
Coherence and
Performance for

Interactive Scientific
Visualization
Applications

Sébastien Limet, Sophie Robert, Ahmed Turki

LIFO, Université d’Orléans

Rapport no RR-2011-02

Coherence and Performance for Interactive
Scientific Visualization Applications

Sébastien Limet, Sophie Robert, and Ahmed Turki

Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, France ?

Abstract. This paper addresses the use of component-based develop-
ment to build interactive scientific visualization applications. Our over-
all approach is to make this programming technique more accessible
to non-computer-scientists. Therefore, we present a method to, out of
constraints given by the user, automatically build and coordinate the
dataflow of a real-time interactive scientific visualization application.
This type of applications must run as fast as possible while preserv-
ing the accuracy of their results. These two aspects are often conflicting,
for example when it comes to allowing message dropping or not. Our ap-
proach aims at automatically finding the best balance between these two
requirements when building the application. An overview of a prototype
implementation based on the FlowVR high-performance middleware is
also given.

Keywords: Composition, Coherence, Coordination, Synchronization

1 Introduction

The interactive visualization of simulations helps scientists better understand the
phenomena they study. In [5] for example, biochemists describe how it can unveil
some interactions between complex molecular assemblies. The observer can then
become an actor by applying forces to the atoms. The intended interactivity
in these applications is not limited to a passive manipulation of the graphical
output. It is rather active and its effects are propagated throughout the whole
running application. As an example, one can think of pushing and pulling atoms
during a molecular simulation.

The development of interactive scientific visualizations is however hampered
by the complexity of the software developments it needs. Scientific simulation
specialists are seldom experts in 2D/3D visualization or in control device pro-
gramming. Component-based development promotes collaborative work in this
area since it allows each specialist to independently develop the parts he is
skilled in. The component approach has been widely studied for scientific com-
puting. These approaches generally follow a workflow model. A variety of Sci-
entific Workflow Management Systems (SWMSs) [17] are proposed to design,

? This work is supported by the french ANR project FvNano.

generate, deploy and execute scientific applications which consists in carrying
out an overall process over a dataset through a sequence of finite steps [4, 7, 8].
Some of them are extended to provide control constructs that allow branching,
looping and parallelism. These control constructs are based on control nodes
in [15], on control links in [11], on directors in [12] or on adaptation connectors
in [6]. But in all cases the user has the task of manually specifying the con-
trol behaviour of the components and of the overall application by instanciating
these control constructs.

Moreover, the lack of explicit support of data streams in SWMSs hampered
application development in some scientific domains. Now, initiatives are being
taken, either by extending a current workflow paradigm [2, 3, 9] or by defining a
whole new model [16]. While these developments were mostly motivated by the
need to integrate continuous sensor feeds as inputs to workflows, we claim that
some iterative scientific simulators like Gromacs [10] need a similar attention in
order to be integrated in a scientific workflow. We also argue that a dataflow
model of iterative components suits better the performance requirements of in-
teractive visualization. In addition, the components may run at different rates.
Simulations often run slowly while components handling control devices run very
fast. The composition work consists then in focusing on inter-component com-
munication and synchronization. It must guarantee that the whole constructed
application remains fast enough to process interactions in a reasonable time
so that the user can observe their effects on the simulation. In addition, the
scientific nature of the applications requires a specific attention to data carry-
ing. While some of the data can be dropped to speed the application up -e.g.
the positions of the atoms in a molecular simulation has not necessarily to be
frame-accurate at display-, the wholeness of other data may be essential to the
coherence of the application. In [14], the authors stress the importance of well
formalized coordination mechanisms in the coherence of simulations.

So the construction of a component-based real-time interactive application
must deal with heterogeneous components and data and try to reach the best
compromise between speed and coherence. The accessibility of the composition
task must also remain a prerogative.

In this paper, we present a framework to specify dataflow component-based
interactive scientific visualization applications. It consists in

– a component specification taking into account its iterative process,
– a composition model focusing on data communication and synchronization

constraints,
– an automatic method to deduce inter-component communication and syn-

chronization that fits the user’s requirements at best and allows the compo-
nents to run as fast as possible.

