has been chosen in such a way that the distance on P between
uiui+1 and ujuj+1 is as short as possible.

Let F
′
be a 3−edge cut containing ui+1ui+2. The choice of F forces F

′
to have

no other edge between uiui+1 and ujuj+1. We consider that ui+1 and uj are in V1

(hence, P
′
is a path in G[V1] and ui and uj+1 are in V2). Let Q be a path in G[V2]

joining ui to uj+1 and consider the cycle obtained by concatenation of uiui+1, P
′
,

ujuj+1 and Q. By Lemma 2.1, this cycle contains an edge e of F
′

distinct from
ui+1ui+2. By the choice of F , this edge e must be on Q. We do not know the
exact position of the third edge of F ′, but we are certain that at least one of the
two 2-connected subgraphs G[V1] or G[V2] contains exactly one edge of F ′. Hence
G[V1] or G[V2] has an isthmus, a contradiction. �

Lemma 2.6. Let P = u1u2 . . . uk (k ≥ 3) be a path contained in N(G). Then P
is an induced path of G.

Proof Assume to the contrary that uiuj is an edge of G (i 6= j, 1 ≤ i ≤ k − 1
i+2 ≤ j ≤ k). Then the concatenation of the subpath P

′
of P with ends ui and uj

together with the edge uiuj gives a cycle of G. This cycle intersects a 3−cut edge
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containing the edge uiu+1. By Lemma 2.1, a second edge of this 3−edge cut must
be contained in P

′
, a contradiction with Lemma 2.5. �

3. On the set of non removable edges

Theorem 3.1. [1] The subgraph of a 3−connected cubic graph G induced by the
set N(G) of non removable edges is an induced forest with at least three trees. Each
3−edge cut intersects three distinct trees of that forest.

Proof Assume that the edge-induced subgraph on N(G) (denoted also N(G))
contains a cycle C and let e ∈ C. By Lemma 2.1, any 3-edge cut containing e must
intersect C at least twice. Then two edges of this 3-edge cut are contained in a path
P of N(G), a contradiction with Lemma 2.5. Hence, N(G) is a forest as claimed
and, by Lemma 2.6, it is clear that this forest is an induced forest.

Let F be a 3−edge cut. If two edges of F are contained in the same tree of
N(G) then we can find a path contained in N(G) joining these two edges, again a
contradiction with Lemma 2.5. The theorem follows. �

Remark 3.2. Since N(G) has at most n − 3 edges (with n = |V (G)|), the graph G
contains at least n+6

2 removable edges. By Remark 1.3, we see that the 3T -graphs
are extremal for these numbers. More precisely, we have proved in [2] that the
family of 3T -graphs is exactly the family of 3−connected cubic graphs having the
minimum number of removable edges.

Corollary 3.3. Let G be a 3−connected cubic graph and let C be C = u0u1 . . . uku0

be a cycle of G. Then C contains at least two removable edges.

Proof Since by Theorem 3.1 N(G) is a forest, C contains at least one removable
edge. Assume that C contains only one removable edge. Let P be the path ob-
tained from C by deleting this edge and let e be an edge of P . Since P is contained
in N(G) there is a 3−edge cut F containing e. By Lemma 2.1, F contains exactly
one other edge of F , a contradiction with Lemma 2.5. �

Corollary 3.4. [3] Let G be a 3−connected cubic graph with at least six vertices.
Then every spanning tree of G avoids at least two removable edges.

Proof Let n be the number of vertices of G. Since G has 3n
2 edges, a spanning

tree avoids n+2
2 ≥ 4 edges. If every edge of G is removable, the result is immediate

Now, assume that N(G) 6= ∅. By Lemma 2.4, G contains at least two extremi-
ties. Let F be an end 3-edge cut with associated partition {V1, V2} such that G[V1]
is an extremity. The subgraph G[V1] contains 2p + 1 vertices (with p ≥ 1) and 3p
edges. The trace T1 on G[V1] of a spanning tree T of G is a spanning forest of this
extremity having k trees (with 1 ≤ k ≤ 3). Hence, T1 has 2p − k + 1 edges and
avoids p + k − 1 ≥ p edges of G[V1]. Thus, T must avoid at least one edge in each
extremity and the theorem follows. �

Lemma 3.5. Let G be a 3−connected cubic graph with at least six vertices having
a spanning tree avoiding exactly two removable edges. Then G has exactly two
extremities and these extremities are isomorphic to a triangle.
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Proof Let n be the number of vertices of G. Since we know that there are
n+2

