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Abstract. Tree Regular Model Checking is the name of a family of tech-
niques for analyzing infinite-state systems in which states are represented
by trees and sets of states by tree automata. We are interested in show-
ing that a set of states Bad can not be reached from the set of initial
states. Since the set of reachable is in general not computable, we focus
on a computation of an over-approximation of the set of reachable states.
A main obstacle is to be able to compute an over-approximation precise
enough that does not intersect Bad i.e. a conclusive approximation. This
notion of precision is often defined by a very technical parameter of tech-
niques implementing this over-approximation approach. In this paper, we
propose a new characterization of conclusive approximations by logical
formulae generated from a new kind of automata called symbolic tree
automata. Solving a such formula leads automatically to a conclusive
approximation without extra-technical parameter.

1 Introduction

Infinite-state models are often used to avoid potentially artificial assumptions
on data structures, e.g. artificial bound on the size of a stack or on the value
of an integer variable. At the heart of most of the techniques that have been
proposed for exploring infinite state spaces, is a symbolic representation that can
finitely represent infinite sets of states. In this paper, we assume that states of the
system are represented by trees and set of states by tree automata. The transition
relation of the system is represented by a set of rewriting relations. It is known
that this Tree Regular Model Checking framework (TRMC) [8, 1, 18] is expressive
enough to describe classes of communication protocols [2], various C programs [7]
with complex data structures, multi-thread programs [22, 20], as well as a wide
range of cryptographic protocols [13, 15, 3] and any JAVA application [5].

In TRMC, the main objective is to decide whether a set of states can be
reached from the initial states. This reduces to compute a tree automaton rep-
resenting the set of states of the system. As we are dealing with infinite-state
systems, the problem remains undecidable and only partial solutions can be pro-
posed. In [6, 7], Bouajjani et al. proposed a CounterExample Guided Abstraction
Refinement (CEGAR) methodology for TRMC, which they call Abstract Tree
Regular Model Checking (ARMC). The idea behind ARMC consists of comput-
ing the automata obtained after successive applications of the rewriting relation



and then use techniques coming from the predicate abstraction area in order
to over-approximate the set of reachable states. If the property holds on the
abstraction, then it also holds on the concrete system. If a counter-example is
found on the abstraction, then one has to check if it is indeed a counter-example
to the real system. If not, this spurious counter-example must be used to refine
the abstraction. The algorithm, which may not terminate, proceeds by successive
abstraction/refinement until a decision can be taken.

Independently, Genet et al. [12, 11, 14] proposed Completion that is another
technique to compute an over-approximation of the set of reachable states. The
main difference with the work in [6] is that Completions use equations to com-
pute the abstraction [14]. Equations gives a simple and formal semantics to
abstractions on trees [19]. Completion has been applied to very complex case
studies such as the verification of (industrial) cryptographic protocols [13, 15, 3]
and Java bytecode applications [5].

For now, we are interested in showing that a system is secure. From a rewrit-
ing approximation point of view, it means that our goal is to compute an over-
approximation which is a conclusive analysis, i.e. which is precise enough for
showing that a set of “bad” terms is actually unreachable. Both of the tech-
niques mentioned previously are instrumented either by equations or predicates
for the computation of over-approximation. Both of them use tree automata
to represent over-approximations. More precisely, set of terms are represented
by tree automata languages. However, these parameters often require a highly
specialized expertise for expecting a conclusive analysis.

In this paper, we characterized by a logical formula all the criteria of such
a conclusive analysis performed with the technique proposed in [12, 11, 14]. The
idea is that instead of reasoning with a tree automaton A, we generalize A to
a symbolic tree automaton (STA) As, whose states are represented by vari-
ables. The rewriting relations and “bad” terms are represented by boolean com-
binations of equalities and inequalities on these variables. An instantiation of
these variables by states gives a tree automaton, and each valid instantiation
of this formula ensures that, as soon as the STA is instantiated, the language
of the resulting tree automaton is a conclusive over-approximation of the set
of terms reachable from the language of A according to the rewriting relation.
With this formulation, finding a conclusive analysis becomes solving logical for-
mulae, where different solving and search techniques, for example in artificial
intelligence, can be applied.

The paper is organized as follows: Section 2 recalls background on terms,
rewriting and tree automata as well as the connection between rewriting and tree
automata. In this section we also describe the kind of formulae we manipulate
and notion of instantiations. Section 3 introduces symbolic tree automata. In
this section, we point out the connection between an STA and traditional tree
automata based on instantiations. Section 4 describes the cornerstone of our
contribution: the matching algorithm for STA. In other words, given a term t,
we characterize each solution of this pattern as well as its existence condition
by a formula. Section 5 presents our main contribution: the characterization



of a conclusive over-approximation by a formula. Finally, Section 6 concludes
this paper with some first experiments on our approach using Mona [17] and a
discussion on our future works on this topic.

2 Background and Notations

In this section, we introduce some definitions and concepts that will be used
throughout the rest of the paper (see also [4, 10, 16]). Let F be a finite set of
symbols, each one is associated with an arity, and let X be a countable set of
variables. T (F ,X ) denotes the set of terms and T (F) denotes the set of ground
terms (terms without variables). The set of variables of a term t is denoted
by Var(t). A substitution is a function σ from X into T (F ,X ), which can be
uniquely extended to an endomorphism of T (F ,X ). The substitution σ applied
to the term t (denoted tσ) is constructed such that xσ = σ(x), where x ∈ X ,
and f(t1, ..., tn)σ = f(t1σ, ..., tnσ).

