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ABSTRACT
With the number of services using virtualization and clouds
growing faster and faster, it is common to mutualize thou-
sands of virtual machines (vms) within one distributed sys-
tem. Consequently, the virtualized services, softwares, hard-
wares and infrastructures share the same physical resources.
This has given rise to important challenges regarding the se-
curity of vms and the importance of enforcing non-interference
between those vms. Indeed, cross-vm attacks are an impor-
tant and real world threat. The problem is even worse in
the case of adversary users hosted on the same hardware
and therefore the isolation facility within clouds needs to be
strong. Furthermore, each user has different adversaries and
the placement and scheduling processes need to take these
adversaries into account.

First, we show that the current isolation facility within clouds
i.e. virtualization is weak and can be easily attacked. To
avoid such vulnerabilities, we propose a security-aware sched-
uler that implements security policies expressing isolation
requirements. The policies are expressed by the cloud users
themselves by giving them the possibility to choose their
own adversaries. Then, we show how we enforce these poli-
cies within our vm placement and migration algorithms. Fi-
nally, we present virtual networks with a better granularity
for the clouds based on lists of trusted users. We conclude
by presenting both physical and simulated experimental re-
sults showing the efficiency of our approach and the inability
of other solutions to enforce such policies.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Scheduling, Virtualization, Security

Keywords
Virtualization, Cloud Computing, Scheduling, Security, Iso-
lation

1. INTRODUCTION
Nowadays, server farms are popular for running a large range
of services from web hosting to enterprise systems or even
hpc clusters. The common way to deal with those grow-
ing server farms is to mutualize services, softwares, hard-
wares and infrastructures using virtualization technologies.
These mutualized and virtualized infrastructures are named
clouds.

The concept of cloud computing goes back to 1961 with the
introduction of Utility as a service by John McCarthy. The
goal was to bill computing power as water or electricity. The
computing power would have been provided by a large in-
frastructure such as a shared grid. In the past, building
such infrastructure was impossible due to high costs. How-
ever, nowadays with affordable and efficient hardware, it has
become possible.

Security is one of the top concerns in clouds [14]. An im-
portant part of cloud security is cloud trust that can be
defined as “trust without touch” [11]. Indeed, the data is
no longer within the company or the user’s computer but
on an outsourced infrastructure. Accordingly, the data is on
hardware that is outside the scope of the entity that owns
it. There are two issues related to trust [10]: the lack of
transparency of clouds’ infrastructure and unclear security
assurances. Our goal is to increase security assurances by
introducing an explicite isolation policy between users and
transparency through traceability.

The security risks within clouds that we are interested in
here are the threats that come from other users of the clouds.
Indeed, the hardware can be shared between multiple users
(multi-tenancy) and these users can be adversaries. There-
fore, as stated in [16], “a customer’s vm can be assigned to
the same physical server as their adversary”. The isolation
of adversaries co-located on the same hardware can be bro-
ken to start an attack against the integrity, confidentiality
and availability of other users’ vms. This type of threats is
described in section 2.
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After presenting the vulnerabilities that can be used to spy
on a vm from another one running on the same hardware,
we present the cloud architecture we used for our imple-
mentation and experiments. In section 3, we start by briefly
describing the OpenNebula virtual infrastructure manager
and its advanced scheduler Haizea and the way they inter-
act with each other. Then in section 4, we discuss the way
we extended them to support a better isolation scheme be-
tween adversaries on an open public cloud. We introduce
our solution for vms placement and vms migration and also
the enforcement of a better isolation of virtual networks.
In section 5, we present preliminary results of our solution
and show that it is efficient to enhance the isolation between
adversaries within a cloud.

2. CROSS-VM ATTACKS
The virtualization layer, often a hypervisor, seems to in-
crease the isolation between multiple components (users, ap-
plications, operating systems, etc...) that are hosted on the
same hardware. The way the hypervisor achieves this is by
putting each component in a container, a vm, which helps
preventing interference between each container. But virtu-
alization must not be seen as a security component as it
increases the attack surface of the system by bringing ad-
ditional complex code. In fact, the hypervisors and other
virtualization related facilities add new attack vectors. As
a consequence, virtualization must not be the only isolation
technology within the cloud.

VM

vNET

Hypervisor

DMA Driver

Network Card Memory

i l legal memory
access

legal memory 
access

Figure 1: Example of a dma attack

In our case, we are primarily interested in vm to vm attacks
where a virtual machine tries to corrupt, disrupt or spy on
another one. The common method used by attackers to
achieve this is to attack the hypervisor from the vm and then
use privilege escalation to attack another vm. This can be
done through multiple vectors such as using classic exploits
within the hypervisor. For instance a buffer overflow that
would allow to inject code into the hypervisor’s space.

Another vector has been well studied in [13, 21]. It exploits
the ability of some drivers to directly access the underlying
hardware from a vm. This can be done using Direct Memory
Access (dma). Indeed, these drivers can access all the phys-
ical memory without passing through the kernel or the hy-
pervisor. Hence, a malicious dma access can read / write all

the physical memory by bypassing the access control mech-
anisms of the os and the hypervisor. As a consequence, a
malicous vm that can exploit a fault in a dma driver, has
full access to the hypervisor and all its hosted vms. Such an
attack is described in figure 1 where an exploitable virtual
network (vNet) driver is used to directly access the physical
memory and bypass the hypervisor checks.

Finally, it is always possible for a vm to exploit the account-
ing of resources provided by the hypervisor [16]. In this case,
the vm consumes most of the resources to block or slow down
the other vms. It can also spy on the resources consumption
of other vms to infer what they do.

