
Parallel Programming with
Orléans Skeleton Library

Noman Javed

Frédéric Loulergue

Rapport no RR-2011-05

Parallel Programming with Orléans Skeleton Library

Noman Javed LIFO, University of Orléans, France
Noman.Javed@univ-orleans.fr

Frédéric Loulergue
LIFO, Université d’Orléans, France

Frederic.Loulergue@univ-orleans.fr

March 2011

Abstract

Orléans Skeleton Library (OSL) is a library of parallel algorithmic skeletons in
C++ on top of MPI. It provides a structured approach towards parallel program-
ming. Skeletons in OSL are based over the bulk synchronous parallelism model.
Applications can be developed using different combinations and compositions of
the skeletons. This paper illustrates the expressivity of OSL with two applications:
a two dimensional heat diffusion simulation, and an exact n-body simulation. Ex-
periments using these applications are performed on parallel machines.

1

Noman.Javed@univ-orleans.fr
Frederic.Loulergue@univ-orleans.fr

Contents

1 Introduction 3

2 Structured Parallelism 3

3 Orléans Skeleton Library 5
3.1 An Overview of OSL . 5
3.2 OSL Implementation . 6

4 Applications 7
4.1 2D Heat Equation . 7
4.2 N -Body Simulation . 8

4.2.1 Extracting skeletons out of sequential algorithm 10
4.2.2 The systolic version . 10
4.2.3 The RaMP skeleton . 11
4.2.4 Some optimisations . 11

5 Experiments 12

6 Related Work 14

7 Conclusion and Future Work 15

References 15

2

1 Introduction

Parallel programming is gaining the attention of the developers, specially with the emer-
gence of the new parallel hardware architectures. But the majority of the sequential
developers are not equipped with the tactics of parallel programming. The result is the
under utilisation of the available resources.

Several approaches are put forwarded as a solution to this problem. Some of them
like MPI and POSIX threads can be called as the assembly language of the parallel
programming. To program in this way programmer should have the knowledge of the
low level details of the architecture and parallelism. On the other hand the approaches
like automatic parallelisation hide everything from the programmer. Programmer is un-
able to apply the domain specific optimisation in this case. This abstraction results in
performance loss.

To ease the complexity of parallel program development without sacrificing perfor-
mance more structured approaches are needed. Parallel design patterns [23] or parallel
algorithmic skeletons [9, 22] are one of the structured frameworks like their counterpart
design patterns in sequential programming. A number of libraries are there for a while
based on this methodology. Bulk synchronous parallelism [29] is one of the well known
parallel programming model. The advantage of the BSP over other abstract model of
parallel computation such as PRAM is that it takes correct account of the communication
and the synchronisation.

The Orléans Skeleton Library (or OSL) mixes the structured model of algorithmic
skeletons with bulk synchronous parallelism. It uses expression templates and meta-
programming techniques to ease program development without compromising efficiency.
In this paper we present the new version of OSL as well as applications cases. These
applications are: a two dimensional heat diffusion simulation, and a N -body simulation.
The extensibility of the framework by adding a new skeleton developed by using the
existing ones is shown and used in the N -body application.

Next section deals with the details of the structured parallelism approaches on which
OSL is based. In section 3 we present the an overview of the current version of OSL.
Section 4 presents the various applications and the experiments performed with these
applications are detailed in section5. Related work is presented in section 6. Finally we
conclude and give perspectives in section 7.

2 Structured Parallelism

Our methodology is to rely on a structured model of parallelism. Putting constraints on
the parallelism of programs have the following benefits:

• The global view, provided by the structured parallel model of algorithmic skeletons,
offers new opportunities to optimise parallel programs.

• A theory of program calculation could be designed in order to provide a sound basis
for a methodology of systematic development of correct parallel programs, as well as
supporting tools.

3

P1 P2 P3 Pn

...

C
om

p
u
ta
ti
o
n

Synchronisation Barrier

Communication

...
...

...
...

1

Figure 1: A BSP Super-step

• Restricting the parallelism is also a mean to reduce the semantical complexity of par-
allel programs. This eases the programming but also the performance predictability
of programs as well as the formal verification of programs, making them reliable.