A term rewriting system (TRS) R is a set of rewrite rules l → r, where
l, r ∈ T (F ,X ), l, r #∈ X 1, and Var(l) ⊇ Var(r). A rewrite rule l → r is left-
linear if each variable of l occurs only once in l. A TRS R is left-linear if every
rewrite rule l → r of R is left-linear. The TRS R induces a rewriting relation
→R on terms as follows. Let s, t ∈ T (F ,X ) and l → r ∈ R, s →R t denotes
that there exists a subterm u of s and a substitution σ such that u = lσ and
t is obtained by substituting u by rσ in s. The reflexive transitive closure of
→R is denoted by →∗

R. The set of R-descendants of a set of ground terms I is
R∗(I) = {t ∈ T (F) | ∃s ∈ I s.t. s →∗

R t}. We now define tree automata that are
used to recognize possibly infinite sets of terms. Let Q be a finite set of symbols
with arity 0, called states, such that Q ∩ F = ∅. T (F ∪Q) is called the set of
configurations. A transition is a rewrite rule c → q, where c is a configuration
and q is state. A transition is normalized when c = f(q1, . . . , qn), f ∈ F is of
arity n, and q1, . . . , qn ∈ Q .

Definition 1 (Bottom-up nondeterministic finite tree automaton). A
bottom-up nondeterministic finite tree automaton (tree automaton for short) over
the alphabet F is a tuple A = 〈Q ,F ,QF ,∆〉, where QF ⊆ Q is the set of final
states, ∆ is a set of normalized transitions.

The transitive and reflexive rewriting relation on T (F ∪Q) induced by all the
transitions of A is denoted by →∗

A. The tree language recognized by A in a state
q is L(A, q) = {t ∈ T (F) | t→∗

A q}. We define L(A) =
⋃

q∈QF
L(A, q).

Some of the techniques marry ([11, 21, 6]) tree automata and rewriting for
computing the set of reachable terms from a given tree automata A i.e. R∗(L(A)).
Unfortunately, enumerating reachable terms may never terminate. There is thus
a need to “accelerate” the search through the term space in order to reach, in a
finite amount of time, terms at unbounded depths.

1 The more general definition is that only l must not be a variable.



Definition 2. A tree automaton B is R-closed if for each rule l → r ∈ R, for
any substitution σ : X ,→ Q, lσ is recognized by B into state q then so is rσ.
The situation is represented with the following graph: lσ

R
!!

∗B

""

rσ

∗

B##q

It is easy to see that if B is R-closed and L(B) ⊇ L(A), then L(B) ⊇ R∗(L(A))[9].

In the following definitions, we introduce the logical formulae that we ma-
nipulate as well as notions of instantiation and satisfaction of a formula.

Definition 3 (W [XQ]). Let XQ be a set of variables. We define W [XQ] the set
of logical formulae on XQ as following:

– -,⊥ ∈W [XQ];
– X = Y , X #= Y ∈W [XQ] with X, Y ∈ XQ;
– if α,β ∈W [XQ] then ¬α, α ∧ β, α ∨ β, α⇒ β are in W [XQ].

Definition 4 (Instantiation/satisfaction). Let D be a domain which is a
non-empty set. An instantiation ι of variables of XQ is a function ι : XQ → D.
The instantiation ι satisfies a formula α ∈W [XQ], denoted by ι |= α, iff:

– ι |= -;
– ι |= X = Y iff ι(X) = ι(Y ); ι |= X #= Y iff ι(X) #= ι(Y );
– ι |= ¬α iff ι #|= α; ι |= α ∧ β iff ι |= α and ι |= β;

ι |= α ∨ β iff ι |= α or ι |= β; ι |= α⇒ β iff ι #|= α or ι |= α ∧ β.

Example 1. Let XQ = {X1, X2, X3}, then (X1 #=X2)∧((X1 =X3)∨(X2 =X3)) is
a formula in W [XQ]. Let D = {1, 2} and ι be the instantiation such that ι(X1) =
2, ι(X2) = ι(X3) = 1. We have ι #|= X1 = X2 and ι |= (X1 = X2) ∨ (X2 = X3) .

Note that instantiations will be also considered as substitutions in the re-
mainder of the paper.

3 Symbolic Tree Automata

Let XQ be a set of variables that we call symbolic states. Symbolic tree automata
(STA) are tree automata where states are variables. An STA is composed of
normalized symbolic transitions as defined below.

Definition 5 (Normalized symbolic transition). Let XQ be a set of sym-
bolic states. A normalized symbolic transition is of one of the forms a → X or
f(X1, .., Xn)→ X, where a is a constant, f ∈F of arity n and X, X1, .., Xn∈XQ.

Definition 6 (STA). A STA is a tuple 〈XQ,F ,X f
Q,∆〉 where XQ is a set of

symbolic states, F a set of functional symbols, X f
Q ⊆ XQ a set of final symbolic

states and ∆ a set of normalized symbolic transitions.



The following definition gives details on how a tree automaton can be ob-
tained from a STA and a given instantiation from XQ to a domain Q .

Definition 7 (Instance of a STA). Let Q be a non-empty set of states. Let
AS be an STA 〈XQ,F , X f

Q,∆〉 and ι be an instantiation XQ → Q. An instance

of AS by ι, denoted by Aι
S, is a tree automaton 〈QAι

S ,F ,Q
Aι

S

f ,∆Aι
S 〉 where:

– QAι
S = {ι(X) | X ∈ XQ}; Q

Aι
S

f = {ι(X) | X ∈ X f
Q};

– ∆Aι
S = {f(ι(X1), . . . , ι(Xn))→ ι(X) | f(X1, . . . , Xn)→ X ∈ ∆}.