These different attacks highlight the need of better isola-
tion between adversaries on an open public cloud. Indeed,
by placing vms from adversary users on the same hardware,
a cross-vm attack can occur corrupting the integrity, con-
fidentiality and availability of the attacked vm. Therefore,
as explained in [15] and as other components in the cloud,
the vm scheduler needs to take into account security policies
that describe security objectives when placing and migrat-
ing vms. In this case, the security policy must enhance the
isolation between adversary users.

3. VM MANAGEMENT MODEL AND EX-
PERIMENTATION FRAMEWORK

A virtual infrastructure manager (vim) is required in or-
der to deploy, control and monitor vms over multiple phys-
ical computers (pcs) in a cloud. Several managers are al-
ready available: commercial products such as vSphere 1 from
VMWare and open source alternatives such as OpenNeb-
ula [17] 2 or Eucalyptus [4] 3 . We have chosen OpenNebula
to implement our scheduling and security models because
of the open-source and research nature of the OpenNebula
project.

By default, OpenNebula comes with a basic vm scheduler.
This scheduler uses a match-making algorithm. The algo-
rithm is divided into two steps. First, it creates a list of
pcs that can host the vm i.e. pcs with enough ressources
available. Second, it evaluates an expression on each pc on
this list. This expression implements a placement policy and
computes a score for each pc. The pc with the highest score
is chosen to start the vm. Three main placement policies
exist:

• Packing: its purpose is to minimize the number of pcs
on the cloud. Thus, it packs the vms into a set of pcs
to reduce vm fragmentation.

• Striping: its purpose is to maximize the quantity of
ressources available for each vm. Thus, it spreads the
vms on all pcs available.

• Load-aware: As for the striping policy, its purpose is
to maximize the quantity of ressources available for
each vm. But contrary to the striping policy, it does
not spread the vms accross all pcs but chooses the pc
where to place the vms based on the load of the pcs.

1http://www.vmware.com/products/vsphere
2http://www.opennebula.org
3http://www.eucalyptus.com
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Haizea [9] [17]4 is an advanced vm scheduler and can be
used as a replacement for OpenNebula’s default scheduler.
Haizea is a resource scheduler that can receive vms requests
and make scheduling decisions. OpenNebula and Haizea
complement each other, since OpenNebula interacts with
the hypervisors 5 and vms on each pc while Haizea pro-
vides the vm placement decisions. Using both allow resource
providers to lease their resources, using potentially complex
lease terms, instead of only allowing users to request vms
that must start immediately. As described in the figure 2,
the user submits a lease request to the cloud infrastructure
i.e. OpenNebula. This lease is forwarded to Haizea that
uses it and its configuration file to compute a set of instruc-
tions. These instructions, start/stop/suspend/migrate vms,
are forwarded to OpenNebula which allows the placement of
vms contained within the lease.

Haizea “uses leases as a fundamental resource provisioning
abstraction, and implements those leases as vms.” Three
types of leases can be used within Haizea:

• Immediate leases where requested vms are sched-
uled to run at the time of request;

• Advance Reservation leases (ars) where the re-
quested vms need to be run at a specific time in the
future;

• Best-Effort leases (BE) where resources are provi-
sioned as soon as possible and requests are placed on
a queue if necessary.

For instance, best-effort leases can be preempted by ar
leases by suspending the vms of the best-effort leases be-
fore the start of the ar, and resuming them afterwards.

The scheduler’s decisions are translated into enactment com-
mands and their corresponding vm states. These commands
can be tested in a simulated setting within Haizea or they
can be sent to the vim, in our case OpenNebula. One of the
major benefits of this second setting is that all the scheduling
algorithms we have implemented are automatically compati-
ble with the vim. Thus, the results of our simulation studies
can be verified in a real-world setting without much addi-
tional cost. In addition to testing our scheduling model in
the simulation mode, we have experimented with a private
IaaS cloud based on OpenNebula.

OpenNebula and Haizea provide a flexible infrastructure to
build IaaS clouds. However, this infrastructure can also in-
troduce non-obvious threats from other users as described
in section 2. This is due primarily to the way physical re-
sources can be shared between multiple vms. The default
configuration and setup of OpenNebula allows the creation
of a multi-tenant cloud thus it allows the co-residence of vms
belonging to different users. In particular, to improve servers
consolidation and reduce management and power costs, mul-
tiple vms may be assigned to run on the same physical host.
In the following section, we propose a new scheduling policy

4http://haizea.cs.uchicago.edu
5At the time of writing this paper, OpenNebula supports
Xen, KVM and VMWare esx

that takes into account adversaries to reduce the threat of
cross-vm attacks.

4. A SECURITY-AWARE SCHEDULER
This section presents our implementation of a security-aware
scheduler based on Haizea that enforces security policies
dedicated toward a better isolation between adversary users.
In practice, to avoid attacks between vms running on the
same hardware, the policy specifies a set of users that are
adversaries. Then the policy is used by the scheduler to
never place vms that are owned by an adversary user on the
same pc.

Mapping
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VM.type
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Best Effort

VM request
rejected

VM request

Mapping algorithm

Calculate needed 
Migrations and 
Preemptions 

(if any)

VM request
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Figure 3: The vm placement algorithm

Our scheduling process works in four major steps as de-
scribed in figure 3. First of all, the algorithm presented in
the section 4.1 tries to find a valid placement for the re-
quested vm without making any changes (preemptions or
migrations) to the already running or scheduled vms. Then,
if the scheduler is unable to find any valid placement (due
to a lack of resources or a restrictive placement policy) and
if the requested vm is of high priority (ar), the scheduler
tries to preempt one or more vms of lesser priority (BE).

If the scheduler determines that even after this step, the
requested vm cannot be scheduled (which may happen in
case of a low priority vm), the scheduler tries to do some
migrations as explained in the section 4.2. Once again if
the scheduler fails to provide a placement for the requested
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Figure 2: OpenNebula and Haizea

vm, two situations can happen: if the requested vm can be
postponed (BE) then it is scheduled to run at a later date;
if not, the vm request is canceled.