Algorithmic skeletons [9, 12, 22] are a form of structured parallelism. Skeletons belong
to a finite set of higher-order functions or patterns that can be run in parallel. Usually
the programming semantics of the skeletons is similar to the functional semantics of a
corresponding sequential pattern (for example the application of a function to all the ele-
ments of a collection) and the execution semantics remains implicit or informal. Thus the
skeletons abstract the communication and synchronisation details of parallel activities.
To write a parallel program, users have to combine and compose the existing skeletons.

Skeletons are not in general any parallel operations, but try to capture the essence
of well-known techniques of parallel programming such as parallel pipeline, master-slave
algorithms, the application of a function to distributed collections, parallel reduction, etc.

The Bulk Synchronous Parallelism is another model of structure parallelism for general-
purpose, architecture independent parallel programming. The BSP architecture model
consists of three components, namely a set of processors each with a local memory,
a communication network, and a mechanism for globally synchronising the processors.
Although the BSP architecture model is a distributed memory architecture, it can be
mapped to any general purpose parallel architecture.

A BSP program is a sequence of super-steps. Each super-step 1 proceeds in three
phases: first processors may operate only on values stored in local memory, then values
are exchanged between processors through the communication network, these sent values
are guaranteed to arrive at the end of a super-step after a global synchronisation occurs.
This structured parallelism allows a simple yet realistic performance model.

The performance of a BSP machine is characterised by 3 parameters: p is the number
of processor-memory pairs, L (in flop) is the time required for a global synchronisation
and g (in flop/word) is the time for collectively delivering a 1-relation (communication
phase where every processor receives/sends at most one word). The network can deliver
an h-relation in time g × h for any arity h. The BSP parameters can be determined in
practice using benchmarks.

4

The execution time (or cost) of a super-step is thus the sum of the maximal local
processing time, of the data delivery time and of the global synchronisation time.

max
0≤i<bsp p

wi + max
0≤i<bsp p

max(h+i , h
−
i)× g + L

where, at processor i, wi is the local sequential work performed during the computation
phase, h+i is the size of data sent from i to other processors, and h−i the size of the received
data by processor i from other processors.

BSP algorithms have been designed and implemented to solve a broad variety of prob-
lems: scientific computation [4], artificial intelligence [6, 13, 24], parallel databases [1],
etc.

The Orléans Skeleton Library combines the advantages of skeletal parallelism and
bulk synchronous parallelism by providing high-level abstractions to the programmer,
with predictable performances.

3 Orléans Skeleton Library

Orléans Skeleton Library is the library of data parallel algorithmic skeletons on dis-
tributed vectors. It is implemented in C++ currently on top of MPI. C++ templates
are heavily used for the implementation of the OSL for taking advantage of the func-
tional programming paradigm. The goal of the skeleton approach is to provide a small
set of basic parallel patterns. The applications are developed by finding the appropriate
combination and composition of these skeletons.

3.1 An Overview of OSL

In the BSP model, the number of processors is fixed during execution. This value is
accessible to the programmer, together with the other BSP parameters respectively by
osl :: bsp p, osl :: bsp g, osl :: bsp l , and osl :: bsp r which is a measure of the processors
computing power. All parameters, but bsp p, are obtained by a benchmark program
called oslprobe.

The data structure used at the base of OSL is distributed array. The data is dis-
tributed among the processors at the time of the creation of the array. DArray is imple-
mented as a template class. Thus a variable of type DArray<T> is a distributed array with
elements of type T. As there are bsp p processors in a BSP machine, a distributed array
consists of bsp p partitions evenly distributed (the partitions on the processors with low
processor identifiers may have one more element than the processors with high processors
identifiers).

Figure 2, gives the informal notations for distributed arrays and an informal semantics
for the OSL skeletons used in the applications of section 4. In this figure, bsp p is noted
p.

A distributed array can be seen as a usual array. map (resp. zip) is the usual combi-
nator to apply a function to each element of a distributed array (resp. of two distributed
arrays). The first argument of both map and zip could be either a pointer function, or a
functor either extending std :: unary function or std :: binary function . It is thus possible to
use BOOST binders for providing partially applied functions.