This paper is organized as follows: Section 2 introduces our component model
and specifically its set of connectors. Section 3 explains the specific coordina-
tion challenges of real-time interactive scientific visualization and Section 4 our
methodology to address them. Section 5 presents the results of our approach

applied to a real world application. In Section 6, we evaluate and situate our
method among similar proposals and give the axes of our future work.

2 Component Model

We define a composition model to automatically build high-performance inter-
active applications. Its objectives are to

– formalize a component definition from an iterative process and heterogeneous
code

– formalize an application construction based on additional elements to express
inter component connections able to ensure coherence and performance.

– propose a composition model to automatically construct the intented appli-
cations.

2.1 Components

Unlike scientific computing pipelines, data-driven interactive visualization appli-
cations are meant to run continuously along with the simulation or interaction
components at the heart of them. Looping is thus inherent to all of the com-
ponents and can directly be encoded inside them juts like the Push behaviour
described in [13]. A component encapsulates a specific task in the data process-
ing pipeline. Formally, it is a quintuplet A = (n, I,O,C, f) where n is the name
of the component and I and O two sets of user defined input and output ports.
I and O respectively include s (for start) and e (for end), two default triggering
input and output ports. e, at the end of an iteration, emits a signal that can be
used to trigger another object. s is the port that receives such signals. C are the
coherence constraints of A. It is a set of disjoint subsets of I−{s}. Finally, f is a
boolean to indicate that the component must run freely. We indeed distinguish
special components called interactive components that collect user interactions.
Typically, they can manage control devices. Specifying that a component is in-
teractive (setting f to true) means that its iteration rate must only depend on its
processing rate. This ensures that the component will not miss any interaction
event. For a component A, name(A) denotes its name, I(A) and O(A) its set
of input and output ports respectively, cstr(A) its set of coherence constraints,
and f(A) its type.

Components work iteratively. The behavior of the component A consists in:
(1) waiting until all of its connected input ports are supplied with data and that
s, if connected, receives a new signal (2) performing its computation task which
can be a parallel task and (3) producing new data on all of its output ports and a
signal on e. This process is called an iteration of A. Each component numbers its
iterations. i(A) is the iteration rate of the component. i(A) depends, of course,
on the time the component needs to perform its task but it could also depend on
the time data takes to arrive to the input ports since A must wait until all of its
connected input ports are fed. input and output ports are identified by a name.

Data circulating between ports are called messages. For a message m, it(m) is
the iteration number of the component that produced m. The components of
our model can also handle empty messages, i.e. containing no data. This allows
a component to go out of the waiting state as soon as all of its input ports are
fed, even if not all with fresh data.

2.2 Application construction

Constructing an application consists in defining the components and the con-
nectivity between their ports. To express this connectivity we define Connectors
and Links in order to describe exactly how the data are transmitted from an
emitter component to a receiver component.

Connectors Our component model adopts a set of exogeneous connectors [6]
designed to support iterative components of different rates anywhere in the ap-
plication graph. For example, with respect to recent approaches [6, 13, 16], it
adds the ability to choose between blocking and non-blocking connections in
order to let the end-user decide which processes should constantly be kept alive
and which ones do not need to reprocess already processed data. Similarly, we
introduce filtering connections comparable to the filtering nodes in [9] because
they appear to be an essential alternative, for the sake of performance, to the
systematic buffering of all the messages in use in [16]. On the other hand, we
chose to not include explicit time parameters for activity triggering to keep our
model the most generic possible. Connectors must be set between two compo-
nents to determine the communication policy between them, i.e. the type of
synchronization and the possibility to loose messages or not. A connector c is
a quadruple c = (n, {s, i}, {o}, t) where t is its type (see Figure 1) and i is an
input port and o an output port. n and s are similar to their homonyms in the
component. We use the same notations name(c), I(c), O(c) and type(c) as for
components. c can contain several messages. When the sender writes a message
on an output port, it simply adds this message to the connector and when the
receiver reads its input ports, the connector delivers one of its messages.

Because the components might run at different rates, the connectors need to
avoid the overflow of messages when the receiver is slower than the sender. On
the other hand, the sender might also slow the receiver down if its iteration rate
is lower. To tackle these problems, we propose five connection patterns besides
the plain FIFO. sFIFO, bBuffer and bGreedy are similar to patterns described
in [13].