4.1 VM placement algorithm
As recommended in several publications [16, 15] and in order
to build a secure cloud environment, we have implemented
a solution based on incompatibilities between users. Each
cloud user can submit a list of adversary users with whom
he does not want to share a pc. All the lists of adversary
users are then merged to create incompatible groups that
are taken into account when scheduling a vm placement. A
user can also choose to be placed on pcs running only his
own vms even if these pcs are under-utilized.

Each user group described above, contains two users: first,
the one who declared the group, and then the user declared
as an adversary. Listing 1 shows an extract of an XML
groups definition file.

The same set of users can be described in two different
groups. For instance, if user ”company1”declares user ”com-
pany2”as an adversary, and user ”company2”does the same,
there will be two groups (company1 -> company2) and (com-
pany2 -> company1). This results in numerous superfluous
groups, however, we considered this to be a minor issue since
it allows a user to update his adversaries list without impact-
ing other users’ lists. A user can also use the wildcard “*”
to request dedicated pcs for himself.

Listing 1: Example of the XML groups definition
file

<group user1=”company1 ” user2=”company2”/>
<group user1=”company2 ” user2=”company1”/>
<group user1=”company1 ” user2=”company3”/>
<group user1=”company4 ” user2 =”∗”/>

When a user requests a vm, the scheduler computes the
score of each pc to find the one that should be favored to
receive the requested vm. When using our user’s isolation
policies, the scheduling algorithm will first of all determine
if a pc is acceptable or not i.e. if there are adversary vms
running on it. If the pc is not running any adversary vms,
the scheduler applies the default greedy policy; should the
opposite occurs, the pc is not considered for a mapping that
does not involve any preemptions or migrations.

The default greedy policy scores pcs such that those with
fewer vms already scheduled on them, with the highest ca-
pacity and with fewest vms scheduled in the future are scored
highest. The greedy policy tries to minimize the number of
preemptions by putting vms on the least used pcs first so
they can benefit the most from the available resources.

If the scheduler cannot find a placement without making
any preemptions or migrations, it goes back to the process
described in figure 3 and looks for some preemptions or mi-
grations that would allow to satisfy the requested vm. This
is done while keeping under consideration the incompati-
bilities between users. For example, if the chosen pc has
some adversary vms running, all of them will have to be
preempted in order to start the new vm. The migration
algorithm is explained in section 4.2.

Obviously, this user-based policy and especially the possi-
bility of having no co-residence for a user reduces resources-
utilization. This issue must be taken into account when
billing the price of a vm. For example, the price of running
a vm can be increased according to the number of adver-
saries the vm has.

We have chosen to implement a policy based on adversary
users and not trusted users, which would have consisted of
users that should be favored when two vms have to run
on the same physical computer. This choice is justified by
constraints related to resources consolidation: in large-scale
clouds, it will be more difficult to find a valid placement for
a vm request that has a limited number of trusted users. In
particular, the scheduler is less likely to find a placement
for a vm that can only share a pc with another vm if it is
trusted than if the vm had no adversaries at all. However,
we can assume that most users are neither trusted nor adver-
sary and therefore are not declared in any group. A solution
could be to implement both types and allow co-residence of
the same physical computer for two vms that are neither
trusted nor adversary, while favoring this co-residence with
trusted users whenever possible.

4.2 Migration Algorithm
In a cloud environment, vm migration is used to solve various
issues including, but not limited to, load balancing, place-
ment policies and adjustments in the number of available
pcs.
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Since our scheduling algorithm uses a greedy policy to spread
requested vms across all available pcs and reject new vm
requests when the maximum capacity of the pc is reached,
it is unlikely that a physical computer will ever suffer from
high load averages. Therefore there is no need to implement
any migration schemes to leverage this case. Also, when a
new pc is added to the cloud, the scheduler automatically
maps all new vm requests to it until it obtains a smaller
score than the other pcs. Again, there is not much need to
implement migration for this use-case.

However, with our user’s isolation policies we noticed that
it is possible for a user to prevent another legitimate user
from running any vms at all. For instance, if a user re-
quests a certain number of vms as ars, and then one of his
adversaries wants to request a vm as well (either as an ar
or a best-effort) the placement fails if all pcs are occupied
by other adversary tenants. The straightforward solution to
this situation is to have a migration algorithm that would
attempt to migrate adversary vms to other pcs in order to
satisfy the requested vm. The placement of these adversary
vms elsewhere needs to comply with our security policies as
well. This section details the migration algorithm we imple-
mented to solve this kind of situations.

Data: Set of Nodes, requested vm
foreach Node i do

if max resources(i) >= requested vm.resources then
node score(i) = (incompatible vms +
incompatible users + 1) * (used cpu/max cpu +
used mem/max mem)/2

else
node score(i) = -1

end

end
Algorithm 1: Scoring of physical computers

We start by generating a sorted list of pcs using a specific
score for which the pseudo-code is described in Algorithm 1.
This score tells whether it is desirable to migrate vms from
a pc or not. The elements that are taken into consideration
when computing this score for a pc are:

• The number of adversary vms running in the pc i.e.
the number of vms belonging to an untrusted user

• The number of adversary users who own the running
vms

• The available resources in the physical computer (free
Memory and CPU).

If a pc does not have enough resources to satisfy the re-
quested vm, even when no vm is running on it, we do not
take it as candidate pc. This is particularly useful when
handling vms in a cloud environment where pcs are hetero-
geneous. An example might be when a vm is requesting
1.5Gb of RAM and the pc is empty but has only a total of
1Gb RAM.