We define the relation t
α
−→AS X relating that if an instantiation ι satisfies α

then Aι
S accepts the term t on the state ι(X).

Definition 8 (t
α
−→AS X). Let AS be an STA 〈XQ, F , X f

Q, ∆〉. Let t be a term
of T (F ,XQ ) and X a symbolic state of XQ. One has:

– X
#
−→AS X

– If t→ Y ∈ ∆ then t
X=Y
−−−→AS X

– If t = f(t1, ..., tn) and t1
α1−→AS X1, . . ., tn

αn−−→AS Xn and f(X1, ..., Xn) →

Y ∈ ∆ then t
α1∧···∧αn∧X=Y
−−−−−−−−−−−→AS X

The following proposition (proof in Appendix A) presents the characteriza-
tion by a formula the acceptance of a term t from a given STA. Consequently,
each instantiation satisfying this formula leads to an automaton recognizing t.

Proposition 1. Let AS = 〈XQ,F , X f
Q,∆〉 be an STA and ι be an instantiation.

Let t ∈ T (F ,XQ ) and X ∈ XQ. Let Reco(t, X) =
∨

{t
α−→AS

X}
α. Thus, one has:

ι |= Reco(t, X) iff tι→∗
Aι

S
ι(X).

4 Solutions for Patterns in STA

Let t be a term of T (F ,X ). For a classical tree automaton A and a state q, the
matching problem t ! q has a solution if there exists a substitution σ : X ,→ Q
such that tσ →∗

A q. Let us recall that this point is essential for testing whether
an automaton is R−closed or not (see Definition 2).

In this section, we propose to solve this problem in the context of STA. Thus,
the matching problem is formalized on symbolic states instead of classical states
i.e. t ! X with X ∈ XQ. Actually, in this context, solutions are represented as
a set of pairs (α,σ) where σ is a substitution from X to XQ and α a formula
such that tσ

α
−→ X . Suppose ι : XQ ,→ Q be an instantiation. Semantically, a

solution (α,σ) means that, as soon as ι |= α, the substitution σ ◦ ι is a solution
the matching problem t ! ι(X) in the tree automaton Aι

S .



Definition 9 (Matching Algorithm). Let AS be an STA 〈XQ,F , X f
Q,∆〉.

St
X is the set of the solutions of the matching problem t ! X, which is denoted

t ! X 4AS St
X , if there exists a derivation of this statement using the rules:

(Var)
x ! X !AS {(", {x #→ X})}

(x ∈ X )

(Const)
a ! X !AS {(X = Y, ∅)}

(a → Y ∈ ∆)

(SymbVar)
X ! Y !AS {(X = Y, ∅)}

(X, Y ∈ XQ)

(Delta)
t1 ! X1 !AS S1 . . . tn ! Xn !AS Sn

f(t1, . . . , tn) ! X !AS

NX=Y
k=1...n(Sk)

(f(X1, . . . , Xn) → Y ∈ ∆)

where
⊗φ

k=1...n(Sk) = {(φ, ∅) ⊕ (φ1,σ1) ⊕ · · · ⊕ (φn,σn) | (φi,σi) ∈ Si}, and
(φ,σ) ⊕ (φ′,σ′) = (φ ∧ φ′,σ ∪ σ′).

The following proposition shows that this algorithm is sound and complete. Its
proof is in Appendix B.

Proposition 2. Let AS be an STA 〈XQ,F , X f
Q,∆〉, let X ∈ XQ, let t ∈

T (F ,XQ ) and σ : Var(t) → XQ. If t ! X 4AS St
X , then we have

∀(α,σ), tσ
α
−→AS X iff (α,σ) ∈ St

X .

Example 2. Let AS be an STA whose symbolic transition set ∆ = {a→ Xq0
, a →

Xq1
, s(Xq0

) → Xq1
}. Using the rules we can find that Sa

Xq0
= {(-, ∅), (Xq1 =

Xq0, ∅)}, S
s(a)
Xq1

= {(-, ∅), (Xq1 = Xq0, ∅)} and S
s(s(a))
Xq1

= {(Xq0 = Xq1, ∅), (Xq0 =

Xq1, ∅)}.

5 Finding a Conclusive Fix-Point Automaton

Let us recall that the Graal of the tree automata completion is to detect a
conclusive fix-point automaton. Given a set of terms Bad, a TRS R and an
initial tree automaton A, a conclusive fix-point automaton is a tree automaton
A$ such that A$ is R-closed with regard to A and L(A$) ∩Bad = ∅.

In this section, given an STA AS , a TA A, a TRS R and a set of bad terms
Bad, we propose two formulae φFP

R,AS
and φBad

AS
such that any instantiation ι

of AS satisfying both leads to a conclusive automaton. Moreover, we define a
notion of compatibility between A and AS ensuring that the automaton Aι

S is a
conclusive automaton with regard to A.

The constraint presented below depicts a condition, built from AS , to satisfy
for any instantiation ι in order to ensure that Aι

S is R-closed. In [11], a TA A is
R-closed (fix-point automaton) if ∀l → r ∈ R, ∀σ : X ,→ Q and ∀q, if lσ →∗

A q
then rσ →∗

A q .