– In a plain FIFO connection, the sender dispatches messages at its own rate
without considering the receiver. To prevent overflows, this pattern adds a
new condition to leave the waiting state. In addition to new input data,
the sender must wait for a triggering signal usually sent by the receiver.
This connector is called sFIFO, s standing for synchronized. However, as
observed in [13], it can make slow components block their predecessors and,

Fig. 1. The five connectors of our framework.

recursively, the entire application. This is particularly annoying in visualiza-
tion applications where display components, that can be slow, are always at
the end of the pipeline.

– Buffered FIFO connections can be useful to absorb overflows when one of
the two components has an irregular iteration rate. When ready, the re-
ceiver triggers the sending of the oldest message in the buffer. We define the
bBuffer, where b stands for blocking, because the absence of new message
blocks the receiver. The nbBuffer, with nb standing for non-blocking, can,
in contrast, dispatch empty messages when it is empty.

– A Greedy connector keeps only the last message provided by the sender and
sends it upon the receiver’s request. It is usually used to avoid overflows
when it is not required that all messages are processed. The bGreedy and
the nbGreedy are, respectively, the blocking and the non-blocking variants
of this pattern.

Links Links connect components or connectors together through their ports.
They are denoted by (xp, yq) with x, y component or connector, p ∈ O(x) and
q ∈ I(y). There are two types of links:

– A data link transmits data messages. For a data link (xp, yq), we impose
that p 6= e, q 6= s and at least x or y is a connector. Indeed, as a connector
is always required to define a communication policy, a data link cannot be
directly set between two components.

– A triggering link transmits triggering signals. For such a link (xp, yq), we
impose that x is a component, p = e and q = s. The triggering links are
illustrated by dashed lines in Figure 1. Please note that, to avoid deadlocks,
neither components nor connectors wait for a triggering signal before their
very first iteration.

Fig. 2. (a) A specification graph (b) A corresponding application graph

2.3 Application graph

With these elements, the application construction can be represented by a graph
called the application graph. The vertices of this graph are the components and
the connectors. The edges represent the links.

Definition 1. Let Cp be a set of components, Cn a set of connectors, Dl a set of
data links and T l a set of triggering links. The graph App = (Cp

⋃
Cn,Dl

⋃
T l)

defines an application graph. In the remainder of this article, we call a data
path of App an acyclic path in the graph (Cp

⋃
Cn,Dl).

Figure 2(b) illustrates the application graph of an interactive molecular dy-
namics application. An InputHandler communicates with a hardware controller
like an Omni R©. It transforms interaction events into streams that are filtered
by the Tracker component to forward only the position of the pointer. This po-
sition is then used to compute, in real-time, the forces to be injected into the
simulation in order to be applied to the molecule. It is also passed to a Renderer
that computes the graphical representation of the pointer. We use an nbGreedy
after the InputHandler because it iterates brokenly and with a high frequency.
Then, while ForceGenerator and Simulation are synchronized thanks to block-
ing patterns, the Viewer is separated from them by an nbGreedy to obtain the

smoothest display possible. Building a whole application by putting together
components, connectors and links is not easy for beginners, especially consider-
ing the specific requirements detailed in Section 3. In Section 4, we present a
method to automate this construction.

3 Introducing Coherence

When building his application, the user makes local decisions by choosing the
connectors to set between pairs of components. Controlling the coordination
of the whole graph this way remains however a difficult task that can become
unsolvable as the number of graph edges increases. Of course, one can set non-
blocking connections everywhere to avoid slow downs. Nevertheless, this would
lead to a rash global coordination which is contradictory with the precision ex-
pected from scientific applications. Alternatively, one can tie everything up with
blocking and non-lossy patterns to ensure coherence but this would result in a
general performance drop to the frequency of the slowest component. Our goal
is to propose a composition model able to construct, from a user specification,
an application ensuring performance and result reliability. To introduce our con-
cepts, we first need a few preliminary definitions.

Definition 2. Let App be an application graph. We call segment a data path of
App. The starting vertex is called the source, denoted src(s), and the arriving
vertex is called the destination, denoted dest(s). A message arriving at dest(s)
is called a result of s. The message from the source that originates this result is
denoted by oris(r). A segment whose source and destination are both components
is called a pipeline.

Definition 3. Two pipelines p1 and p2 are parallel if and only if src(p1) =
src(p2) and dest(p1) = dest(p2) and they do not share any other component.