Basically, the fewer adversary vms on a pc and the more
available resources it has, the more interesting it is to mi-
grate vms from it. The pcs are sorted in order to have those

with the smallest score on the top of the list. We select the
first pc in the list to simulate migration decisions and make
sure that a valid mapping can be found for every vm that
needs to be migrated, and that after these migrations, the
requested vm can be safely placed on this pc.

We first of all look into the running vms in the pc and then
assign a score to each one. This score indicates the order
in which we will try to migrate vms in. Obviously we need
to migrate all the adversary vms first, so those are given
a penalizing score. The scoring of the other vms is simply
based on the requested resources by each vm. So as to have
a sorted list of vms with those with the smallest amount of
requested resources in the top of the list. Indeed, as stated
in [7, 1], the live migration’s time of a vm is linked with the
amount of memory it uses.

As described in the pseudo-code of Algorithm 2: after sim-
ulating the migration of all adversary vms and if it is not
sufficient to map the requested vm, we simulate the migra-
tion of other vms in the same pc. We start by calculating
the remaining resources (CPU and Memory) needed to map
the requested vm. Then we loop through all the remain-
ing vms to find the vm that will free the closest amount of
needed resources if migrated, while freeing enough resources
to allow the requested vm to run.

Once again if the mapping of the requested vm is still un-
successful we try with the remaining vms and start by mi-
grating vms that requested the smallest amount of resources
(since those are easier to place elsewhere). We do this until
a mapping is found or there are no more leases left on the
candidate pc.

Data: Set of VMs, requested vm
Result: Mapping for the requested VM
mapping ← None
for vm in vms in node do

if vm.score == -1 then
simulate migration(vm)
vms in node.pop()

end

end
mapping = map(requested lease)
if mapping == None and vms in node remaining then

optimal vm = compute optimal vm to migrate()
simulate migration(optimal vm)
vms in node.pop()

end
mapping = map(requested lease)
while mapping == None and vms in node remaining do

for vm in vms in node do
simulate migration(vm)
vms in node.pop()
mapping = map(requested lease)
if mapping != None then

break
end

end

end
Algorithm 2: Simplified Migration Algorithm

At this point, if no mapping was found for the requested
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interval of time, the vm request will be either rejected (if it
was an ar) or scheduled to run later (best-effort).

However if a valid mapping is found, we make a final check
by ensuring that a valid mapping can be found for each vm
that needs migration. If all the above steps are accomplished
without issues, we can confirm that i) If a number of vms is
migrated, there will be enough resources for the requested
vm (in this pc), ii) a valid mapping (on other pcs) was found
for each vm that will be migrated; and iii) that therefore the
vm request can be accepted.

When a scheduler has migration capability one of the is-
sue that can arise is over-migration. Over-migration arrives
when a vm is migrated multiple time. It discreases the per-
formance of the vm and increases the infrastructure usage.
Futhermore, it can lead to cyclic migration where a vm is
migrated to a pc and then migrated back to the orginal pc.
To avoid this issue, we have extended Haizea to deny a mi-
gration if the vm has already been migrated between now
and one year ago. It is not a bulletproof solution but our
experimentations have shown it is enough in our case.

4.3 Network Isolation
In the previous sections, the solution we have presented al-
lows the isolation of vms in a cloud, so that no co-residence
is tolerated between adversary vms. This section details our
implementation of a network isolation solution based on the
concept of Trusted Virtual Domains (TVDs) [20]. TVDs
allow the grouping of vms belonging to a specific user dis-
persed across multiple pcs into a virtual network (vNet) in
which isolation requirements are specified by user policies
and automatically enforced.

A pc can be connected to one or more networks that are
available to the vms and since sharing the same network
makes the vNets potentially vulnerable to a malicious vm,
it is critical for our security model to provide a method of
isolation for the networks so the traffic generated in different
vNets cannot be seen in others.

Each vNet is defined as a set of MAC addresses and all
vms belonging to this vNet share the same pattern for their
MAC address. For instance, two vms on a given vNet (MAC
addresses 02:00:C0:A8:01:* ) will obtain addresses such as
02:00:C0:A8:01:01 and 02:00:C0:A8:01:02.

The vNets provided by OpenNebula are independent from
physical networks or vLANs, which makes them flexible.
OpenNebula provides a set of hooks (scripts which are exe-
cuted each time a new vm is created, migrated and/or shut-
down) with the aim of isolating the vNets. The hook called
when deploying a vm adds a set of ebtables 6 rules to the
pc hosting the vm and the hook called on vm shutdown
removes these rules. One of the rules added by the hooks
drops packet from a MAC address that does not match the
vNet’s MAC address, whereas another rule prevents MAC
spoofing by dropping all packets coming from an unknown
MAC address.

Using these vNets and ebtables rules, we provide a mini-

6http://ebtables.sourceforge.net/

mum level of network isolation to all users at the Ethernet
level. However the access control granularity of these vNets
is weak as they can only be private and public. Therefore,
we extended the vNets within OpenNebula to allow creation
of multi-users vNets, which can be useful when several users
need to share the same vNet. To achieve this, we have added
a new option for private vNets that allows the user to spec-
ify a list of trusted users he is willing to share his vNet with.
This is then implemented in the scheduler, that will reject
any vm requested on a private vNet if the vm user is not the
vNet’s creator or on the vNet’s trusted users list. Thus, we
bring a better granularity in the access control of vNets.

5. EXPERIMENTATION
The following experiments (section 5.1, 5.2, 5.3, 5.4) explore
small and self-contained cases on real hardware to validate
the accuracy of our solution for efficiently schedule vms while
respecting the security policies that guarantee isolation of
adversary users and isolation of virtual networks. We also
present simulation experiments in the section 5.5. The pur-
pose of these simulations is to show the linear scalability of
our scheduler.