Definition 10 (φFP
R,AS

). Let AS be an STA 〈XQ,F , X f
Q,∆〉 and let R be a

left-linear TRS. We denote by φFP
R,AS

the formula defined as follows:

φFP
R,AS

def
=

∧

l→r∈R

∧

X∈XQ

∧

(α,σ)∈Sl
X

(α⇒
∨

(β, )∈Srσ
X

β)



Example 3. Let AS be the STA of the example 2 and let R be a TRS such that
R = {s(a)→ s(s(a))}. The formula φFP

R,AS
is then:

(- ⇒ (Xq0 = Xq1 ∨Xq0 = Xq1)) ∧ (Xq0 = Xq1 ⇒ (Xq0 = Xq1 ∨Xq0 = Xq1))

We state in the following proposition the use of φFP
R,AS

.

Proposition 3 (Proof in Appendix C). Let AS be an STA and R be left-
linear a TRS. Let Q be a set of states and ι be an instantiation XQ → Q. Thus,
ι |= φFP

R,AS
iff Aι

S is R-closed.

At this point, for a given STA AS, we are able to formalize a fix-point con-
dition. However, a particular fix-point is needed. Suppose that there exists an
instantiation ι such that ι |= φFP

R,AS
. We recall that our goal is to find a fix-point

automaton A$ such that L(A$) ∩Bad = ∅. The following Definition proposes a
formula characterizing the no-recognition of the whole set Bad by any instance
of Aι

S as soon as ι satisfies also this formula.

Definition 11 (φBad
AS

). Let AS be an STA 〈XQ,F , X f
Q,∆〉 and Bad be a finite

set of ground terms. We denote by φBad
AS

the formula defined as follows:

φBad
AS

def
=

∧

t∈Bad

∧

X∈X f
Q

∧

(α, )∈St
X

¬α.

Proposition 4 (Proof in Appendix D). Let AS be a STA 〈XQ,F , X f
Q,∆〉.

Let Bad be a finite set of ground terms. Let Q be a set of states and ι be an
instantiation XQ → Q. Thus, ι |= φBad

AS
iff L(Aι

S) ∩Bad = ∅.

We are close to the claimed goal. Indeed, given a STA AS , a TRS R and a set
of terms Bad, we can deduce that for any instantiation ι satisfying φBad

AS
∧φFP

R,AS
,

R(L(Aι
S)) ⊆ L(Aι

S) and L(Aι
S) ∩ Bad = ∅. Is it sufficient to ensure that this

fix-point is interesting for our input data i.e. A, R and Bad? In other words,
can we deduce that R∗(L(A)) ∩Bad = ∅ from ι |= φBad

AS
∧ φFP

R,AS
? Trivially the

answer is no since no relation is specified between AS and A. So, we define a
compatibility notion between AS and A leading to our expected result.

Definition 12 (A-compatibility). Let AS be an STA 〈XQ,F ,X f
Q,∆S〉 and A

be a TA 〈Q ,F ,Qf ,∆〉. The STA AS is said to be A-compatible iff these three

criteria are satisfied: (1) {Xq|q ∈ Q} ⊆ XQ; (2) {Xq|q ∈ Qf} ⊆X
f
Q; and (3)

{f(Xq1
, . . . , Xqn)→ Xq|f(q1, . . . , qn)→ q ∈ ∆} ⊆ ∆S.

The notion of A-compatibility presented above ensures that each instantia-
tion of a STA AS contains the language L(A).

Proposition 5 (Proof in Appendix E). Let AS be a STA and A be a TA
such that AS is A-compatible. For any ι : XQ ,→ Q, one has L(A) ⊆ L(Aι

S).



Consequently, our main result is that we are able to characterize a conclusive
fix-point automaton, that can be found using a technique such that completion,
by a single formula of W [XQ].

Theorem 1 (Proof in Appendix F). Let AS be a STA and A be a TA such
that AS is A-compatible. Let R be left-linear TRS and Bad be a finite set of
ground terms. Let ι be an instantiation from XQ to Q. Thus,

ι |= φBad
AS

∧ φFP
R,AS

iff Aι
S is R-closed, L(A) ⊆ L(Aι

S) and L(Aι
S) ∩Bad = ∅.

Another way to interpret this result is the following:

Theorem 2 (Proof in Appendix G). Let AS be a STA and A be a TA such
that AS is A-compatible. Let R be left-linear TRS and Bad be a finite set of
ground terms. Let ι be an instantiation from XQ to Q. Thus,

ι |= φBad
AS

∧ φFP
R,AS

implies that R∗(L(A)) ⊆ L(Aι
S) and R∗(L(A)) ∩Bad = ∅.

6 Experiments & Conclusion

We present now a complete example. The idea is to show that all terms of the
form f(s(k(0))) reachable from f(0) using the following TRS R are such that
k is even. The given inputs are: R = {f(x) → f(s(s(x))), even(f(s(s(x)))) →
even(f(x)), even(f(0)) → true, even(f(s(0))) → false},Bad = {false}, A =
〈Q ,F ,Qf , δ〉 and AS = 〈XQ,F ,X f

Q,∆〉 with Q = {q0, q1, q2}, F = {f : 1, s :
1, 0 : 0, even : 1, true : 0, false : 0}, Qf = {q2}, δ = {even(q1) → q2, f(q0) →
q1, 0 → q0}, XQ = {Xq0

, . . . , Xq11
}, X f

Q = {Xq2
} and ∆ = {false → Xq11

, 0 →
Xq0

, s(Xq5
) → Xq6

, s(Xq4
) → Xq5

, even(Xq9
) → Xq7

, even(Xq1
) → Xq2

, true →
Xq10

, f(Xq8
)→ Xq9

, f(Xq6
) → Xq3

, f(Xq0
)→ Xq1

}. Note that AS is A-compati-
ble. So, one has to find a R−closed automaton which does not contain false.
Following Definition 11, one obtains φBad

AS
= Xq2

#= Xq11
.

