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Abstract. In a graph G of maximum degree 3, let γ(G) denote the largest

fraction of edges that can be 3 edge-coloured. Rizzi [9] showed that γ(G) ≥

1 −
2

3godd(G)
where godd(G) is the odd girth of G, when G is triangle-free.

In [3] we extended that result to graph with maximum degree 3. We show

here that γ(G) ≥ 1−
2

3godd(G)+2
, which leads to γ(G) ≥ 15

17
when considering

graphs with odd girth at least 5, distinct from the Petersen graph.

1. Introduction

Throughout this paper, we shall be concerned with connected graphs with max-
imum degree 3. Staton [10] (and independently Locke [8]) showed that whenever G
is a cubic graph distinct from K4 then G contains a bipartite subgraph (and hence
a 3-edge colourable graph, by König’s theorem [7]) with at least 7

9 of the edges of

G. Bondy and Locke [2] obtained 4
5 when considering graphs with maximum degree

at most 3.
In [1] Albertson and Haas showed that whenever G is a cubic graph, we have

γ(G) ≥ 13
15 (where γ(G) denote the largest fraction of edges of G that can be 3

edge-coloured) while for graphs with maximum degree 3 they obtained γ(G) ≥ 26
31 .

Steffen [11] proved that the only cubic bridgeless graph with γ(G) = 13
15 is the

Petersen graph. In [3], we extended this result to graphs with maximum degree 3
where bridges are allowed. With the exception of G5 (a C5 with two chords), the

graph P
′
obtained from two copies of G5 by joining by an edge the two vertices

of degree 2 and the Petersen graph, every graph G is such that γ(G) > 13
15 . Rizzi

[9] showed that γ(G) ≥ 1 − 2

3godd(G)
where godd(G) is the odd girth of G, when

G is triangle-free. In [3] we extended that result to graph with maximum degree

3 (triangles are allowed). We show here that γ(G) ≥ 1 − 2

3godd(G)+2
, which leads

to γ ≥ 15
17 when considering graphs with odd girth at least 5, distinct from the

Petersen graph.

Theorem 1.1. let G be a graph with maximum degree 3 distinct from the Petersen

graph. Then γ(G) ≥ 1− 2

3godd(G)+2
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2. Technical lemmas

Let φ : E(G) → {α, β, γ, δ} be a proper edge-colouring of G. It is often of
interest to try to use one colour (say δ) as few as possible. When an edge colouring
is optimal, following this constraint, we shall say that φ is δ − minimum. Since
any two δ−minimum edge-colouring of G have the same number of edges coloured
δ we shall denote by s(G) this number. For x, y ∈ {α, β, γ, δ}, x 6= y, φ(x, y) is the
partial subgraph of G spanned by these two colours (this subgraph being a union
of paths and even cycles where the colours x and y alternate) and Eφ(x) is the set
of edges coloured with x.

In [5] we gave without proof (in French, see [4] for a translation) results on
δ-minimum edge-colourings of cubic graphs

Lemma 2.1. [5, 6, 4] Let φ be a δ−minimum edge-colouring of G. For any edge
e = uv coloured with δ there are two colours x and y in {α, β, γ}such that the
connected component of φ(x, y) containing the two ends of e is an even path joining
these two ends. Moreover e has one end of degree 2 and the other of degree 3 or
the two ends of degree 3

Remark 2.2. An edge coloured with δ by the δ−minimum edge-colouring φ is in Aφ

when its ends can be connected by a path of φ(α, β), Bφ by a path of φ(β, γ) and
Cφ by a path of φ(α, γ). It is clear that Aφ, Bφ and Cφ are not necessarily pairwise
disjoint since an edge of coloured with δ with one end of degree 2 is contained
in 2 such sets. Assume indeed that e = uv is coloured with δ while d(u) = 3
and d(v) = 2 then, if u is incident to α and β and v is incident to γ we have an
alternating path whose ends are u and v in φ(α, γ) as well as in φ(β, γ). Hence e is
in Aφ ∩Bφ. When e ∈ Aφ we can associate to e the odd cycle CAφ

(e) obtained by
considering the path of φ(α, β) together with e. We define in the same way CBφ

(e)
and CCφ

(e) when e is in Bφ or Cφ. In the following lemma we consider an edge in
Aφ, an analogous result holds true whenever we consider edges in Bφ or Cφ as well.