To evaluate our solution, we introduce a security policy with
three users. Two of these users (Orange and sfr) are con-
current Internet Service Providers thus they are adversaries.
Another one (Renault) is an automobile constructor and is
not an adversary of the other groups. To modelize this pol-
icy, we expressed two rules described in Listing 2. All the
vms are requested by one of these users. In the experiments
presented here, all the vms use the same resources template
i.e. they ask for the same amount of resources in terms of
memory, CPU, etc.

Listing 2: Adversary rules

<group user1=”orange ” user2=”s f r ”/>
<group user1=”s f r ” user2=”orange”/>

It should be noted that the same results are obtained if only
one of the users (Orange or sfr) declared the other one as
an adversary. For instance, if Orange declares sfr as an
adversary and sfr do not declare any adversaries, then our
scheduling algorithm still prevents the placement of sfr vms
in pcs populated with vms belonging to Orange.

Our testbed consists of three pcs (nodes) with the same
hardware configuration. One of the pcs is used as a head
node (frontend) that hosts a shared NFS filesystem for all
the nodes, while the remaining two pcs are used to run vir-
tual machines. The frontend also runs OpenNebula 2.2 and
Haizea 1.1 (the latest versions at the time of writing this
paper), which manages all the VMs during the experiments.

5.1 Basic Placement
In our first experiment, sfr requests a vm. This vm is placed
on the first pc (node #1). Indeed, both pcs are homoge-
neous and no vms are running on them, so the scheduler
chooses the first pc in the list. Then Orange asks for a
vm, the scheduler places it on the second pc (node #2). As
shown in listing 3, it detects that node #1 is already hosting
a vm that is owned by an adversary user: sfr.
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Listing 3: ”Haizea logs for Orange’s VM Placement”
[2011−01−06 1 6 : 4 7 : 1 6 . 0 2 ] LSCHED Lease #2 has been reques ted .
[2011−01−06 1 6 : 4 7 : 1 6 . 0 2 ] LSCHED Lease #2 has been marked as pending .
[2011−01−06 1 6 : 4 7 : 1 6 . 0 6 ] LSCHED Schedul ing l e a s e #2 (1 nodes ) −− AR
[2011−01−06 1 6 : 4 7 : 1 6 . 0 6 ] LSCHED From 2011−01−06 16 : 4 8 : 0 7 . 0 0 to 2011−01−06 16 : 5 3 : 0 7 . 0 0
[2011−01−06 1 6 : 4 7 : 1 6 . 0 6 ] LEASES Trying to schedu le l e a s e from user #1 on node#1
[2011−01−06 1 6 : 4 7 : 1 6 . 0 6 ] LEASES Node not a v a i l a b l e : user #2 i s a l r eady running a VM here .
[2011−01−06 1 6 : 4 7 : 1 6 . 0 6 ] LEASES Trying to schedu le l e a s e from user #1 on node#2
[2011−01−06 1 6 : 4 7 : 1 6 . 1 1 ] LSCHED Lease #2 has been scheduled .

Then the user Renault requests a vm. Renault does not have
adversary thus the scheduler just applies the greedy policies.
As described in listing 4, the scheduler chooses the first pc
as both pcs have the same resources and all vms use the
same amount of resources. The vms placement returned by
OpenNebula is therefore as described in listing 5

As this experiment shows, the policy effectively forbids two
adversary users from running vms on the same pc. The
downfall of this policy is that it can refuse a vm request if
all available pcs have adversary vms even when they have
enough resources to host the requested vm. Thus, the over-
all consolidation of the cloud is reduced. Accordingly, this
solution has scalability issues as with a growing number of
users, the number of rules in the policy can grow exponen-
tially. This can lead to a worst case scenario where every
user is the adversary of everyone else, which leads to having
dedicated pcs for each user. As we have explained earlier,
the enforcing of this security policy must have an additional
financial cost for the user requesting it. This cost can be
weighed by the number of adversaries the user has set.

5.2 Placement with preemption
Without preemption capability, the scheduler will not be
able to manage different levels of vm requests. For exam-
ple, as explained in section 3, a best-effort lease can be sus-
pended (preempted) by an ar lease. Using preemption to
free resources for a high priority lease is common practice
in resource provisioning schedulers, but in our case, freeing
resources is not the only goal. We also have to suspend some
adversary vms to enforce our security policies.

The following example illustrates a situation where preemp-
tion is used in order to start an ar lease requested by a user
who has adversaries on all the available pcs of the cloud.
To show the preemption capability of the scheduler, we in-
troduce an example where the user Orange submits an ar
lease. At the same time, as described in listing 6, six vms
are already running on the cloud. Four of them are owned
by the user sfr and two by Renault. All of those vms are
best-effort. vms owned by sfr are spread across the two pcs
of the cloud. Therefore, launching the vm requested by Or-
ange will require the suspension of one or more vms owned
by sfr.

Listing 7 shows what happens when the Orange lease is sub-
mitted. First, the scheduler refuses to place the vm on either
pcs (node #1 and #2) as there are adversary vms running
on them. However, as both pcs are identical, the first node
is selected and all vms that are adversaries with the vm con-
tained in the requested lease are suspended. In this example,

vms 635 and 637 are suspended.

Listing 8 describes the state of the cloud after the placement
of the ar vm. It shows that the two vms belonging to an ad-
versary user of Orange on pc node #1 have been suspended.
However, a third vm that was also running on the same pc
was not preempted since it is owned by Renault who is not
an adversary of Orange. So the vm is still running after the
ar vm has been placed and started.

5.3 Placement with migration
With preemption capability but without migration capabil-
ity, the scheduler is able to manage different levels of vm
requests but is led to suspend some vms when it could have
migrated them to other pcs.