We have used Mona [17] for solving this formula. Mona is a tool handling
monadic second-order logic. Given a formula, Mona computes an automaton
recognizing all of its solutions. We have implemented an automatic generator of
Mona programs from a specification containing an STA, a TRS and a set of bad
terms.

For the Mona program corresponding to our example 2, Mona returns the
following output:

MONA v1.4-13 for WS1S/WS2S
Copyright (C) 1997-2008 BRICS

PARSING
Time: 00:00:00.00

CODE GENERATION
DAG hits: 5549, nodes: 447
Time: 00:00:00.01

REDUCTION
Projections removed: 2 (of 3)
Products removed: 60 (of 433)
Other nodes removed: 1 (of 7)
DAG nodes after reduction: 380
Time: 00:00:00.00

2 The Mona program and thus, and thus the formula φF P
R,AS

, can be down-
loaded at http://www.univ-orleans.fr/lifo/Members/Yohan.Boichut/research/
exampleMona.txt



AUTOMATON CONSTRUCTION
100% completed
Time: 00:00:00.22

Automaton has 764 states and 27075
BDD-nodes

...
Xq11 = {1}, Xq10 = {0}, Xq9 = {1}, Xq8 = {1}
Xq7 = {1}, Xq6 = {1}, Xq5 = {0}, Xq4 = {1}
Xq3 = {1}, Xq2 = {0}, Xq1 = {0}, Xq0 = {0}

Total time: 00:00:00.25

Let us construct the instantiation ι from the solution returned by Mona.
We obtain: ι = {Xq0 ,→ q0, Xq1 ,→ q0, Xq2 ,→ q0, Xq3 ,→ q1, Xq4 ,→ q1, Xq5 ,→
q0, Xq6 ,→ q1, Xq7 ,→ q1, Xq8 ,→ q1, Xq9 ,→ q1, Xq10 ,→ q0, Xq11 ,→ q1}. Applying
ι on AS , the resulting TA is: Aι

S = 〈{q0, q1},F , {q0},∆ι〉 with ∆ι = {false →
q1, 0 → q0, s(q0) → q1, s(q1) → q0, even(q1) → q1, even(q0) → q0, true →
q0, f(q1) → q1, f(q0) → q0}.

This tree automaton is actually R-closed. Indeed, concerning the rule f(x) →
f(s(s(x))), note that f(q0) and f(s(s(q0))) can both to be reduced to q0. Simi-
larly, f(q1) and f(s(s(q1))) can be reduced on q1. For the rule even(f(s(s(x)))) →
even(f(x)), one has even(f(s(s(q0)))) →∗

Aι
S

q0 and even(q0) →∗
AS

q0. Similarly,

one has even(f(s(s(q1)))) →∗
Aι

S
q1 and even(q1) →∗

Aι
S

q1. Finally, for the rule

even(f(0))→ true one has even(f(0))→∗
Aι

S
q0 and true →∗

Aι
S

q0. Moreover, the

term false is not in L(Aι
S). Thus, Aι

s is a conclusive fix-point automaton.

To summarize, given an STA AS, a set of forbidden terms Bad, a TA A and
a TRS R, we have characterized by a logical formula what a conclusive fix-point
in term of reachability analysis is. Each solution of such a formula is an instan-
tiation that can be applied on AS . The automatically obtained automaton is an
automaton that could have been obtained using a technique as in [11]. Such a
technique requires a technical parameter (a set of equations or an approxima-
tion function) influential on the quality of the approximation computed. This
parameter requires a certain expertise of the technique itself. For instance in [14],
one has to define a set of equations whose goal is to define a finite number of
equivalence classes of terms. A finite number of equivalence classes ensures the
computation to terminate. But, the crucial point remains in finding a conclusive
approximation. Thus, the set of equation has to be defined very carefully. In
[6], they used a set of predicates for defining a finite set of equivalence classes
of terms. Once again, a highly specialized expertise in the technique itself is
needed. Concerning ours, we generate a STA of a given size and we are looking
for solutions. If no solution is found then we are sure that there is no conclusive
R-closed automaton for the given AS . So, we increase the size of the starting
STA and so on.

This work is a first step towards a verification technique based on formula
solving. In the verification framework, it allows us to prove safety property. We
claim that it is only a first step since specifications involving STA containing
more than 20 variables or a bigger TRS are out of the Mona scope. Even if the
formulas involved by such a specification present a certain regularity in their
form, their size may be huge (in particular for φFP

R,AS
see Definition 10). We are

also aware that the solving problem is not elementary, but we are working on
dedicated solving techniques and search heuristics for handling huge formulae.
We are also studying a symbolic technique à la Mona and first results are very
promising. Coming next.
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Appendix

A Proof of Proposition 1

Let us recall Proposition 1.
Let AS = 〈XQ,F , X f

Q,∆〉 be a STA and ι be an instantiation. Let t be a term
of T (F ,XQ ) and X be a symbolic state of XQ. Let Reco(t, X) be a formula of
W [XQ] such that Reco =

∨
{t

α−→AS
X}

α. Thus, one has:

ι |= Reco(t, X) iff tι→∗
Aι

S
ι(X).