2 ≥ 4 edges outside any spanning tree, if a spanning tree T avoids exactly two
removable edges then N(G) is not empty. By Lemma 2.4, G has k ≥ 2 extremities
H1,H2, · · · , Hk. We have seen in the proof of Corollary 3.4 that if Hi (i = 1, · · · , k)
is an extremity having 2pi + 1 vertices then a spanning tree T of G avoids at least
pi ≥ 1 edges of Hi. Hence, T must avoid at least p1 + p2 + · · · + pk removable
edges. Since T avoids exactly two removable edges, p1 + p2 + · · · + pk = 2. Hence
k = 2 and p1 = p2 = 1, that is the graph G has exactly two extremities and each
extremity has three vertices. �

Corollary 3.6. Let G be a 3−connected cubic graph. Then G has a spanning tree
T avoiding exactly two removable edges if and only if G is a PR-graph.

Proof Assume that G is isomorphic to some 3−connected cubic graph of type
PRk1,k2 (k1 + k2 ≥ 0). Let M be the set of edges involved in the insertions
operated from PR0,0 in order to obtain G. Assume that the two triangles are a, b, c

and a
′
, b

′
, c

′
. Let M

′
= M ∪ {ab, bc, a

′
b
′
, b

′
c
′}. We can easily find a spanning tree

T containing the edges of M
′

(perform the greedy Kruskal’s algorithm to find a
minimum spanning tree of G when the edges of M

′
are placed at the beginning of

the ordering of E(G)). Since the removable edges of G are the edges of M and the
six edges contained in the two triangles, exactly two removable edges are outside
this spanning tree.

We prove now by induction on the number of vertices n ≥ 6, that whenever G is
a 3−connected cubic graph having a spanning tree avoiding exactly two removable
edges then G is isomorphic to some graph of type PRk1,k2 (k1 + k2 ≥ 0).

When n = 6, PR0,0 is the only graph with that property. Assume that the result
holds for any 3−connected cubic graph with 6 ≤ n

′
< n vertices having a spanning

tree avoiding exactly two removable edges.

Let G be a 3−connected cubic graph with n vertices having a spanning tree
avoiding exactly two removable edges. By lemma 3.5, G has exactly two extremities
isomorphic to a triangle. Assume that these triangles are ∆1 and ∆2. If T is a
spanning tree of G avoiding exactly two removable edges, one of this edge (say e1)
must be in ∆1 and the other (say e2) is in ∆2.

When there is no 3−edge cut distinct from the 3−edge cut incident to ∆1 or to
∆2, it is not difficult to see that G is isomorphic to PR0,0 or to PR1,0 or to PR0,1

(see PR0,1 in Figure 4).

Figure 4. PR0,1

Let F = {x1x2, y1y2, z1z2} be a 3−edge cut of G distinct from the end 3−edge
cuts F1 and F2 respectively incident to ∆1 and to ∆2. Let {V1, V2} be the associated
partition of F . We can construct a new 3−connected cubic graph G1 by replacing
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in G the subgraph G[V2] by the triangle ∆
′

1 = {x2, y2, z2}. In the same way, we
construct G2 by replacing G[V1] by the triangle ∆

′

2 = {x1, y1, z1}. Clearly, for
i = 1, 2 R(Gi) = (R(G) ∩ E(G[Vi])) ∪ E(∆

′

i).
Let Ui be the trace of the spanning tree T on G[Vi] (i = 1, 2). Note that Ui is

a spanning forest of G[Vi] having at most three trees and that Ui avoids exactly
one removable edge in E(G[Vi]) (the edge ei in ∆i). By using the trace Ui we will
construct a spanning tree Ti of Gi avoiding exactly two removable edges in Gi.