5

Type / Signature Notation / Informal semantics
DArray<T> (sequential view) [t0, . . . , tt.size−1]
DArray<W> map(W f(T), DArray<T> t) map(f, [t0, . . . , tt.size−1]) = [f(t0), . . . , f(tt.size−1)]
DArray<W> zip(W f(T,U), DArray<T> t, DArray<U> u) zip(f, [t0, . . . , tt.size−1], [u0, . . . , ut.size−1]) = [f(t0, u0), . . . , f(tt.size−1, ut.size−1)]
<T> reduce(T⊕(T,T), DArray<T> t) reduce(⊕, [t0, . . . , tt.size−1]) = t0 ⊕ t1 ⊕ . . .⊕ tt.size−1
DArray<Vector<T> > getPartition(DArray<T> t) getPartition ([t0, . . . , tt.size−1]) = 〈 [t00, . . . , t

0
l0−1] , . . . , [tp−10 , . . . , tp−1lp−1−1] 〉

DArray<T> flatten(DArray<Vector<T> > t) flatten (〈 [t00, . . . , t
0
l0−1] , . . . , [tp−10 , . . . , tp−1lp−1−1] 〉) = [t0, . . . , tt.size−1]

DArray<T> permute(int f(int), DArray<T> t) permute(f, [t00, . . . , t
0
l0

]) = [t0f(0), . . . , t
0
f(l0−1)]

DArray<T> shift(int dec, T f(T), DArray<T> t) shift (d, f, [t00, . . . , t
0
l0

]) = [f(0), . . . , f(d− 1), t0, . . . , tt.size−1−d]

Figure 2: OSL Data Structure and Skeletons

getPartition exposes the partitioning of a distributed array, transforming a distributed
array of type DArray<T> into a distributed array of type DArray<Vector<T> > containing
one vector by processor. The inverse operation of getPartition is flatten . flatten is
optimised in such as way that communications will occur (to obtain a evenly distributed
array) only if it is necessary.

reduce is a parallel reduction with a binary associative operator ⊕. Communications
are needed to execute a reduce. permute and shift are communication functions. permute

moves the content of the distributed array, hence redistributes the array, according to a
permutation function f on the interval [0, t.size−1]. shift is used to shift elements on the
right (the case shown in the figure) or the left depending on the sign of its first argument.
The missing values, at the beginning or the end of the array, are given by function f.

3.2 OSL Implementation

OSL is implemented in C++. It uses MPI for communication and synchronisation. OSL
makes use of the templates, operator overloading and some meta-programming tech-
niques. As the applications are developed by composing skeletons, efficient composition
of skeletons is an important point of optimisation. It is achieved in OSL by using the
technique of expression templates in C++ [30].

Expression Templates are a programming technique for implementing an efficient
operator overloading within C++. It allow intelligent removal of temporaries and enable
lazy evaluation. The basic idea of expression templates is to inline the expressions in
the function body. Operator overloading technique is used to encode the expression in
the form of the nested template classes at compile time. Then the nested expression
objects become evaluated by one loop iteration. Optimising the code via the inlining, the
resulted program becomes nearly as efficient as the corresponding C code. Some vector
and matrix based linear algebra libraries benefits a lot from this technique.

In parallel programming, processors often need to communicate their data with the
other processors. Sometimes the data (user defined classes) contain indirections and need
to be serialised before being communicated. C++ doesn’t support serialisation transpar-
ently. One solution is that the programmer provides the serialisation method for its
classes. This increases the complexity of the program development from the user’s point
of view. Some serialisation libraries like TPO [16] or BOOST serialisation library [19]
can make this task easier for the developer. We choose the Boost serialisation library and
use Boost MPI for implementing OSL. The reason behind using Boost is that it is the
most active set of libraries which is continuously under research and many of the boost

6

u(x, y, t+ ∆t) =
γ∆t

∆s2

(
u(x+∆s, y, t)+u(x−∆s, y, t)+u(x, y+∆s, t)+u(x, y−∆s, t)−4u(x, y, t)

)
+u(x, y, t)

Figure 3: Heat Equation in 2D

libraries are already accepted by the draft technical report on C++ library extensions [28]
(also called TR1), and other libraries will be included in the C++0x standard and are
proposed for TR2.