In this section we exhibit a situation similar to the previ-
ous example but in the case of our scheduler having both
capabilities. Also the vms requested by sfr are ar leases
and cannot be preempted, and there is only one sfr vm (i.e.
adversary vm) running on the pc node #1 whereas there are
two of them on pc node #2.

Orange submits an ar lease. The state of the cloud at this
moment is described in listing 9. The placement of the Or-
ange lease requires that one or more sfr vms are migrated to
be able to start the requested vm. After establishing scores
for both nodes, the scheduler determines that pc node #1 is
the most suitable to receive the vm request (since it has the
lowest number of adversaries). Accordingly, Haizea must
migrate all the vms that are adversaries of Orange: vm 3404
is then migrated and the lease request is started as shown
in listing 11.

For further security during the placement process, each lease
keeps track of the migrations and preemptions it caused, i.e.
the lists of vms that had to be migrated or preempted to
make room for it to start. Right before starting the lease re-
quest, the scheduler verifies that those vms have indeed been
preempted or suspended by querying OpenNebula to make
sure that there has not been an issue enacting those com-
mands. If the vim i.e. OpenNebula indicates any anomalies
in this verification (which may happen if an error or failure
has occured in the suspension or migration processes due to
network, ACPI issues, etc...), the lease request is canceled to
avoid any possibility of having two adversary vms running
in the same pc. This check may lead to some leases being
rejected whenever an anomaly is detected in the enactment
commands, but it adds further security to our model and
closes any window of opportunity for an attacker to exploit
such scenarios.
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Listing 4: ”Haizea logs for Renault’s VM Placement”
[2011−01−06 1 6 : 4 9 : 0 7 . 0 2 ] LSCHED Lease #3 has been reques ted .
[2011−01−06 1 6 : 4 9 : 0 7 . 0 2 ] LSCHED Lease #3 has been marked as pending .
[2011−01−06 1 6 : 4 9 : 0 7 . 0 7 ] LSCHED Queued l e a s e r eque s t #3, 1 nodes f o r 0 1 : 0 0 : 0 0 . 0 0 .
[2011−01−06 1 6 : 4 9 : 0 7 . 1 1 ] LSCHED Next r eque s t in the queue i s l e a s e 3 . Attempting to schedu le . . .
[2011−01−06 1 6 : 4 9 : 0 7 . 1 1 ] LEASES Trying to schedu le l e a s e from user #4 on node#1
[2011−01−06 1 6 : 4 9 : 0 7 . 1 1 ] LEASES Trying to schedu le l e a s e from user #4 on node#2
[2011−01−06 1 6 : 4 9 : 0 7 . 1 2 ] VMSCHED Lease #3 can be scheduled on nodes [ 1 ] from 2011−01−06 16 : 4 9 : 1 7 . 0 0

to 2011−01−06 17 : 4 9 : 4 7 . 0 0

Listing 5: ”VM Placement returned by OpenNebula”
ID USER NAME STAT CPU MEM HOSTNAME TIME

613 s f r s f r runn 0 0K node1 00 00 : 04 : 17
614 orange orange runn 0 0K node2 00 00 : 02 : 59
615 r enau l t r enau l t runn 0 0K node1 00 00 : 01 : 06

Listing 6: ”Initial VM Placement returned by OpenNebula”
ID USER NAME STAT CPU MEM HOSTNAME TIME

635 s f r s f r runn 0 0K node1 00 00 : 03 : 14
636 s f r s f r runn 0 0K node2 00 00 : 03 : 13
637 s f r s f r runn 0 0K node1 00 00 : 03 : 12
638 s f r s f r runn 0 0K node2 00 00 : 03 : 11
639 r enau l t r enau l t runn 0 0K node1 00 00 : 02 : 06
640 r enau l t r enau l t runn 0 0K node2 00 00 : 02 : 04

Listing 7: ”Haizea logs for Orange’s VM Placement with preemption”
[2011−01−06 1 7 : 1 6 : 4 8 . 0 2 ] LSCHED Lease #7 has been reques ted .
[2011−01−06 1 7 : 1 6 : 4 8 . 0 2 ] LSCHED Lease #7 has been marked as pending .
[2011−01−06 1 7 : 1 6 : 4 8 . 0 7 ] LSCHED Schedul ing l e a s e #7 (1 nodes ) −− AR
[2011−01−06 1 7 : 1 6 : 4 8 . 0 7 ] LSCHED From 2011−01−06 17 : 1 7 : 4 1 . 0 0 to 2011−01−06 17 : 2 2 : 4 1 . 0 0
[2011−01−06 1 7 : 1 6 : 4 8 . 0 7 ] LEASES Trying to schedu le l e a s e from user #1 on node#1
[2011−01−06 1 7 : 1 6 : 4 8 . 0 8 ] LEASES Node not a v a i l a b l e : user #2 i s a l r eady running a VM here .
[2011−01−06 1 7 : 1 6 : 4 8 . 0 8 ] LEASES Trying to schedu le l e a s e from user #1 on node#2
[2011−01−06 1 7 : 1 6 : 4 8 . 0 8 ] LEASES Node not a v a i l a b l e : user #2 i s a l r eady running a VM here .
[2011−01−06 1 7 : 1 6 : 4 8 . 0 8 ] LSCHED Must preempt l e a s e s [ 1 , 3 ] to make room f o r l e a s e #7
[2011−01−06 1 7 : 1 6 : 4 8 . 0 9 ] LSCHED Preempting l e a s e #1 . . .
[2011−01−06 1 7 : 1 6 : 4 8 . 0 9 ] LSCHED . . . l e a s e #1 w i l l be suspended at 2011−01−06 1 7 : 1 7 : 4 1 . 0 0 .
[2011−01−06 1 7 : 1 6 : 4 8 . 1 0 ] LSCHED Preempting l e a s e #3 . . .
[2011−01−06 1 7 : 1 6 : 4 8 . 1 0 ] LSCHED . . . l e a s e #3 w i l l be suspended at 2011−01−06 1 7 : 1 7 : 4 1 . 0 0 .
[2011−01−06 1 7 : 1 6 : 4 8 . 1 5 ] LSCHED Lease #7 has been scheduled .