Lemma 2.3. [5, 6, 4] Let φ be a δ−minimum edge-colouring of G and let e be an
edge in Aφ then for any edge e′ ∈ CAφ

(e) there is a δ−minimum edge-colouring φ′

such that Eφ′(δ) = Eφ(δ)− {e} ∪ {e′}, e′ ∈ Aφ′ and CAφ
(e) = CAφ′ (e

′). Moreover,

each edge outside CAφ
(e) but incident with this cycle is coloured γ, φ and φ′ only

differ on the edges of CAφ
(e).

For each edge e ∈ Eφ(δ) (where φ is a δ−minimum edge-colouring of G) we can
associate one or two odd cycles following the fact that e is in one or two sets among
Aφ, Bφ or Cφ. Let C be the set of odd cycles associated to edges in Eφ(δ).

Lemma 2.4. [5, 6, 4] Let e1, e2 ∈ Eφ(δ) and let C1, C2 ∈ C be such that C1 6= C2,
e1 ∈ E(C1) and e2 ∈ E(C2) then C1 and C2 are (vertex) disjoint.

Lemma 2.5. [5, 6, 4] Let e1 = uv1 be an edge of Eφ(δ) such that v1 has degree 2
in G. Then v1 is the only vertex in N(u) of degree 2 and for any edge e2 = u2v2 ∈
Eφ(δ), {e1, e2} induces a 2K2.

Lemma 2.6. [5, 6, 4] Let e1 and e2 be two edges of Eφ(δ). If e1 and e2 are contained
in two distinct sets of Aφ, Bφ or Cφ then {e1, e2} induces a 2K2 otherwise e1, e2
are joined by at most one edge.
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Lemma 2.7. [5, 6, 4] Let e1, e2 and e3 be three distinct edges of Eφ(δ) contained
in the same set Aφ, Bφ or Cφ. Then {e1, e2, e3} induces a subgraph with at most
four edges.

Lemma 2.8. [3] Let G be a graph with maximum degree 3 then γ(G) = 1− s(G)
m .

A cubic graph G on n vertices is called a permutation graph if G has a perfect
matchingM such G−M is the union of two chordless cycles A and B of equal length
n
2 . When we delete one edge of the perfect matching M in the above permutation
graph G, we shall say that the graph obtained is a near-permutation graph.

Lemma 2.9. Let G be a permutation graph or a near-permutation graph with n
vertices and odd girth n

2 . Suppose that G is not 3-edge colourable. Then G is the
Petersen graph or the Petersen graph minus one edge.

Proof Obviously, since G is not 3-edge colourable, n
2 is certainly odd. Let

A = a0a1 . . . a2k and B = b0b1 . . . b2k be the two chordless cycles of length n
2 = 2k+1

which partition V (G). When 2k+ 1 = 3, it can be easily verified that G is 3−edge
colourable and when 2k + 1 = 5 G is the Petersen graph or the Petersen graph
minus one edge. Assume thus that 2k + 1 ≥ 7.

Since at most one vertex of A and one vertex of B have degree 2, we can suppose
that a0, a1, a2 are joined to 3 distinct vertices of B. Without loss of generality we
suppose that a0b0 ∈ E(G). Since G is not 3−edge colourable a1b1 and a1b2k are
not edges of G and since the odd girth is at least 7 we do not have the edges a1b2
and a1b2k−1. Henceforth let bi (2 < i ≤ 2k−2) the neighbour of a1. One of the two
paths determined by b0 and bi on B must have odd length. Suppose, without loss of
generality, that b0b1 . . . bi has odd length then we have an odd cycle a0b0b1 . . . bia1
whose length is at least 2k + 1, which leads to i = 2k − 2.