In interactive scientific visualization, the result reliability can be achieved,
from a coordination point of view and apart from data type matters, by enforc-
ing coherence constraints on the data streams incoming at a component from
different input ports. In the application of Figure 2(b), the user might want
the data issued by Renderer and Simulation to be synchronized at display, i.e.
to come from the same iteration of the Tracker. More generally, the coherence
between two input ports i1 and i2 means that if the two messages arriving at
the same time at i1 and i2 are the results of two parallel pipelines starting at a
single component A, then they are the “products” of the same iteration of A.

Definition 4. Let A be a component and i1,i2 ∈ I(A). i1 and i2 are said
coherent if, for all pairs of parallel pipelines (p1, p2) such that the last edge
of p1 connects to i1 and the last edge of p2 connects to i2, we can ensure
it(orip1

(r1)) = it(orip2
(r2)) where r1 and r2 are two results of p1 and p2 read at

the same iteration by A.

In Figure 2(b), the coherence between the input ports pointer and atoms of
the Viewer is not achieved. Indeed, as the nbGreedy connectors c2, c3 and c6
deliver only the last stored message and as the modules of the two pipelines run
at different rates Viewer can receive data that are not issued from the same
iteration of Tracker.

4 Automatic composition

This section describes how the user specifies the constraints on his application
and the way we automatically build an application graph that ensures input port
coherence while trying to preserve performance.

4.1 Application specification

The application specification helps the user focus on the expected properties of
the communications in the application, avoiding technicalities. It is done by a
directed graph called the specification graph.

Its vertices are the components of the application. Its edges, directed from
the sender to the receiver, are labelled with the output and input ports and the
constraints on the communications. These constraints are of two types: (1) the
message policy, i.e. can this communication drop messages or not, and (2) the
synchronization policy, i.e. should the receiver of the message be blocked when
no new messages are available. Our aim is to compute an application graph that
implements the specifications given by user following the overall rule The gen-
erated application has to be, first of all, as safe as possible and then, as fast as
possible. The first step of the process consists in computing a preliminary appli-
cation graph by replacing each edge of the specification graph with a connector
following the rules of Table 1. As in many cases, several connectors fit the same
combination, this table itself was created following the previous overall rule.
The application graph of Figure 2(b) is obtained from the specification graph of
Figure 2(a).

Blocking policy Non-blocking
or

Interactive
receiver

Msg loss bGreedy nbGreedy

Sender is Sender not
interactive interactive

No
msg loss bBuffer sFIFO nbBuffer
Table 1. The choice of communication patterns

Next, the preliminary graph is transformed to implement first the coherence
constraints and then to optimize the running time of the application. We first
present how the coherence can be implemented in an application graph then we
explain the different steps of the process.

4.2 Input port coherence

The coherence of two or more input ports of a component depends on the coher-
ence of pairs of parallel pipelines that end at these input ports. The latter relies
on a few basic concepts illustrated Figure 3.

A

A

A

A

j j

O

E

bB bB

m m1
2

(1)

(2)

(3)

(4)

k l

1 1

i i21

o o1 2

M
2M

1

2

21

1

21

1 2

1 1

1 1

j j

bB bB

21

1

q q

q q

Input synchronization

Output synchronization

2

Fig. 3. Ensuring Coherence

Definition 5. A segment (A1, c1, . . . , An−1, cn−1, An) where Ai (1 ≤ i ≤ n) is
a component and ci (1 ≤ i ≤ n − 1) is either a sFIFO or bBuffer connector is
called a synchronous segment.

Property 1. Let s = (A1, c1, . . . , An−1, cn−1, An) be a synchronous segment and
mn a message produced by An, it(mn) = it(oris(mn))

The property is obvious since no message is lost inside a synchronous segment.
Indeed An generates as many messages as A1.

Definition 6. A junction is a bGreedy, an nbGreedy or an nbBuffer connector
between two consecutive synchronous segments making them independent.

The more synchronous segments an application has, the faster it can run.
However, the junctions between the segments of a pipeline are also the points
where the coherence can be lost.

Definition 7. In an application graph App, an input synchronization is a com-
position pattern involving

– two synchronous segments s1, s2 of respectively k and l components which
are distinct and ended respectively by the components Ak

1 and Al
2,

– two junctions j1, j2 of the same type and preceding respectively s1 and s2,
– a backward cross-triggering consisting of (Ae

1, j
s
2) and (Ae

2, j
s
1).