Listing 8: ”VM Placement returned by OpenNebula after preemption”
ID USER NAME STAT CPU MEM HOSTNAME TIME

635 s f r s f r susp 0 0K node1 00 00 : 06 : 26
636 s f r s f r runn 0 0K node2 00 00 : 06 : 25
637 s f r s f r susp 0 0K node1 00 00 : 06 : 24
638 s f r s f r runn 0 0K node2 00 00 : 06 : 23
639 r enau l t r enau l t runn 0 0K node1 00 00 : 05 : 18
640 r enau l t r enau l t runn 0 0K node2 00 00 : 05 : 16
641 orange orange boot 0 0K node1 00 00 : 02 : 59
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Listing 9: ”Initial VM Placement returned by OpenNebula”
ID USER NAME STAT CPU MEM HOSTNAME TIME

3404 s f r s f r runn 0 0K node1 00 00 : 03 : 28
3405 s f r s f r runn 0 0K node2 00 00 : 03 : 27
3406 r enau l t r enau l t runn 0 0K node2 00 00 : 02 : 19
3407 r enau l t r enau l t runn 0 0K node1 00 00 : 02 : 18
3408 s f r s f r runn 0 0K node2 00 00 : 00 : 52

Listing 10: ”Haizea logs for Orange’s VM placement with preemption and migration”
[2011−04−15 1 0 : 0 3 : 1 2 . 0 2 ] LSCHED Lease #6 has been reques ted .
[2011−04−15 1 0 : 0 3 : 1 2 . 0 2 ] LSCHED Lease #6 has been marked as pending .
[2011−04−15 1 0 : 0 3 : 1 2 . 0 7 ] LSCHED Schedul ing l e a s e #6 (1 nodes ) −− AR
[2011−04−15 1 0 : 0 3 : 1 2 . 0 7 ] LSCHED From 2011−04−15 10 : 0 3 : 5 5 . 0 0 to 2011−04−15 12 : 0 3 : 5 5 . 0 0
[2011−04−15 1 0 : 0 3 : 1 2 . 0 8 ] LSCHED Must migrate l e a s e s to make room f o r l e a s e #6
[2011−04−15 1 0 : 0 3 : 1 2 . 0 8 ] LSCHED Migrat ing l e a s e #1 to node #2
[2011−04−15 1 0 : 0 3 : 1 2 . 0 8 ] LSCHED Migrat ing l e a s e #1 . . .
[2011−04−15 1 0 : 0 3 : 1 2 . 0 8 ] LSCHED . . . l e a s e #1 w i l l be migrated at 2011−04−15 1 0 : 0 3 : 5 5 . 0 0 .
[2011−04−15 1 0 : 0 3 : 1 2 . 1 2 ] LSCHED Lease #6 has been scheduled .

5.4 Virtual Networks
To validate our virtual network isolation policy, we have
created four virtual networks described in listing 12: each
user has his own private vNet and in addition, Orange has
a public network. Moreover, Orange has created the private
network by expressing a trusted users policy i.e. a list of
users who have the right to connect to the private vNet. This
policy permits only the user Renault to request the access to
the private vNet. In this experiment we demonstrate that
Orange’s adversary sfr cannot use Orange’s private network
where as the user Renault can.

As described in listing 13, sfr requests a vm that is con-
nected to the public network of Orange. As nothing is
against connecting adversaries on a public network, the vm
request is accepted and started. The same logs listing ap-
plies when Renault requests vms that will be connected to
either vNets owned by Orange (private and public).

However, as described in listing 14, sfr requests a vm that is
connected to the private network of Orange. The scheduler
is aware that only Orange and Renault vms can join this
network, hence it refuses the vm request without even trying
to schedule it.

5.5 Simulations
To test the scalability of our scheduler, we use the simulation
mode that is included with Haizea. We run numerous tests
on a cloud that is composed of between 2 and 2,000 pcs.
Then, we evaluate the time to place between 3 and 3,000
vms. In our simulation configuration, a pc can not host more
than 4 vms. Of course, when trying to start 3,000 vms on
2 pcs, the majority of the requested vms were not refused.
Futhermore, in some case, the test can require migrations
e.g. 30 vms on 20 pcs and other time it is not the case e.g.
30 vms on 100 pcs.

As shown in the figure 4, the placement time depends on the
number of pcs on the cloud. Indeed, as the scheduler needs
to compute a score (through the greedy policy) for each

pc on the cloud, the placement time is correlated with the
number of pcs. For a cloud composed of 2 pcs, the scheduler
places a vm in 100ms. But, when it tries to place 300 vms,
the scheduler loses a large amount of time to try, without
success, to place vm. Thus, the failure of the placement
(only 8 vms are placed and 292 are refused) explains the
higher placement time for 300 vm on 2 pcs. Futhermore,
for the case where we try to place 3,000 vms on 2 pcs (not
display in the figure), the average placement time is even
worse, around 6.75sec. The observations are the same for
20, 200 and 2,000 pcs.

The figure 5 presents the average placement time based on
the number of pcs on the cloud. Contrary to the results
presented in the figure 4, we only take into account the tests
where all the vms have been placed. Thus, the results do
not take into account time wasted in trying to place vms on
an infrastructure without ressources available. The average
placement time is binded linearly with the number of pcs.
Thus, we can predict the placement time for a given cloud.
Futhermore, it proves the scalability of our scheduler for a
large cloud.