Proof. First, let us show that ι |= Reco(t, X) ⇒ tι →∗
Aι

S
ι(X). Note that

Reco(t, X) is a formula in DNF. Indeed, a formula α involved in a reduction
such that t

α
−→AS X is a conjunction of atoms X = Y or X #= Y according to

Definition 8. Since ι |= Reco(t, X), according to Definition 4, one can guess that
there exists a subformula αi such that Reco(t, X) = α1 ∨ . . . ∨ αi ∨ . . . ∨ αn,
t

αi−→AS X and ι |= αi. Let us proceed by induction on the term t.
Base case:

– Suppose t is a constant: Since t
αi−→AS X , then there exists a transition of the

form t → X ′ ∈ ∆ according to Definition 8. Consequently, αi = (X = X ′).
Since ι ,→ αi and αi = (X = X ′), ι(X) = ι(X ′), so tι→Aι

S
ι(X).

– Suppose t is a variable of XQ: Since we have t
αi−→AS X , so t = X and

t
τ
−→AS X according to Definition 8. Consequently, αi = τ , and since ι |= αi,

we can deduce that tι→Aι
S
ι(X).

Induction:
Suppose t be a term of the form f(t1, . . . , tn). By hypothesis, t

αi−→AS X .
From Definition 8, one can deduce that there exist f(Y1, . . . , Yn)→ X ′ ∈ ∆ and
γ1, . . . γn such that:

1. for each tj , one has tj
γj
−→ Yj and

2. αi = γ1 ∧ . . . ∧ γn.

By induction hypothesis, for each tj , Yj and Reco(tj , X), one has

ι |= Reco(tj , Yj)⇔ tjι→
∗
Aι

S
ι(Yj), (1)

with Reco(tj , Yj) = ⊥ ∨
∨

tj

φ
−→Yj

φ. Since tj
gammai−−−−−→ Yj and ι |= γj , one can

trivially deduce that ι |= Reco(tj , Yj). So, applying (1), one has that for each tj ,
tjι→∗

Aι
S
ι(Yj). According to Definition 7, one can deduce that

f(ι(Y1), . . . , ι(Yn))→ ι(X ′) is a transition of Aι
S. (2)



Consequently, one can deduce that tι = f(t1ι, . . . , t1ι)→∗
Aι

S
f(ι(Y1), . . . , ι(Yn))

from tjι →∗
Aι

S
ι(Yj). Moreover, using transition (2), one has that tι→∗

Aι
S
ι(X ′

i).

Since ι(X ′
i) = ι(X), one trivially deduce that tι→∗

Aι
S
ι(X).

So, let us show that ι |= Reco(t, X) ⇐ tι →∗
Aι

S
ι(X). Let us proceed by

induction on the structure of t.
Base case:

– Suppose t is a constant: By hypothesis, tι→∗
Aι

S
ι(X). Note that, in this case,

tι = t. So according to Definition 7, there exists a transition t → X ′ ∈ ∆
such that ι(X) = ι(X ′). Consequently, from Definition 4, one can deduce

that t
X=X′

−−−−→AS X and ι |= X = X ′. Thus, one has ι |= Reco(t, X).
– tι is a state: Since there is no epsilon transition q → q′ in the considered

tree automata, one has necessarily tι = ι(X). According to Definition 8
X ′ α

−→AS X if X = X and α = -. Consequently, one can deduce that
ι |= Reco(t, X).

Induction:
Suppose t be a term of the form f(t1, . . . , tn): By hypothesis, f(t1, . . . , tn)ι→∗

Aι
S

ι(X). So, there exists X1, . . . , Xn, X ′ ∈ XQ such that

tiι→
∗
Aι

S
ι(Xi), ι(X ′) = ι(X) and f(X1, . . . , Xn)→ X ′ ∈ ∆. (3)

For each ti, one can apply the induction hypothesis. Thus, one obtains that ι |=
Reco(tk, Xk), for k = 1, . . . , n. Let us focus on the induction hypothesis: for each
tk: ι |= Reco(tk, Xk) iff tkι →∗

Aι
S

ι(Xk) with Reco(tk, Xk) = ∨
∨

{t
γ
−→AS

Xk}
γ.

Since ι |= Reco(tk, Xk), thus there exists a subformula of Reco(tk, Xk), i.e. γk,

such that ι |= γk. Consequently, f(t1, . . . , tn)
γ1−→AS f(X1, t2, . . . , tn). By iterat-

ing this process, one obtains that f(t1, . . . , tn)
γ1∧...∧γn−−−−−−→AS f(X1, . . . , Xn). Since

f(X1, . . . , Xn) → X ′ ∈ ∆, one obtains t
α
−→AS X with α = γ1∧. . .∧γn∧X ′ = X .

According to (3) and Definition 4, one obtains ι |= α. Concluding the proof.

B Proof of Proposition 2

Let us recall Proposition 2.
Let AS be a STA, X one of its symbolic states, t ∈ T (F ,X ) a term and σ a

XQ-substitution with a domain range-restricted to V(t). If the set St
X is solution

of the matching problem t ! X, then we have

∀(α,σ), tσ
α
−→AS X ⇔ (α,σ) ∈ St

X .

Let us recall that St
X represents the set of solutions of the matching problem

t ! X .