This pattern is denoted J ∗ (s1, s2).

Figure 3 illustrates the input synchronization where the junctions j11 and j12
are of same type and where the backward cross-triggering is represented by the
two arrows labelled (1) and (2). This synchronization ensures that the junctions
select their messages at the same time and that no new messages are accepted by
the first components of the segments before all the components of the segments
are ready for a new iteration. Note that this property is maintained when the
two junctions are triggered by a same additional set of signals.

Definition 8. In an application graph App, an output synchronisation is a com-
position pattern involving

– two synchronous segments s1 and s2 of repectively k and l components which
are distinct and ended by components respectively Ak

1 and Al
2

– two bBuffer connectors bB1 and bB2 following respectively s1 and s2
– a forward cross-triggering consisting of (Ak

1
e, bBs

2) and (A2
le, bBs

1).

This pattern is denoted (s1, s2) ∗ bB.

Figure 3 illustrates the output synchronization where the forward cross-triggering
is represented by the arrows labelled (3) and (4). This composition pattern
ensures that the delay between the synchronous segments to produce messages is
absorbed. As the bBuffer connectors select their messages at the same time when
all the last components of the synchronous segments are done, the messages are
delivered also at the same time. Note that this property is maintained when the
two bBuffer connectors are triggered by a same additional set of signals.

Definition 9. In an application graph App, the composition J ∗ (s1, s2) ∗ bB
where s1 and s2 are two synchronous segments with no common components, is
called a pair of coherent segments. [J ∗ (s1, s2) ∗ bB]q denotes the composition
of q coherent segments J1 ∗ (s11, s

1
2) ∗ bB1 ∗ · · · ∗ Jq ∗ (sq1, s

q
2) ∗ bBq.

We denote M a series of messages, |M | is the length of this series, and M i

denotes the ith message of the series. A set of series of messages {M1, . . . ,Mn}
are said coherent if |M1| = · · · = |Mn| and ∀j ∈ [1, |M1|], it(M j

1) = · · · = it(M j
n).

Theorem 1. Let App be an application graph and (S1, S2) = J ∗ (s1, s2) ∗ bB a
pair of coherent segments of App. If the series of messages M1 and M2 stored in
the junctions j1 and j2 are coherent, then the set of messages m1 and m2 stored
respectively in the bB1 and bB2 bBuffer connectors are such that it(m1) = it(m2)
and it(oriS1

(m1)) = it(oriS2
(m2)) when the bBuffers are triggered.

Proof. Since the series of messages stored in j1 and j2 are coherent and that
they are triggered at the same time, respectively the messages M i

1 and M i
2 that

they deliver have the same iteration number k1. After this operation, the new
series of messages stored in j1, j2 are still coherent.

By construction, the first components of the two segments begin a new itera-
tion at the same time. So, their iteration numbers are always equal and denoted
k2. From Property 1, we know that the iteration number of each message de-
livered at the end of both segments, is equal to the iteration number of the
message produced by the first components of the segments, i.e. k2. Since the
message m1 stored in bB1 and m2 stored in bB2 are made available only when
the last components of s1 and s2 both finish their iterations, we do have that
it(m1) = it(m2) = k2 at this moment and it(oris1(m1)) = it(oris2(m2)).

Theorem 2. Let App be an application graph and (S1, S2) = [J ∗ (s1, s2) ∗
bB]q two segments in App. If the series of messages M1 and M2 stored in the
junctions j11 and j12 of the first coherent segments are coherent then the set of
messages m1 and m2 stored respectively in the bBq

1 and bBq
2 bBuffer connectors

of the last coherent segments are such that it(m1) = it(m2) and it(oriS1(m1)) =
it(oriS2

(m2)) when the bBuffers are triggered.

Proof. According to Theorem 1 if the series of messages stored in the junctions
are coherent then the messages delivered by the bBuffers connectors have the
same iteration number. Therefore, the series of messages stored in the next
junctions are coherent. An easy induction on q proves the theorem.