4 Applications

4.1 2D Heat Equation

Heat Equation is a parabolic second order differential equation which models the flow/prop-
agation of heat across some region over time. The heat at particular point in a time step
can be calculated by accessing the values of the neighbouring elements. The formulation
of heat equation in two dimensions is captured by the equation of figure 4.1. We also
have boundary conditions, in the following we assume that left and right (resp. bottom
and top) boundary values are functions depending on y (resp. x).

The two dimensional region is parametrised by the width and the height parameters.
It is represented by a distributed array of length (width×height). The systematic develop-
ment skeleton based algorithm of the two dimensional heat equation is presented below.
The skeletons are extracted from the equation in figure 3:

• Access to the neighbouring elements, as shown in the following figure, are done
using the shift skeleton:

y

xwidth

height

shift(1,...) shift(-1,...)

shift(width,...)

shift(-width,...)

– Left and right neighbouring elements are accessed using the shift skeleton

7

plate = Skel :: zip(std :: plus<double>(),
plate ,
Skel :: map(boost::bind(std :: multiplies <double>(), (diffuse ∗ dt) / (ds ∗ ds), 1),

Skel :: zip(std :: plus<double>(),
Skel :: map(boost::bind(std :: multiplies <double>(), −4, 1), plate),
Skel :: zip(std :: plus<double>(),

Skel :: mapIndex(rightBound, Skel :: shift right (rightBound,plate)),
Skel :: zip(std :: plus<double>(),

Skel :: mapIndex(leftBound, Skel :: shift left (leftBound, plate)),
Skel :: zip(std :: plus<double>(),

Skel :: shift (−width, topBound, plate),
Skel :: shift (width, bottomBound, plate)

)
)

)
)

)
);

Figure 4: One Step of Heat Diffusion Simulation in OSL

when the offset is 1 or −1, and the replacement value is a single value rather
than a function or functor. However in this two dimensional case the shifting
is incorrect: we have to use mapIndex to replace the values at left and right
boundaries by the one computed by the left and right boundary functions.

– To access the top and bottom neighbouring elements, the array should be
shifted width times. This operation is done using again the shift skeleton.

• The multiplication of the element by the diffusivity and −4 is captured by the map

skeleton

• The addition of the neighbouring elements and the final addition operation is per-
formed by the zip skeleton.

The code snippet for one step of simulation of heat diffusion is presented in figure 3
As visible in the listing all the skeleton operations are composed in a single expression.
The composition of the skeletons in this manner triggers the expression templates imple-
mentation of the skeletons which results in optimised performance.

4.2 N-Body Simulation

The N -Body simulation is an application that simulate the motion of n point masses
interacting under the presence of gravitational force. Assuming a set of n point with
mass mi, position ~pi(t), and velocity vi(t) as continuous functions with respect to time t,
with 0 ≤ i < n, the evolution of the system is described by a set of differential equations

8

which could be transform into the following discrete form with time step ∆t:
~pi(t+ ∆t) = ~pi(t) + ~vi(t)×∆t

~vi(t+ ∆t) = ~vi(t) +
~Fi(t)

mi

×∆t

~Fi(t) = γ ×
∑

j 6=i

mi ×mj × (~pj(t)− ~pi(t))

|~pj(t)− ~pi(t)|3

where γ is the gravitational constant.
Thus, the problem of calculating the sum of the forces for all the particles is of the

order n2.
In our OSL implementation, the particles are partitioned among the processors, with

n
p

particles per processor. To calculate the sum of the forces, each processor communicates
its particles with the others. This can be achieved in two ways:

• By using an all to all communication, so that every processor gets the current
positions and velocities of all the other particles, to be able to update the positions
and velocities of the particles it owns;

• By using a systolic loop, i.e in p− 1 steps (in a BSP setting, super-steps), where at
each step, each processor:

– Computes the forces applied to the particles it owns all the time by n
p

other

particles it owns at the current step (at the first step the two sets of particles
are equal);

– Receives n
p

new particles from its left neighbour, and sends the n
p

particles it
was owning on the current step to its right neighbour.