Proof. Let α ∈ W [XQ] and σ : X ,→ XQ such that tσ
α
−→AS X . Let us proceed

by case analysis.
Base case:

– tσ is a constant: By hypothesis, tσ
α
−→AS X . Since t is a constant, Var(t) = ∅

and so is σ. So, there exists a transition t → X ′ ∈ ∆ and α = X ′ = X .
Applying Rule constant with the transition t → X ′, one has (X ′ = X, ∅) ∈
St

X .
– tσ is a symbolic state: According to Definition 8, tσ

α
−→AS X only if tσ = X

and α = -. Moreover, if tσ ∈ XQ then t ∈ X . Consequently, one can define
the substitution σ : {t ,→ X}. Let us compute the set of solutions St

X . We
recall that t ∈ X . According to Rule Var, one obtains that (-, {(t, X)}) ∈
St

X .

Induction case:
Suppose t be a term of the form f(t1, . . . , tn). Since t is linear, one can

decompose σ in n substitutions σ1 : Var(t1) ,→ XQ, . . . , σn : Var(tn) ,→ XQ.
Thus, σ(x) = σi(x) if x ∈ Var(ti). In other words, σ = σ1 ∪ . . . ∪ σn. So, tσ =
f(t1σ1, . . . , tnσn). By hypothesis, tσ

α
−→AS X . So, using Definition 8, one can

deduce that there exists α1, . . . ,αn ∈ W [XQ] and a transition f(Y1, . . . , Yn) →
Y ∈ ∆ such that α = α1 ∧ . . .αn ∧ X = Y and ti

αi−→AS Yi. So applying the
induction hypothesis on each ti, one obtains that (αi,σi) ∈ Sti

Yi
. The rule Delta is

applied to all the premises ti ! Yi 4As Sti

Yi
for the transition f(Y1, . . . , Yn)→ Y .

So, we obtain a set S =
⊗X=Y

k=1...n(Stk

Yk
). Unfolding the definition of

⊗
and since

(αi,σi) ∈ Sti

Yi
, St

X contains ((X = Y, ∅)⊕ (α1,σ1)⊕ . . .⊕ (αn,σn)). By definition
of ⊕, one obtains that (X = Y ∧ α1 ∧ . . . ∧ αn,σ1 ∪ . . . ∪ σn). Consequently,
(α,σ) ∈ St

X . Concluding the proof.

C Proof of Proposition 3

Let us recall Proposition 3.
Let AS and R be respectively a STA and a TRS. Let ι be an instantiation

from XQ to Q. Thus,

ι |= φFP
R,AS

iff Aι
S is R− closed.

For showing it, we need of the intermediary Lemma given right below.

Lemma 1. Let t be a term of T (F ,X ) and AS be a STA. Let X be a symbol
state of AS. Let St

X be the set of solution of the matching problem t ! X. Let
σ be a substitution such that σ : Var(t) ,→ XQ and Stσ

X be the solution set the
matching problem tσ ! X. Thus, one has: For any (β, ∅) ∈ Stσ

X , there exists
(α, µ) ∈ St

X such that

β = α ∧
∧

x∈Var(t)

(µ(x) = σ(x)).



Proof. A direct consequence of Rule SymbVar of Definition 9.

Let us finally show Proposition 3.

Proof. Let us first show that if ι |= φFP
R,AS

then Aι
S is R − closed. According to

Definition 10, φFP
R,AS

=
∧

l→r∈R(
∧

∀X∈XQ,(α,σ)∈Sl
X

(α ⇒
∨

∀(β, )∈Srσ
X

(β))), where

Sl
X and Srσ

X are respectively the solution sets of the matching problems l ! X
and rσ ! X . According to Definition 4, ι |=

∧
l→r∈R(

∧
∀X∈XQ,(α,σ)∈Sl

X
(α ⇒

∨
∀(β, )∈Srσ

X
(β))) can be rewritten in ∀l → r ∈ R, ∀X ∈ XQ and ∀(α,σ) ∈ Sl

X

ι |= (α ⇒
∨

∀(beta, )∈Srσ
X

(β))). According to the definition of |=, one can deduce

that ι |= (α ⇒
∨

∀(β, )∈Srσ
X

(β))) iff ι |= ¬α or ι |=
∨

∀(β, )∈Srσ
X

(β))). Let us

proceed by case analysis:

– ι |= α and ι |=
∨

∀(β, )∈Srσ
X

(β))): Recall that (α,σ) ∈ Sl
X . According to

Proposition 2, one deduce that lσ
α
−→AS X . Consequently, if ι |= α then

ι |=
∨

{t
α′

−→AS
X}

α′ = Reco(t, X). Applying Proposition 1, one can deduce

that

lσ ◦ ι→∗
Aι

S
ι(X). (4)

By hypothesis, ι |=
∨

∀(β, )∈Srσ
X

(β))). Consequently, there exists (γ, ) ∈ Srσ
X

such that ι |= γ. According to Lemma 1, one can deduce that there exists
(α′,σ′) ∈ Sr

X such that γ = α′∧
∧

x∈Var(r)(σ(x) = σ′(x)). Moreover, one can
deduce that ι |= α′ ∧

∧
x∈Var(r)(σ(x) = σ′(x)). According to Proposition 2,

rσ′ ◦ ι →∗
Aι

S
ι(X). Since ι |= α′ ∧

∧
x∈Var(r)(σ(x) = σ′(x)), one can deduce

that rσ ◦ ι = rσ′ ◦ ι. So,

rσ ◦ ι→∗
Aι

S
ι(X). (5)

Thus, if one has (4) then one has also (5) which characterizes a R−closed
automaton.