Figure 3 gives an example of two parallel pipelines p1 and p2 that ensure
the coherence of two ports. This application graph is composed of an initial
component O (for origin), of a composition pattern [J ∗ (s1, s2) ∗ bB]q such

that (Oo1 , j11
i
) and (Oo2 , j12

i
) and of an final component E such that (Bbq1

o
, Ei1

and (Bbq2
i
, Ei2). The junctions are such that jj2 and jj1 1 ≤ j ≤ q are of the

same type. If M1 and M2 denote the series of messages coming from the output
ports of the component O, M1 and M2 are coherent. So the messages stored
in the first junctions j11 and j21 are coherent. According to Theorem 2 for the
messages delivered by the bBq

1 and the Bbq2 bBuffers it(m1) = it(m2). Moreover
if S1 denotes the data path from j11 to bBq

1 and S2 the one from j12 to bBq
2

then it(oriS1(m1)) = it(oriS2(m2)). This means that oriS1(m1) and oriS2(m2)

come from the same iteration of O hence it(orip1
(r1)) = it(orip2

(r2)) which
corresponds to the definition of the coherence.

To construct an application graph under coherence contraints, we propose to
transform our preliminary application graph into a new one such that the data
paths implied in a coherence constraints are composed of coherent segments.

4.3 Transformations for coherence construction

The different steps of our construction are illustrated by the specification graph
of Figure 2(a) where the user wants the coherence between ports pointer and
atoms of component Viewer. Figure 2(b) gives the preliminary application graph
of this application.

Coherence graphs The first step of the transformation consists in looking for
parallel pipelines that must be coherent. They are collected in coherence graphs.

Definition 10. Given an application graph G and a coherence constraint C of
the component A in G, the coherence graph of C in G is the subgraph of G that
contains all the parallel pipelines of G with the members of C as destinations.

Our example application has one coherence constraint {pointer, atoms}. Its
coherence graph is inside the frame in Figure 4(a).

Path segmentation As seen in Section 4.2, our construction is based on par-
allel pipelines which have the same number of independent segments. So, the
purpose of this step is to create, if necessary, new segments, i.e. switch some con-
nectors from {sFIFO or bBuffer} to nbBuffer, or from {bGreedy or nbGreedy}
to {sFIFO, bBuffer or nbBuffer}. This is possible because we allow the system
to relax blocking, non-blocking or lossy constraints of the specification graph. In
contrast, no-lossy constraints are never relaxed.

Instead of making coherent each pair of parallel pipelines, the process is done
on the whole application in the same time. This allow us to take into account
all the constraints and avoid backtrackings in the process. For that, we use a
linear system where each variable is associated to a connector. The domain of
the variables is {0, 1}. 0 means that the connector is either a sFIFO or a bBuffer,
and 1 any of the three other patterns. Since these three other patterns define
junctions, it is sufficient to impose that the sums of the variables of the parallel
pipelines are equal to ensure that they have the same number of segments.

Formally, let App be an application graph and C1, . . . , Cn the set of coherence
constraints of the modules in App. We denote G|Ci the coherence graph of Ci in
App. For each component A of App, we denote PPA(App|Ci) the set of parallel
pipelines coming from A and leading to Ci. For each connector c of App, we
associate the variable vc of domain {0, 1}. For each path p in App that contains
the sequence of connectors c1, . . . , ck, we define Sum(p) = vc1 + · · · + vck . For
each component A, and each of its constraints C, we define the set of equa-
tions Eq(PPA(App|C)) = {Sum(p1) = · · · = Sum(pl)| pj ∈ PPA(App|C), 1 ≤

Fig. 4. Application graph before (a) and after (b) equalization and synchronization

j ≤ l}. The set of equations corresponding to the problem is then EqApp =⋃
{Eq(PPA(C)|A ∈ App, C ∈ cstr(A)}.

Additional constraints are also added to the problem to avoid misleading
solutions. For each connector c of App, according to the properties of the cor-
responding connection in the specification graph and those of the sender and
the receiver, we determine the set of compatible patterns. If this set contains
only elements of {nbBuffer, bGreedy, nbGreedy}, we add vc = 1 to the linear
system. The set of these additional equations is denoted FixApp. Most of the
time, the system has many solutions that are not equivalent from a performance
point of view. We give then priority to those that maximize the application’s
performance, i.e. that preserve at best the initial junctions. This is expressed by
the following objective function Maximize(Sum(JApp)) where JApp is the set
of junctions initially set in App and Sum(JApp) = Σc∈JApp

(vc). So the linear
problem we want to solve is EqApp

⋃
FixApp

⋃
Maximize(Sum(JApp)).