The vertex a2 is not joined to b2k−1 or b2k−3, otherwise G is 3-edge colourable,
neither to b2k ,b2k−4 or b1, otherwise the odd girth is 5. Henceforth a2 is joined to
some vertex bj with 2 ≤ j ≤ 2k − 5. If j is odd then b0b1 . . . bja2a1a0 is an odd
cycle of length at most 2k − 1, impossible. If j is even then bj . . . b2k−3b2k−2a1a2
an odd cycle of length at most 2k − 1, impossible. �

3. Proof of Theorem 1.1

Proof
Let φ be a δ−minimum edge-colouring of G and Eφ(δ) = {e1, e2 . . . es(G)}. C be-

ing the set of odd cycles associated to edges in Eφ(δ), we write C = {C1, C2 . . . Cs(G)}
and suppose that for i = 1, 2 . . . s(G), ei is an edge of Ci. We know by Lemma 2.4
that the cycles of C are vertex-disjoint.

Let l(C) =
∑
C∈C

l(C) (where l(C) is the length of the cycle C) and assume that φ

has been chosen in such a way that l(C) is maximum.
Let us write C = C2 ∪ C3, where C2 denotes the set of odd cycles of C which have

a vertex of degree 2, while C3 is for the set of cycles in C whose all vertices have
degree 3. Let k = |C2|, obviously we have 0 ≤ k ≤ s(G) and C2 ∩ C3 = ∅.

If Ci ∈ C2, we may suppose that ei has a vertex of degree 2 (see Lemma 2.3)

and we can associate to ei another odd cycle say C
′

i (Remark 2.2) whose edges

distinct from ei form an even path Pi using at least godd(G)
2 edges which are not
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edges of Ci. When l(Ci) = godd(G), Ci has no chord and it is an easy task to find
a supplementary edge of Pi not belonging to Ci. When l(Ci) ≥ godd(G) + 2 (recall
that Ci has odd length), we can choose an edge of Ci as a private edge. In both

cases Ci ∪C
′

i contains at least
3
2godd(G) + 1 edges. Consequently there are at least

k × ( 32godd(G) + 1) edges in
⋃

Ci∈C2

(Ci ∪ C
′

i).

When Ci ∈ C3, Ci contains at least godd(G) edges, moreover, each vertex of Ci

being of degree 3, there are s(G)−k
2 ×godd(G) additional edges which are incident to

a vertex of
⋃

Ci∈C3

Ci. Let us remark that each above additional edge is counted as

1
2 whatever are these edges. In order to refine our counting, we need to introduce
the following notion of free edge. An edge will be said to be free when at most one
end belongs to some Ci ∈ C3.

Suppose that we can associate to each Ci ∈ C3 one private edge or two private
free edges. Since Ci ∩ Cj = ∅ and C

′

i ∩ Cj = ∅ (1 ≤ i, j ≤ s(G), i 6= j), we would
have

m ≥ (k × (
3

2
godd(G) + 1) + (s(G)− k)× (godd(G) + 1) +

s(G)− k

2
× (godd(G))

and

m ≥ s(G)× (
3

2
× godd(G) + 1).

Consequently γ(G) = 1− s(G)
m ≥ 1− 2

3godd(G)+2
, as claimed.

Our goal now is to associate to each Ci ∈ C3 one private edge or two private free
edges.

When Ci is incident to at least two free edges, let us choose any two such free
edges as the private free edges associate to Ci. By definition, these two free edges
are not incident to any Cj ∈ C3 with j 6= i, insuring thus that they cannot be
associated to Cj . When l(Ci) ≥ godd(G)+2, we choose any edge of Ci as a private
edge.

Assume thus that l(Ci) = godd(G). Hence Ci = x0x1 . . . xgodd(G)−1 is chordless.
Suppose that Ci is incident to at most one free edge. Without loss of generality,
we can consider that x0 is the only possible vertex of Ci incident to some free edge.
Since the edge incident to x1, not belonging to Ci, is not free, let Cj ∈ C3,i 6= j,
such that x1 is adjacent to y1 ∈ Cj . In the same way, the edge incident to x2,

not belonging to Ci, is not free. Let Cj′ ∈ C3,i 6= j
′
, such that x2 is adjacent to

z2 ∈ Cj′ . Suppose that j 6= j
′
, then by Lemma 2.3 we can consider that x1x2 is

coloured δ by φ as well as one of the edges of Cj incident with the vertex y1 and
one of the edges of Cj′ incident with z2, a contradiction with Lemma 2.7 or Lemma
2.6. Henceforth, x2 is adjacent to some vertex of Cj . In the same way every vertex
of Ci, distinct from x0, is adjacent to some vertex of Cj .