– ι #|= α: Since α represents a particular reduction of l to the symbolic state
X , ι |= ¬α means that the reduction involved is not possible in the tree
automaton Aι

S . Since this reduction is not possible, we do not have to check
whether rσ ◦ ι→∗

Aι
S
ι(X) or not in order to ensure that Aι

S is R−closed.

Now, let us show that if Aι
S is R − closed then ι |= φFP

R,AS
. According to

Definition 2, Aι
S is R−closed if for each rule l → r ∈ R, for any substitution

µ : X ,→ Q , lµ is recognized by Aι
§ into state ι(X) then so is rµ. According

to Proposition 1, one can deduce that there exists σ : X ,→ XQ such that
ι |= Reco(lσ, X) and µ = σ ◦ ι. Since ι |= Reco(lσ, X), one can deduce that
there exists α such that lσ

α
−→AS X and ι |= α. According to Proposition 1, one

can deduce that there exists σ′ : X ,→ XQ such that ι |= Reco(rσ′, X). Since

ι |= Reco(rσ′, X), one can deduce that there exists β such that rσ′ β
−→AS X

and ι |= β. Note that (β,σ′) ∈ Sr
X where Sr

X denotes the set of solutions of the



matching problem r!X . Now, let us consider rσ. One can construct γ such that
γ = β ∧

∧
x∈Var(r)(σ(x) = σ′(x)) and (γ, ∅) ∈ Srσ

X (considering Srσ
X as the set of

solutions of the matching problem rσ!X). By construction, σ ◦ ι(x) = σ′ ◦ ι(x),
for any x ∈ Var(r). Consequently, one can deduce that ι |= γ. Thus, ι satisfies
also the formula

∨
∀(β, )∈Srσ

X
(β))). Iterating this process for any substitution

σ : X ,→ Q , for any rule l → r and for any state of Aι
S, we obtain that ι |= φFP

R,AS
.

Concluding the proof.

D Proof of Proposition 4

Let us recall Proposition 4.
Let AS and R be respectively a STA whose set of final symbolic states is X f

Q
and a TRS. Let Bad be a set of ground terms. Let ι be an instantiation from
XQ to Q. Thus,

ι |= φBad
AS

iff L(Aι
S) ∩Bad = ∅.

Proof. According to Definition 11, φBad
AS

=
∧

∀t∈Bad(
∧

∀X∈X f
Q

,(α, )∈St
X
¬α).

So ι |= φBad
AS

⇔ ι |=
∧

∀t∈Bad(
∧

∀X∈X f
Q

,(α, )∈St
X
¬α)

⇔ ∀t ∈ Bad, ι |=
∧

∀X∈X f
Q

,(α, )∈St
X
¬α

⇔ ∀t ∈ Bad, ι |= ¬
∨

∀X∈X f
Q

,(α, )∈St
X
α.

According to Proposition 2, (α, ) ∈ St
X ⇔ t

α
−→AS X ,

so ∀t ∈ Bad, ι |= ¬
∨

∀X∈X f
Q

,(α, )∈St
X
α⇔ ∀t ∈ Bad, ι |= ¬

∨
∀X∈X f

Q
,t

α−→AS
X

α.

And according to Proposition 1, this is equivalent to tι !
∗
Aι

S
ι(X), for all t ∈ Bad

and for all X ∈ X f
Q. So, for all X , ι(X) is a final state of Aι

S . So none of the
bad terms is recognized by the instantiated automaton Aι

S . Thus we can deduce
that it is equivalent to L(Aι

S) ∩Bad = ∅.

E Proof of Proposition 5

Let us recall Proposition 5.
Let AS be a STA and A be a TA such that AS is A-compatible. For any

ι : XQ ,→ Q, one has L(A) ⊆ L(Aι
S).

Proof. According to Definition 12, each state q is transformed into a symbolic

state Xq. So, for any t ∈ L(A, qf ) with qf a final state of A, one has t
top
−−→

Xqf
. Thus, for any instantiation ι, ι |= Reco(t, Xqf

). Consequently, applying
Proposition 1, t ∈ L(Ai

S).



F Proof of Theorem 1

Let us recall Theorem 1.
Let AS be a STA and A be a TA such that AS is A−compatible. Let ι be an

instantiation from XQ to Q. Thus,

ι |= φBad
AS

∧ φFP
R,AS

iff Aι
S is R− closed, L(A) ⊆ L(Aι

S) and L(Aι
S) ∩Bad = ∅.

Proof. As AS is A−compatible and ι |= φBad
AS

(QX ) ∧ φFP
R,AS

iff ι |= φBad
AS

∧ ι |=

φFP
R,AS

, Theorem 1 is a direct consequence of propositions 3, 4 and 5.

G Proof of Theorem 2

Let us recall Theorem 2.
Let AS be a STA and A be a TA such that AS is A−compatible. Let ι be an

instantiation from XQ to Q.Thus,

ι |= φBad
AS

∧ φFP
R,AS

⇒ R∗(L(A)) ⊆ L(Aι
S) and R∗(L(A)) ∩Bad = ∅.

Proof. According to Theorem 1,

ι |= φBad
AS

∧ φFP
R,AS

iff Aι
S is R− closed, L(A) ⊆ L(Aι

S) and L(Aι
S) ∩Bad = ∅.

So, if Aι
S is R − closed and L(Aι

S) ⊇ L(A), then L(Aι
S) ⊇ R∗(L(A)) and

R∗(L(A)) ∩Bad = ∅.