Both versions have the following BSP computational cost for one step of the simula-
tion:

O(
n2

p
)

In the first version each processor receives n
p
× (p− 1) particles, thus the communication

and synchronisation BSP cost is:

O(
n

p
× (p− 1)× g) + L

In the systolic version, at each step, each processor sends and receives n
p

particles, and
there are p− 1 steps. Therefore the communication and synchronisation BSP cost is:

O((p− 1)× (
n

p
× g) + L)

The total exchange version would thus have a better performance. However the ad-
vantage of the systolic version is that it allows a much smaller memory consumption than
the total exchange version. In the next sections we proceed with the systolic version, its
generalisation and the N -body problem specific optimisation.

9

4.2.1 Extracting skeletons out of sequential algorithm

In this section we present how to extract a skeletal implementation out of the generic
description of the algorithm. Following are the main operations along with their skeleton
implementation for nbody simulation:

• make a copy B of the original particles A,
B = A;

• for each Ai compute interactions with all Bj. These interactions are captured by
rotating the copied partition implemented in terms of circular shift right.
for(i=0; i < A. get local size (); ++i) shift rcl (true,B); To avoid the self computa-
tion of the force a boolean is used in shift rcl

• calculate force between two particles Ai and Bj,
zip(calcF , A, B);

• sum all the forces applied to a particle Bi,
zip(sumF, force , old force);

• update the positions and the velocities of the particles.
zip(move, A, force);

The steps 2–4 can be optimised by composing them in the following way:

for(int i=0; i < A. get local size (); ++i)
zip(sumF, force , zip(calcF , A, shift rcl (true,B)));

The parallel version can be developed in the same way just by replacing the circular
shift operation by a permute partition to shift the whole partition. A permute partition can
be implemented in terms of the getPartition , permute and flatten skeletons.

4.2.2 The systolic version

Two systolic loops are used to compute the sum of the forces on each particle. The outer
loop models the partition level force computation while the inner loop represents the force
computation between the processor’s local particles and the received particles. Thus, the
outer loop executes p− 1 times while the inner loop executes local size− 1 times. In each
iteration of the inner loop three operations are performed:

• shifting the local particles circularly towards right: a circular shift right function is
written for this purpose,

• computing the force between the two particles by using zip skeleton,

• add the newly computed force to the previous one by a zip skeleton.

A partial listing for calculating the force is presented in figure 5. Once the force for
each particle is calculated a zip skeleton using a movement functor can be used to update
the positions and velocities of all the particles.

10

totalForce = computeLocalForce(particles ,tmp,true); // true : avoids self computation of force
for(int i = 1; i < bsp p−1; ++i) {
// sends partition to the right hand neighbour
tmp = Skel:: permute partition (boost :: bind(permuteRight(), i , 1), tmp);
// computes local force as mentioned in section IV.B.1
localForce = computeLocalForce(particles ,tmp,false);
totalForce = Skel :: zip(sumF,localForce, totalForce);

}
// calculates new positions and velocities
particles = Skel :: zip(boost :: bind(movement(),dt, 1, 2), particles , totalForce);

Figure 5: N -Body Simulation: Code Excerpt

4.2.3 The RaMP skeleton

Darlington [12] used RaMP (Reduce and Map over Pairs) for the computation of the sum
of the forces for each particle. This is actually a generalisation of the systolic version. As
this pattern may occur often in parallel scientific application, we added the new skeleton
RaMP to the OSL, but not as a primitive skeleton but as a user-defined skeleton. The
RaMP skeleton requires a reduction operator, a binary function, and the two expressions.
The binary function is used to calculate the interaction between the two expressions. The
result is than reduced by the reduction operator. As in the case of nbody the binary
function is calcF to calculate the force between the particles and the reduction operator
is sumF for summing up the forces. The body of the RaMP operator() is same as the one
presented in systolic loop.