In this situation, let us say that Ci is extremal for Cj . Assume that we have
a set of p ≥ 2 distinct extremal cycles of C3 for Cj . Since two distinct extremal
cycles have no consecutive neighbours in Cj (otherwise we get a contradiction with
Lemmas 2.7 or 2.6 as above), Cj has length at least p × (godd(G) − 1) + 2. But
p× (godd(G)− 1)+ 2 ≥ godd(G)+ p+1 as soon as godd(G) ≥ 3. hence, when p ≥ 2,



6 J.L. FOUQUET, J.M. VANHERPE

we can associate to each extremal cycle for Cj a private edge belonging to Cj as
well as a private edge for Cj itself, since l(Cj) ≥ godd(G) + p+ 1.

Assume thus that Ci is the only extremal cycle for Cj . If l(Cj) ≥ godd(G) + 2,
we can associate any edge of Cj as a private edge of Ci and any other edge of Cj as
a private edge of Cj . It remains thus to consider the case where l(Cj) = godd(G).
In that situation, Ci is an extremal cycle for Cj , as well as Cj is an extremal cycle
for Ci and the subgraph induced by Ci ∪ Cj is a permutation graph or a near

permutation graph with odd girth godd(G) =
|Ci∪Cj |

2 .
By Lemma 2.9 G itself is the Petersen graph or Ci∪Cj induces a Petersen graph

minus one edge (by the way, godd(G) = 5). By hypothesis, the first case is excluded.
Assume thus that Ci ∪ Cj induces a Petersen graph minus one edge. In the last
part of this proof, we show that this situation is not possible.

In order to fix the situation letH be the subgraph ofG not containing Ci∪Cj . We
suppose that Cj is the chordless cycle of length 5 y0y3y1y4y2 while x1y1, x2y2, x3y3
and x4y4 are the edges joining Ci to Cj . Moreover x0 is joined to some vertex
a ∈ V (H) and y0 is joined to some vertex b ∈ V (H). Without loss of generality,
we can consider that φ colours alternately the edges of Ci (Cj respectively) with β
and γ with the exception of the edge x0x1 coloured with δ (y0y3 respectively).

The edges x1y1, x2y2, x3y3 and x4y4 are thus coloured with α as well as the edges
x0a and y0b (let us remark that a 6= b). The final situation is depicted in Figure 1.

H

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

α

α α α α

δ

δ

β β

β β

γ

γ

γ

γα

a

b

Figure 1. Final situation

Without changing any colour in H and keeping the colour α for the edges x0a
and y0b, we can construct a new δ−minimum edge-colouring φ

′
in the following

way (see Figure 2):

• x0x4 and x1x2 are coloured with δ
• x4y4, y0y2, x2x3 and y1y3 are coloured with β
• x1y1, x3y3 and y4y2 are coloured with α
• x0x1, x3x4, y0y3, y1y4 and x2y2 are coloured with γ.

Let C′
be the set of odd cycles associated to edges coloured with δ by φ

′
. Since

we do not have change any colour in H, we have C′
= C−{Ci, Cj}+{C ′

i , C
′

j} where

C
′

i is the chordless cycle of length 5 x1x2x3y3y1 and C
′

j is the odd cycle obtained by
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H

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

α

α α γ β

γ

γ

δ γ

β α

β

δ

β

γα

a

b

Figure 2. New colouring φ
′

concatenation of the path ax0x4y4y2y0b and the path coloured alternately β and α
joining a to b in H (dashed line in Figure 2), whose existence comes from Lemma

2.1. Since the length of C
′

j is at least 7, l(C
′
) > l(C), a contradiction with the initial

choice of φ.
�

4. Application to bridgeless cubic graphs

In this section we show that for any bridgeless cubic graph G distinct from the

Petersen graph we have γ(G) ≥ 15

17
.

A triangle T = {a, b, c} is said to be reducible whenever its neighbours are dis-
tinct. When T is a reducible triangle in G (G having maximum degree 3) we can
obtain a new graph G′ with maximum degree 3 by shrinking this triangle into a
single vertex and joining this new vertex to the neighbours of T in G.

