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88 bd Lahitolle, 18020 Bourges cedex, France
jonathan.rouzaud-cornabas@univ-orleans.fr

May 11, 2011

Abstract

With the number of services using virtualization and clouds grow-
ing faster and faster, it is common to mutualize thousands of virtual
machines within one distributed system. Consequently, the virtualized
services, softwares, hardwares and infrastructures share the same phys-
ical resources, thus the performance of one depends of the resources
usage of others. Furthermore, each user and his vms have different ob-
jectives in term of quality of trust and protection. Thus, the placement
and reconfiguration processes need to take them into account. Finally,
a new trend is to use clouds to build hpc systems but the deployment
of such architecture is not straightforward.

We propose a solution for vm placement and reconfiguration based
on the observation of the resources quota and the dynamic usage that
leads to better balancing of resources. Moreover, our solution also
takes into account user’s objectives that express Quality of Trust and
Protection and ease the deployment of hpc architectures on top of
clouds. Furthermore, as it is not possible to have a single scheduler for
the whole cloud and to avoid a single point of failure, our scheduler uses
distributed and collaborative scheduling agents. Finally, we present
a scenario simulating a geographical distributed clouds and multiple
vm usage. This article is an extended version of [22]. It includes
larger scale evaluations and the scheduler supports user’s objectives in
addition of the resource-centric algorithms.
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1 Introduction

Nowadays, server farms are popular for running a large range of services
from web hosting to enterprise systems or even hpc clusters. The common
way to deal with those growing server farms is to mutualize services, soft-
wares, hardwares and infrastructure using virtualization technologies. These
mutualized and virtualized infrastructure are named clouds.

The concept of cloud computing goes back to 1961 with the introduction
of Utility as a service by John McCarthy. The goal was to bill computing
power as water or electricity. The computing power would have been pro-
vided by a large infrastructure such as a shared grid. In the past, such
infrastructure was impossible due to high costs but nowadays, with cheap
and efficient hardware, it has become possible. However, when multiple vir-
tual machines share the same physical resources, the performance of each
vm and its embedded application depends on the resources usage of other
vm running on the physical host. So, the management of vm becomes crit-
ical. Currently, most of clouds (and grids) schedulers are solely based on
quota negotiations and do not take into account real resources usage.

Furthermore, each user within the cloud uses it to run a different set of
applications and each applications are used for different purpose. Accord-
ingly, each vm has different quality objectives. Thus, to cope with this issue,
the cloud must take into account objectives that are given for each vm by
their owner and enforces them.

2 Security and Trust within Clouds

Security is one of the top concern in clouds [20]. Indeed, the security perime-
ter becomes blurred in cloud e.g. the delimitation between intranet and
internet. One of the critical issues in cloud security is the geographical lo-
calization of computing and data processes. Indeed, moving data from a
country to another one can lead to multiple issues [12, 18]. It is very diffi-
cult to know which laws and judicial jurisdiction apply in case of lawsuits
between the Cloud Service User and the Cloud Service Provider. Thus, the
geographical location becomes critical in clouds [23]. Moreover, moving a
software in the cloud can be illegal if the cloud is not certified by a special
standard e.g. pcidss for the card payment software. The first step to bring
security in cloud is to have an user’s objectives (policy) aware scheduler [24].
Indeed, the scheduler is the first step to increase security as it places and
reconfigures the task i.e. the virtual machines, within the infrastructure.
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Another concern within clouds is the trust issue. Cloud trust can be
defined by “trust without touch” [17]. Indeed, the data are no more within
the company or the user computer but on an outsourced infrastructure. Ac-
cordingly, the data is on hardware that is outside the scope of the entity that
owns it. There are two issues related to trust [15]: the lack of transparency
of clouds’ infrastructure and unclear security assurances. One example of
lack of transparency is that an user does not know where is his data i.e.
in which datacenter and what is the level of security of each datacenters.
Thus, audit traces are needed to help the user to check if his objectives are
respected. But these traces need to not expose too much informations that
could lead to information leakages [21]. Furthermore, the level of security
of datacenters can not be given by the operators of the datacenter them-
selves but needs to be certified by a third party. Many certification processes
already exist for this purpose such as Tier grade datacenter or iso-27001
standard. Moreover, the level of trust required by users is not always the
same. For example, a 99.9% sla is enough for most companies and users but
it will not be enough for an emergency service like 911. Finally, sla alone
is not enough, an user must be able to express other objectives. For exam-
ple, to reduce the risk of inter-vm attacks [21] due to the lack of security
in the virtualization layer, an user can express objectives to have dedicated
physical machines within the cloud.