Following the number of edges of F in E(T ) there are three cases :
Case 1 : |E(T ) ∩ F | = 1. Assume that E(T ) ∩ F = {x1x2}. We see that U1 and
U2 are trees. Hence, T1 = U1 + {x1x2, x2y2, x2z2} is a spanning tree of G1 and
T2 = U2 + {x1x2, x1y1, x1z1} is a spanning tree of G2.
Case 2 : |E(T ) ∩ F | = 2. Assume that E(T ) ∩ F = {x1x2, y1y2}. Consider the
unique path P in T connecting x1x2 to y1y2. Then either P is a subpath of G[V1]
having x1 and y1 as end vertices or P is a subpath of G[V2] having x2 and y2 as
end vertices. If P is a subpath of G[V1] then U1 is a tree and there is no path in
U2 connecting x2 to y2. Then U2 is a forest of two trees, one of them containing
x2 and the other containing y2. We see that T1 = U1 + {x1x2, x2y2, x2z2} and
T2 = U2 + {x1x2, y1y2, x1y1, x1z1}) are respectively spanning trees of G1 and G2.
Ananlogously, if P is a subpath of G[V2] then U2 is a tree and U1 is a forest of
two trees, one of them containing x1 and the other containing y1. Hence, T1 =
U1 + {x1x2, y1y2, x2y2, x2z2} and T2 = U2 + {x1x2, x1y1, x1z1}) are spanning trees
of G1 and G2.
Case 3 : F ⊂ E(T ). Up to symmetries, there are two subcases:
Subcase 3.1 : U1 is a tree and U2 is a forest of three trees (the first containing
x2, the second containing y2 and the third containing z2). We consider T1 =
U1 + {x1x2, x2y2, x2z2} and T2 = U2 + {x1x2, y1y2, z1z2, x1y1, x1z1}.
Subcase 3.2 : U1 is a forest of two trees (one of them containing x1 and the other
containing y1 and z1) and U2 is a forest of two trees (one of them containing x2 and
z2 and the other containing y2). We consider T1 = U1 + {x1x2, y1y2, x2y2, x2z2}
and T2 = U2 + {x1x2, y1y2, x1y1, x1z1}).

In every case, we have constructed a spanning tree T1 of G1 (respectively T2 of
G2) avoiding exactly two removable edges in G1 (respectively G2), the edges e1 and
y2z2 (resp. e2 and y1z1).

By the induction hypothesis, G1 is isomorphic to a graph of type PRp1,q1 and
G2 is isomorphic to a graph of type PRp2,q2 . At last, G itself is isomorphic to a
graph of type PRp1+p2,q1+q2 . �

Corollary 3.7. [4] Let G be a 3−connected cubic graph with at least six vertices.
Then every spanning tree contains at least two removable edges.

Proof A spanning tree T of G containing at most one removable edge e contains
only edges in N(G)∪{e}. Since N(G) has at most n−3 edges, this is impossible. �

Corollary 3.8. Let G be a 3−connected cubic graph with at least six vertices.
Then there is a spanning tree containing exactly two removable edges if and only if
G is a 3T -graph.
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Proof Assume that G is isomorphic to some p−extended 3Tk+2 (k ≥ 0, p ≥ 0).
Following the notation of Remark 1.3, let T1, T2 and T3 be the three trees of N(G).
By adding to N(G) two edges of any given triangle of G we get a spanning tree
containing exactly two removable edges.

We prove now by induction on n ≥ 6 that, if G a 3−connected cubic graph on
n vertices spanned by a tree T containing exactly two removable edges, then it is
isomorphic to some p−extended 3Tk+2 (k ≥ 0, p ≥ 0).

When n = 6, G is isomorphic to 3T2,0 (that is, PR0,0) and the result is obvious.
Assume that the result holds for any 3−connected cubic graph with 6 ≤ n

′
< n

vertices having a spanning tree containing exactly two removable edges.

Since |T | = n − 1 and |N(G)| ≤ n − 3, we need to have |N(G)| = n − 3 (that is
N(G) is a spanning forest and is formed of exactly three trees, T1, T2 and T3) and
every edge of N(G) must be contained in T . If no 3−edge cut distinct from an end
3−edge cut exists then G is isomorphic either to PR0,0 (that is, 3T2,0) or to PR1,0

(that is, 3T2,1) or to the graph 3T3,0 depicted in Figure 5.

Figure 5. 3T3,0

Let F be a 3−edge cut distinct from an end 3−edge cut. Let {V1, V2} be the
associated partition of F . We can construct a new 3−connected cubic graph G1 by
replacing in G the subgraph G[V2] by a triangle ∆

′

1. In the same way, we construct
G2 by replacing G[V1] by a triangle ∆

′

2. The trace of the forest N(G) in G1 gives a
spanning forest of three trees of non removable edges. If we add two edges of ∆

′

1 to
these trees, we get a spanning tree of G1 containing exactly two removable edges.
By the induction hypothesis, G1 is isomorphic to a p1−extended 3Tk1+2 and, in
the same way G2 is isomorphic to a p2−extended 3Tk2+2. The reconstruction of G
gives a (p1 + p2)−extended 3Tk1+k2+2, and the result follows.

�
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2, FR