Lemma 4.1. [1] Let G be a graph with maximum degree 3. Assume that T =
{a, b, c} is a reducible triangle and let G′ be the graph obtained by reduction of this
triangle. Then γ(G) > γ(G′).

Let P12 be the cubic graph obtained from the Petersen graph by replacing a
vertex by a triangle. One can easily verify that s(P12) = 2 leading immediately to

Lemma 4.2. γ(P12) =
8
9 .

Let Dk (k ≥ 1) be the graph depicted in Figure 3 (where ak and bk are not
adjacent) and let G be a graph of maximum degree 3 containing a subgraph H
isomorphic to Dk for some k ≥ 1. If we delete the vertices of H distinct from ak
and bk and add a new edge between these two vertices we get a new graph G

′
with

maximum degree 3. Let us say that G
′
is obtained from G by reducing Dk

Lemma 4.3. Let G be a graph with maximum degree 3. Assume that G contains
a subgraph isomorphic to Dk for some k ≥ 1 and let G′ be the graph obtained from
G by reducing Dk. Then s(G) = s(G

′
) and γ(G) > γ(G′).



8 J.L. FOUQUET, J.M. VANHERPE

Proof Let φ be a δ−minimum edge-colouring of G. If φ(akak−1) = φ(bkbk−1),

then we get an immediate 3−edge colouring of G
′
by giving this common colour

to the edge akbk which gives s(G
′
) ≤ s(G). If φ(akak−1) 6= φ(bkbk−1), then one

can easily verify that one edge at least of Dk must be coloured with δ. Hence we
can obtain a 3−edge colouring of G

′
by giving the colour δ to akbk which gives

s(G
′
) ≤ s(G) leading also to s(G

′
) ≤ s(G). Conversely, one can easily extend a

δ−minimum edge-colouring of G
′
to a 3−edge colouring of G using at most S(G

′
)

edges coloured with δ. Hence s(G) = s(G
′
) as claimed.

Since |E(G)| > |E(G
′
)|, we have, by Lemma 2.8,

γ(G) = 1−
s(G)

|E(G)|
> 1−

s(G
′
)

|E(G′)|
= γ(G

′
)

. �

Lemma 4.4. Let G be a bridgeless cubic graph and suppose that G contains a
subgraph isomorphic to Dk for some k ≥ 1. Let G′ be the graph obtained from G
by reducing Dk and assume that G

′
is isomorphic to the Petersen graph. Then

γ(G) >
15

17
.

Proof Obviously, G contains at least 6 edges more than the Petersen graph. Since

γ(G) = 1− s(G)
|E(G)| by Lemma 2.8 and s(G) = 2 by Lemma 4.3, we have immediately

γ(G) ≥ 1− 2

15+6
>

15

17
, as claimed. �

a0

b0

c d

a1ak−1ak

b1bk−1bk

Figure 3. Dk

Theorem 4.5. Let G be a bridgeless cubic graph distinct from the Petersen graph.

Then γ(G) ≥ 15

17

Proof When G has at most 10 vertices, it is well known that either G is 3−edge
colourable orG is isomorphic to the Petersen graph. The latter case is is excluded by
the hypothesis. When G has 12 vertices, the only bridgeless non 3−edge colourable
cubic graph is P12 for which the result is true by Lemma 4.4. Hence, for bridgeless
cubic graph with at most 12 vertices the result holds true. Assume by induction
that every bridgeless cubic graph H with at most n ≥ 12 vertices is such that

γ(H) ≥ 15

17
and let us prove the result for a bridgeless cubic graphs G with n + 2

vertices.
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If godd(G) ≥ 5 the result comes from Theorem 1.1. We can thus suppose that G
contains a triangle T . If this triangle is reducible, the result follows from Lemma
4.1. When T is not reducible, that means that either G is reduced to K4 (the
three neighbours of T are reduced to a single vertex) or G contains a subgraph
isomorphic to Dk for some k ≥ 1. The former case is impossible since G has at
least 14 vertices. In the latter case, we use Lemma 4.3 or Lemma 4.4 to conclude. �
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