4.2.4 Some optimisations

As the force “applied” by the body i to the body j is the opposite of the force applied
by the body j to the body i, it is of course possible to avoid computing these two forces.
We did so by adding circular shift left function at the inner level and permute partition at
the outer level. The newly computed force by body i is sent back to the body j:

11

b0 b1 b2 b3 b4 b5

b0 1 2 3 2 1

b1 1 1 2 3 1

b2 2 1 1 2 3

b3 3 2 1 1 2

b4 2 3 2 1 1

b5 1 2 3 2 1

Originally calculated
Never computed
Communicated result

1,2,3 No of iteration

This reduces the inner loop iterations to local size
2

and the outer loop iterations to
the p

2
. Experimental results comparing this version with the RaMP version are presented

in section 5.

5 Experiments

All the experiments were conducted on a cluster of PC with 8 nodes. Each of the 8 nodes
contains two Quad-Core AMD Opteron 2376 processors with a 2.3 GHz frequency. Each
node has 16 Gb of memory. These nodes are linked by a Gigabit-Ethernet network, each
node having one network card. The operating system is Ubuntu 10.04. The MPI library
used was Open MPI 1.4.2. The compiler was GCC 4.3. All the examples were compiled
using the third level of optimization.

Heat Diffusivity Simulation The experiments were conducted for scalability and for
different sizes. The program heat equation takes the width and number of iterations as
the parameters. The total length of the DArray is width × width. Figure 6 presents the
scalability of the heat equation by keeping the width parameter fix at 1000 and varying
the processors from 1 to 64. Figure 7 presents the timings of the heat equation for
different sizes of the plates for 64 processors.

N-body Simulation The experiments show scalability and the comparision between
the various versions were conducted. The progam takes the problem size, time of simula-
tion and single time step as the input parameters. Figure 8 presents the graph that scales
quadratically with increasing number of bodies, while keeping the number of processors

12

 0

 100

 200

 300

 400

 500

 600

 700

 0 6 12 18 24 30 36 42 48 54 60 66

T
im

e

Processors

width: 1000

Heat Equation 2D

 10

 20

 30

 40

 16 24 32 40 48 56 64

Figure 6: Increasing number of processors, 1000 width

 5

 6

 7

 8

 9

 10

 11

 12

 13

 400 500 600 700 800 900 1000 1100

T
im

e
(s

)

width

Procs: 64

Heat Equation 2D

Figure 7: Increasing plate sizes, 64 processors

13

 0

 20

 40

 60

 80

 100

 120

 140

 0 20000 40000 60000 80000 100000

T
im

e
(s

)

Size

Comparison of NBody Simulations (p = 16)

Optimized systolic
RaMP

 0
 500 1000 1500 2000 2500 3000 3500 4000

Optimized Systolic
RaMP

Figure 8: Comparison Optimized Systolic and RaMP, 16 processors

constant for 16 processors. Non serialized systolic version is used for this test. The opti-
mized systolic version as shown in figure 8 is more efficient than the RaMP version. In
RaMP version we have to calculate all the interactions while in the optimized systolic
we tansfer the interactions already calculated thus reducing half of the calculations. The
performance scales by increasing the number of processors as demonstrated in figure 9
by keeping the problem size constant and increasing the number of processors.

6 Related Work

Several parallel skeleton libraries have been implemented. Since the idea of skeletons has
close relationship with functional programming, there are several implementations based
on functional languages such as Template Haskell [15], SML [25] and Objective Caml [11].

Libraries based on C or C++ aim at being efficient and more widely used than the
previous libraries:

• Muesli [8] and SkeTo [21, 20] share with OSL a number of classical data-parallel
skeletons on distributed arrays. Our previous work showed that the previous version
of OSL was more efficient than both of these libraries [18].

• Quaff [14] is highly optimised with meta-programming techniques. However to
attain its very good performances, some constraints are put on the algorithmic
structure of the skeletons (that are mainly task parallel skeletons).