3 Schedulers and Virtual Machine

3.1 Scheduling on distributed systems

The scheduling of jobs on a distributed system such as a grid or a cloud is
a NP-Complete problem [8]. Moreover, the result of the scheduling process
is not optimal too. It means that the schedulers are not searching for the
optimal solution but a one that is good “enough” [3].

The scheduling algorithms can be divided into two main categories:
static and dynamic. Static algorithms are based on the prediction of the
process behavior whereas dynamic algorithms probe resources before tak-
ing the scheduling decision. Dynamic algorithms are useful when it is not
possible to predict the behavior of a task [8] and are the best algorithm to
maximize the resource usage.

The architecture of schedulers can be divided into two main categories.
The centralized approach uses a single scheduler that has access to all the
information and takes decisions alone. The decentralized approach uses
multiple scheduler agents (up to one per host) to take the decision. One kind
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of decentralized schedulers are p2p schedulers [10]. Within the peer-to-peer
model, the cloud is seen as a set of nodes (i.e. peers) that make available
for each other a part (or the totality) of their resources. In contrast to the
client-server model, with the p2p model, each computer in the distributed
system is supplying and using the resources. The main advantage of the
p2p is that it does not contain a central coordination point and thus, avoid
a single point of failure.

3.2 Distributed Scheduler

The main approaches to distribute the load between schedulers [6] are: work
sharing and work stealing. They are nearly opposite in their design. Work
sharing is inherently centralized whereas work stealing is distributed. Work
stealing has a better scalability and fault tolerance through the use of a de-
centralized approach [19]. The work stealing method allows idle consumers
to search among the other consumers to find additional work. The tasks of
finding and moving tasks to idle consumers is done on the idle consumers
them self. Through, the overhead is minimized to idle consumers with free
resources. The authors of [7] have done scalability experimentations that
show that the algorithm scales well and is, at least, as efficient as work
sharing.

3.3 Virtual Machine (VM)

The live migration process [4] allows a virtual machine to move from a host
to another one without being stopped. From a virtualization point of view,
a cloud is seen as a shared and distributed environment where concurrent
users run vms on. Those vm have a heterogeneous behavior e.g. a website
with peak traffic or a graphical interface. Accordingly, the resource usage
can change at any given time, so taking into account the dynamic resources
is essential. There is two approaches for detecting resources bottleneck:
blackbox and greybox. Blackbox is based on the resources usage of the vm
and is operating system agnostic. Greybox is based on instrumentation of
the os and applications and is not os agnostic.

3.4 VM Schedulers

A vm scheduler places vms on physical machines within the cloud. Fur-
thermore, they can reconfigure the vm placement through the use of live
migration to optimize global goals on the cloud. These goals range from
energy reduction to performance maximization.
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Entropy [13] is a virtual machine scheduler dedicated to consolidate a
cluster. Entropy’s goal is to reduce the number of physical machines that
are running vms to reduce the energy consumption. Moreover, it takes into
account the cost of vm migrations to avoid unnecessary ones. This is done
by taking into account the amount of memory used by the vm. Indeed, the
live migration time duration for a vm is linked to its memory usage. But
Entropy is dedicated toward one goal, energy consumption, and does not
take into account heterogeneous architecture. Furthermore, the placement
is based on resources’ quotas allocated to vm, thus it does not take into
account real resources usage and user’s objectives.

Snooze [9] is another virtual machine scheduler dedicated toward reduc-
ing the energy consumption by minimizing the number of physical machines
in the cloud. It uses a heuristic approach to find a placement solution. But,
contrary to Entropy, their solution is not centralized. Snooze is scalable
and fault-tolerance. But as Entropy, it is dedicated to one goal (energy
consumption) and can not take into account other ones.

In [27], the authors present a two-level cloud scheduler. First, the vm
provisioning process places applications into a set of vms. Then, the vms
are placed on physical machines. To solve the provisioning and placement
problems, they use a constraint solver. Their placement time is between
800ms and 1,000ms. Moreover, the user’s objectives are limited to one
metric such as average response time of requests. Thus, they are not able
to express high level objectives.