Based on these observations, we need to find way to optimize
the placement process to include more parallelism. Indeed,
if we can place multiple vms at the same time, we can reduce
the average placement time. But, it brings concurrency is-
sues that must be studied. Moreover, these are simulations
results that need to be validated by real world experiments.

6. RELATED WORKS
Entropy [7] is a virtual machine scheduler dedicated to con-
solidate a cluster. Entropy’s goal is to reduce the number
of physical machines that are running vms to reduce energy
consumption. Moreover, it takes into account the cost of
vm migrations to avoid unnecessary ones. This is done by
taking into account the amount of memory used by the vm.
Indeed, the live migration time duration for a vm is linked
to its memory usage. But Entropy is dedicated toward one
goal, energy consumption, and does not take into account
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Listing 11: ”VM Placement returned by OpenNebula after migration”
ID USER NAME STAT CPU MEM HOSTNAME TIME

3404 s f r s f r runn 0 0K node2 00 00 : 05 : 13
3405 s f r s f r runn 0 0K node2 00 00 : 05 : 12
3406 r enau l t r enau l t runn 0 0K node2 00 00 : 04 : 04
3407 r enau l t r enau l t runn 0 0K node1 00 00 : 04 : 03
3408 s f r s f r runn 0 0K node2 00 00 : 02 : 37
3409 orange orange boot 0 0K node1 00 00 : 01 : 24

Listing 12: ”List of virtual Network”
ID USER NAME TYPE BRIDGE P #LEASES
15 s f r s f r Ranged br0 N 0
16 orange orange Ranged br0 N 0
17 orange o range pub l i c Ranged br0 Y 0
18 r enau l t r enau l t Ranged br0 N 0

Listing 13: ”Haizea logs for the placement of Renault’s and SFR’s VMs”
[2011−01−06 1 7 : 0 1 : 5 8 . 0 5 ] LSCHED Lease #1 has been reques ted .
[2011−01−06 1 7 : 0 1 : 5 8 . 0 5 ] LSCHED Lease #1 has been marked as pending .

Listing 14: ”Haizea logs for SFR VM placement with Orange private network”
[2011−01−06 1 7 : 0 2 : 1 8 . 0 1 ] LSCHED Lease #2 has been reques ted .
[2011−01−06 1 7 : 0 2 : 1 8 . 0 2 ] LSCHED User id 2 i s not a l lowed to deploy l e a s e s on network 16
[2011−01−06 1 7 : 0 2 : 1 8 . 0 2 ] LSCHED Lease #2 has not been accepted
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heterogeneous architectures. Furthermore, it can not take
into account user objectives like our isolation policy.

Snooze [5] is another virtual machine scheduler dedicated
toward reducing the energy consumption by minimizing the
number of physical machines in the cloud. It uses a heuris-
tic approach to find a placement solution. But, contrary to
Entropy, their solution is not centralized. Snooze is scal-
able and fault-tolerant. But as Entropy, it is dedicated to
one goal (energy consumption) and cannot take into account
other ones.

In [19], the authors present a two-level cloud scheduler. First,
the vm provisioning process places applications into a set of
vms. Then, the vms are placed on physical machines. To
solve the provisioning and placement problems, they use a
constraint solver. Their placement time is between 800ms
and 1,000ms. Moreover, the user’s objectives are limited to
one metric such as average response time of requests. They
are not able to express isolation policies.

In [1, 22, 2], the authors present a software dedicated to
the management of vms migration for the consolidation of a
cloud. The scheduler’s goal is to choose which vm to migrate
and when. As explained in [3], a local migration uses only
few milliseconds whereas it uses 1-2 sec on a wan [18]. This
migration time can be reduced by the use of an infiniBand
network as explain in [8]. But they do not take into account
isolation policies provided by users.

7. CONCLUSIONS
This paper discusses the problem presented in [16] where
scheduling algorithms can be used to place vms on the same
pcs which leads to the risk of cross-vm attacks between ad-
versary users in cloud environments. We show that cross-vm
attacks are indeed possible and could exploited to violate in-
tegrity, confidentiality and to cause availability issues with
vms. We concluded on the needs of a better isolation be-
tween users on the cloud. Then, we have presented the cloud
infrastructure used in our experiments and justified why it
is vulnerable to these cross-vm attacks.

We introduced a new security-aware scheduler that solves
the issues discussed in previous sections between users in a
cloud environment. This scheduler provides a way of placing
and migrating vms based on security policies that enable the

users of the cloud to express their isolation needs. We also
introduced finer-grained virtual network access controls to
allow a defined set of users to share a virtual network.

We have implemented the policies, algorithms and modified
placement, migration and virtual networks on the Haizea
scheduler which allowed us to test the efficiency of our ap-
proach with the simulation capability of Haizea but also in
real world settings with the OpenNebula cloud infrastruc-
ture. Finally, we showed that currently, no other solution
can leverage the risk of cross-vm attacks within clouds or
allows the same kind of security policies we introduced in
this paper.

Our first direction of future work will be to further evaluate
the effectiveness of the presented scheduling approach. To
obtain a complete view, a larger amount of vm requests and
scenario combinations must be evaluated. We will also work
on more extensive experimentations to test the scalability of
our solution. Moreover, we want to evaluate our scheduler in
a multi-site and geographically distributed cloud. Our sec-
ond goal is to have a better understanding of the reduction
of consolidation due to our policy: the purpose would be to
propose a pricing scheme to bill our isolation facility in the
clouds. Thirdly, we will work on implementing this isolation
policy in other components to avoid covert channels within
the cloud in order to prevent any attempt of breaking it.
Also, we want to extend our policy to include more user’s
objectives to cover other aspects of security within clouds.
For example, the user must be able to express the geographi-
cal localisation of his vms. It is important as the laws change
from a country to another one as described in [6, 12].
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