For the application of Figure 4(a), this process produces the following prob-
lem {c2 + c5 = c3 + c4 + c6}

⋃
{∅}

⋃
Maximize(c2 + c3 + c6) and its solution is

{c2 = 1, c3 = 1, c4 = 0, c5 = 1, c6 = 1}.

Plateau equalization It remains now to definitively set the pattern of each
junction. For that, we define the notion of plateau.

Definition 11. Let App be an application graph, O ∗ [J ∗ (s1, s2) ∗ bB]q ∗E two
parallel pipelines whose last edges connect to two ports of the same coherence
constraint of E. We say that the junctions ji1 and ji2 (i ∈ [1, q]) are of the same
level, which is denoted ji1 ↔ ji2. The reflexive-transitive closure of ↔ is denoted
↔∗. A plateau is the set of the junctions of the same equivalence class of ↔∗.

It can be proved that two different junctions jil and jkl that belong to the
same pipeline involved in at least one coherence constraint cannot be in the same
plateau. This avoids interblocking input-output synchronizations.

The connectors of a given plateau must be of the same type to ensure a
coherence constraint. This is the object of the next step. To solve the problem
on the whole graph, we regroup all the plateaus that have connectors in common
into a single subset of connectors. When a subset contains connectors of different
types, we set all the connectors of the subset to nbBuffer if the subset contains
at least a nbBuffer pattern and a nbGreedy otherwise. Figure 4(a) shows that
our example application has two plateaus PL1 and PL2. PL1 will be kept as it
is because the connectors are already of the same type. In PL2, the non-lossy
constraint on c5 enforces nbBuffer as the only option.

At the end of this step, we first add the backward cross-triggerings to the
junctions. Since a plateau may involve more than two segments, our construction
generalizes Definition 7. For a plateau j1, . . . , jn and the segments s1, . . . , sn end-
ing with components A1, . . . , An we add the set of edges {(Ae

i , J
s
j)|i 6= j}. More-

over to implement the output synchronization, we add one bBuffer connector
just after each Ai (i ∈ [1, n]) and add the edges for the forward cross-triggerings.
This ensure the required coherences.

Finalization and optimization To finalize the application graph, our system
adds all the missing trigger links, factorizing those that can be. For example, in
the application graph in Figure 4(b), Simulation triggers ForceGenerator which
triggers c3. This boils down to Simulation triggering c3. Finally, the system
outputs an XML file that can be used to generate the concrete application.

5 Experimental results

To validate our component-based model, we use FlowVR [1], a middleware to
develop and run high-performance interactive applications. It is based on a com-
ponent called module which consists in an iterative process with input and output
ports and can model our component. It also offers an assembly model expressed
as a communication network from connection elements covering standard com-
munication or synchronization patterns. From specific needs, it is also possible to
developp ad hoc connection elements and, in particular, our connector elements
have been developed and integrated into FlowVR.

Concerning our automatic application construction, we implemented a soft-
ware prototype that parses a user specification XML file and generates the ade-
quate application graph according to the given information and constraints. This
application graph is then transformed into a FlowVR assembly model which can
be processed by FlowVR to execute the application on a cluster architecture.

We have been testing our software prototype on the example application
used throughout this paper. This application is representative as it contains
connections with different arities and a coherence constraint between the input
ports pointer and atoms of the display component. The simulation component
in the implementation is run by Gromacs, a very popular molecular dynamics
engine and the other components have been specifically implemented. The tests
were run with a 3000 atom molecule on a 2x2.5Ghz CPU.

We tested several versions of the graph, including one with only bBuffers
and sFIFOs as we suppose it would be set by hand by someone unfamiliar with
the connection patterns and unsure of the impact of message dropping on the
coherence. As this graph has only one-segment pipelines, it doesn’t need any
specific coherence processing. However, the overall performance drops to the
iteration rate of the slowest component, i.e. the Viewer in this case, so around
14.8 it/sec. In constrast, the implementation of the automatically generated
application graph of Figure 4(b) keeps the display component loosely connected
to the rest and the simulation can run at up to 154.2 it/sec. The coherence
between the input ports atoms and pointer is also maintained.