• eSkel [10, 2] is designed to ease integration of algorithmic skeletons programs within
MPI code and to avoid to put to many constraints on the user. Being closer to MPI,
the signatures of eSkel’s skeletons are more complicated than the signatures of other
skeletons libraries.

14

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 8 16 24 32

T
im

e
(s

)

Processors

No of Particles: 100000

nbody

Figure 9: Increasing number of processors, 100K particles

• DatTel [3] is a partial parallel implementation of the STL library (for shared memory
machines). It is also the design principle of STAPL [7, 27] which targets both shared
and distributed memory machines.

It is of course possible to write BSP programs without skeletons. The set of functions
of the proposed BSPlib standard is quite small compared to MPI, yet efficient. The
programming style of these libraries is not as high level than skeleton libraries and OSL.
There are three libraries sharing the BSPlib specification: BSPlib [17], PUB [5] and
BSPonMPI [26].

7 Conclusion and Future Work

OSL is the library of the data parallel skeletons based on the top of Bulk synchronous
parallelism. The development of a 2D heat equation simulation and an N -body simula-
tion with OSL demonstrates the capability of the OSL to develop scientific applications.
Several versions of the problem are developed, showing the flexibility of parallel program
development with OSL. The extensibility of OSL is presented by adding a new skeleton
by combining the existing ones.

In future work we will consider the support of performance portability of the skeletons
based on the BSP model, the development of new applications including parallel clustering
algorithms, as well as work on the formal semantics of the programming and execution
model of OSL.

15

References

[1] M. Bamha and M. Exbrayat. Pipelining a Skew-Insensitive Parallel Join Algorithm.
Parallel Processing Letters, 13(3):317–328, 2003.

[2] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Flexible Skeletal Programming
with eSkel. In J. C. Cunha and P. D. Medeiros, editors, 11th International Euro-Par
Conference, LNCS 3648, pages 761–770. Springer, 2005.

[3] H. Bischof, S. Gorlatch, and R. Leschinskiy. DatTeL: A Data-Parallel C++ Template
Library. Parallel Processing Letters, 13(3):461–472, 2003.

[4] R. Bisseling. Parallel Scientific Computation. A structured approach using BSP and
MPI. Oxford University Press, 2004.

[5] O. Bonorden, B. Judoiink, I. von Otte, and I. Rieping. The Paderborn University
BSP (PUB) Library. Parallel Computing, 29:187–207(2), 2003.

[6] A. Braud and C. Vrain. A parallel genetic algorithm based on the BSP model.
In Evolutionary Computation and Parallel Processing GECCO & AAAI Workshop,
Orlando (Florida), USA, 1999.

[7] A. A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. G. Smith, G. Tanase,
N. Thomas, X. Xu, M. Bianco, N. M. Amato, and L. Rauchwerger. STAPL: standard
template adaptive parallel library. In G. Haber, D. D. Silva, and E. L. Miller, editors,
The 3rd Annual Haifa Experimental Systems Conference (SYSTOR 2010). ACM,
2010.

[8] P. Ciechanowicz, M. Poldner, and H. Kuchen. The Münster Skeleton Library Muesli
– A Comprenhensive Overview. Technical Report Working Paper No. 7, European
Research Center for Information Systems, University of Münster, Germany, 2009.

[9] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, 1989. Available at http://homepages.inf.ed.ac.uk/mic/Pubs.

[10] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming. Parallel Computing, 30(3):389–406, 2004.

[11] R. D. Cosmo, Z. Li, S. Pelagatti, and P. Weis. Skeletal Parallel Programming with
OcamlP3l 2.0. Parallel Processing Letters, 18(1):149–164, 2008.

[12] J. Darlington, A. J. Field, P. G. Harrison, P. Kelly, D. Sharp, Q. Wu, and R. While.
Parallel Programming Using Skeleton Functions. In PARLE’93. Springer Verlag,
1993.

[13] D. C. Dracopoulos and S. Kent. Speeding up genetic programming: A parallel BSP
implementation. In First Annual Conference on Genetic Programming. MIT Press,
July 1996.

[14] J. Falcou, J. Sérot, T. Chateau, and J.-T. Lapresté. Quaff: Efficient C++ Design
for Parallel Skeletons. Parallel Computing, 32:604–615, 2006.

16

http://homepages.inf.ed.ac.uk/mic/Pubs

[15] K. Hammond, J. Berthold, and R. Loogen. Automatic Skeletons in Template Haskell.
Parallel Processing Letters, 13(3):413–424, 2003.

[16] P. Heckeler, M. Ritt, J. Behrend, and W. Rosenstiel. Object-Oriented Message-
Passing in Heterogeneous Environments. In A. L. Lastovetsky, M. T. Kechadi, and
J. Dongarra, editors, Recent Advances in Parallel Virtual Machine and Message
Passing Interface, 15th European PVM/MPI Users’ Group Meeting, volume 5205 of
LNCS 5205, pages 151–158. Springer, 2008.

[17] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao,
T. Suel, T. Tsantilas, and R. Bisseling. BSPlib: The BSP Programming Library.
Parallel Computing, 24:1947–1980, 1998.

[18] N. Javed and F. Loulergue. OSL: Optimized Bulk Synchronous Parallel Skeletons on
Distributed Arrays. In Y. Don, R. Gruber, and J. Joller, editors, 8th international
Conference on Advanced Parallel Processing Technologies (APPT’09), LNCS 5737,
pages 436–451. Springer, 2009.

[19] P. Kambadur, D. Gregor, A. Lumsdaine, and A. Dharurkar. Modernizing the C++
Interface to MPI. In B. Mohr, J. L. Träff, J. Worringen, and J. Dongarra, editors,
Recent Advances in Parallel Virtual Machine and Message Passing Interface, 13th
European PVM/MPI User’s Group Meeting, LNCS 4192, pages 266–274. Springer,
2006.

[20] K. Matsuzaki and K. Emoto. Implementing Fusion-Equipped Parallel Skeletons
by Expression Templates. In 21st International Workshop on Implementation and
Application of Functional Languages (IFL), LNCS. Springer, 2009.

[21] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu. A Library of Constructive Skeletons
for Sequential Style of Parallel Programming. In InfoScale’06: Proceedings of the 1st
international conference on Scalable information systems. ACM Press, 2006.

[22] S. Pelagatti. Structured Development of Parallel Programs. Taylor & Francis, 1998.

[23] F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and Dis-
tributed Computing. Springer, 2003.

[24] R. O. Rogers and D. B. Skillicorn. Using the BSP cost model to optimise parallel
neural network training. Future Generation Computer Systems, 14(5-6):409–424,
1998.

[25] N. Scaife, S. Horiguchi, G. Michaelson, and P. Bristow. A parallel SML compiler
based on algorithmic skeletons. Journal of Functional Programming, 15(4):615–650,
2005.

[26] W. J. Suijlen. BSPonMPI. http://bsponmpi.sourceforge.net.

[27] G. Tanase, X. Xu, A. A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. G.
Smith, N. Thomas, M. Bianco, N. M. Amato, and L. Rauchwerger. The STAPL
pList. In G. R. Gao, L. L. Pollock, J. Cavazos, and X. Li, editors, 22nd International

17

Workshop on Languages and Compilers for Parallel Computing (LPCP 2009), LNCS
5898, pages 16–30. Springer, 2009.

[28] The C++ Standards Committee. Draft Technical Report on C++ Library Exten-
sions. Technical Report 19768, ISO/IEC, 2005.

[29] L. G. Valiant. A bridging model for parallel computation. Comm. of the ACM,
33(8):103, 1990.

[30] T. Veldhuizen. Techniques for Scientific C++. Computer science technical report
542, Indiana University, 2000.

18

	Introduction
	Structured Parallelism
	Orléans Skeleton Library
	An Overview of OSL
	OSL Implementation

	Applications
	2D Heat Equation
	N-Body Simulation
	Extracting skeletons out of sequential algorithm
	The systolic version
	The RaMP skeleton
	Some optimisations

	Experiments
	Related Work
	Conclusion and Future Work
	References