6 Discussion and future work

Coherence - along with performance and simplicity - is a major criteria for sci-
entists when building their own software. To our knowledge, coherence as we
mean it in this paper and its automatic fulfillment by graph modification has
not been explored yet. We proved that a complex application can be automati-
cally constructed from a user specification expressed in terms of communication
and coherence constraints. Not only do the generated applications ensure the
coherence of data input wherever it is requested but they also guarantee the
safest -in terms of overflows or unwanted output overwriting- and the fastest ex-
ecution possible. A software prototype used on a real world scientific application
validates our approach.

The focus of our future research will be to enrich our model with compo-
nent hierarchy and define a coherence that supports not only regular message
streaming but also event-based message emission. Moreover we plan to enrich
the coherence model. For example, the user may want to specify coherence con-
straints such as allowing a variation of n iterations between two components or
specifying coherence wrt messages produced by two different components. We
also plan to implement a composition UI and deal with data type compatibility
and adaptation still in the perspective of simplifying the assembly of heteroge-
neous software components.

References

1. J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin, and
S. Robert. FlowVR: a middleware for large scale virtual reality applications. LNCS,
pages:497–505, 2004.

2. D. Barseghian, I. Altintas, M.-B. Jones, D. Crawl, N. Potter, J. Gallagher,
P. Cornillon, M. Schildhauer, E.-T. Borer, and E.-W. Seabloom. Workflows and ex-
tensions to the Kepler scientific workflow system to support environmental sensor
data access and analysis. Ecological Informatics, 5(1):42–50, January 2010.

3. Biörn Johan Bkörnstad. A Workflow Approach to Stream Processing. PhD thesis,
Zürich, 2007.

4. S.P. Callahan, J. Freire, E. Santos, C.E. Scheidegger, C.T. Silva, and H.T. Vo.
VisTrails: visualization meets data management. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, page 747. ACM, 2006.

5. O. Delalande, N. Férey, G. Grasseau, and M. Baaden. Complex molecular assem-
blies at hand via interactive simulations. Journal of Computational Chemistry,
30(15), 2009.

6. P. Velasco Elizondo and K.-K Lau. A catalogue of component connectors to support
development with reuse. Journal of Systems and Software, 83(7):1165–1178, 2010.

7. Y. Gil, V. Ratnakar, J. Kim, P. Gonzalez-Calero, P. Groth, J. Moody, and E. Deel-
man. Wings: Intelligent workflow-based design of computational experiments.
IEEE Intelligent Systems, 99, 2010.

8. T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel, and J. Shalf.
The cactus framework and toolkit: Design and applications. In Vector and Parallel
Processing, pages 1–31, 2002.

9. Chathura Herath and Beth Plale. Streamflow Programming Model for Data
Streaming in Scientific Workflows. 2010 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing, pages 302–311, May 2010.

10. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. GROMACS 4: Algorithms
for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal
of Chemical Theory and Computation, 4(3):435–447, mars 2008.

11. Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole Goble, Mathew R Pocock,
Peter Li, and Tom Oinn. Taverna: a tool for building and running workflows of
services. Nucleic acids research, 34(Web Server issue):W729–32, juillet 2006.

12. B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A. Lee,
J. Tao, and Y. Zhao. Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice and Experience, 18(10):1039–1065, 2006.

13. C. Pautasso and G. Alonso. Parallel computing patterns for grid workflows. In
Proceedings of the Workshop on Workflows in Support of Large-Scale Science, page
19–23, 2006.

14. J. Siebert, L. Ciarletta, and V. Chevrier. Agents & artefacts for multiple models
coordination. Proceedings of the 2010 ACM Symposium on Applied Computing,
pages 20–24, 2010.

15. Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison. Visual Grid Work-
flow in Triana. Journal of Grid Computing, 3(3-4):153–169, January 2006.

16. A. Wombacher. Data Workflow-A Workflow Model for Continuous Data Process-
ing. Data Processing, 2010.

17. Z. Zhao, A. Belloum, A. Wibisono, F. Terpstra, P.T. de Boer, P. Sloot, and
B. Hertzberger. Scientific workflow management: between generality and appli-
cability. In Quality Software (QSIC 2005)., pages 357–364. IEEE, 2006.