In [1], the authors present a software dedicated to the management of vm
migration for the consolidation of a cloud. The scheduler’s goal is to choose
which vm to migrate and when. As explain in [4], a local migration uses only
few milliseconds whereas it uses 1-2 sec on a wan [26]. This migration time
can be reduced by the use of an infiniband network as explain in [14]. Other
solutions for vm migration [29, 2] exist but they use threshold whereas the
one proposed in [1] studies the vm usage history thus reducing the number
of migrations.

4 Motivation

There is some automatic solutions that allow to share the load of multi-
ple vms on a heterogeneous and distributed system but they mainly are
dedicated toward one goal, reducing the energy consumption.

As vm behaviors can not be predicted due to their complex behaviors and
non-deterministic events, dynamic approach is the best choice. In clouds,
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“black-box” monitoring is needed because the vms are heterogeneous and
instrumenting them is too time-consuming. Moreover, with vms provided
by users, instrumentations required inside vms to trust all the users within
the cloud and that is impossible. Furthermore, clouds require the placement
and reconfiguration processes to be operating systems and applications ag-
nostic to cope with heterogeneity. In addition, the placement must remain
“good“ enough for the maximum period of time to reduce the cost due to
vm migration. Finally, building dynamic scheduler on a cloud brings a scal-
ability challenge as one scheduler can not allocate vms for the whole cloud.
But, distributed dynamic scheduler can achieve such goal.

Moreover, as we explain, all the users on a cloud do not have the quality
objectives. Indeed, some want to use it to run critical programs whereas
other want cheap computing power. Thus, we need a way to let the users
express their quality objectives. In this work, we focus on goals that enable
the user to express their objectives in term of quality of trust and protection
but also ease the use of cloud to create hpc cluster or grid.

To reach the goal of a decentralized virtual machine scheduler for clouds
that takes into account user’s objectives, we introduce our architecture that
enables:

1. The monitoring of the vm and the hosts;

2. The placement of the vm on the best fitting host based on dynamic
resources-centric algorithm and user’s objectives;

3. The reconfiguration of vm if the load on a host is increasing, a special
resource 1 is needed or a maintenance operation is taken place. The
reconfiguration must keep the enforcing of user’s objectives.

4. The scheduler must not contain a single point of failure and must scale
with the cloud infrastructure. This can be done through the use of a
distributed P2P architecture where the scheduler agents cooperate to
share the load of the placement processes based on a work stealing
algorithm;

Furthermore, in [16], the authors state that traditional distributed and dy-
namic scheduling methods have the following issues: they do not assume the
heterogeneity of used hardware; processes, i.e. vms in our case, are assigned
onto nodes based on nodes free resources only; many of them consider just
the processor utilization as the only resource. Thus, our dynamic scheduling

1For example, a gpu.

7



algorithm takes into account the heterogeneity of the hardware and of the
vms and also free, static and quota resources for the processor and memory
utilization.

5 Scheduler Architecture

A cloud is composed of multiple nodes that can be heterogeneous. The vast
majority of these nodes are computing nodes that can run multiple Virtual
Machines (vm) through a hypervisor. In our architecture, this kind of nodes
are named Hypervisor Nodes or HN. Another kind of nodes are the ones that
place newly submitted virtual machines. These nodes are named Scheduler
Nodes or SN. In our evaluations, we run one sn per datacenter i.e. one per
geographic location. But, these two kind of nodes can be combined. In this
case, they do both: place and host virtual machines.

In our architecture, each node provides a set of services. Each of these
services is a component that provides a part of our scheduler architecture.
They are described in the section 5.1. All the nodes provide a set of services
and use another set of services. Thus, they are both consumers and suppliers
of resources i.e. the services. Moreover, to avoid the complex task of config-
uration within our architecture, all the services are found through dynamic
discovery. Thus, the whole architecture is self-configured. Furthermore, our
architecture copes with the dynamicity of cloud as it easily discovers new
and deleted resources. To fit those needs, the peer-to-peer architecture is the
best approach. Accordingly, all the nodes of our architecture are connected
through a peer-to-peer system.

One service (MScore) is reachable through multicast. It brings an effi-
cient scaling service as it allows to query a set of nodes with one request
and receiving all the responses in parallel. As we present later, it efficiently
reduces the placement and reconfiguration time.

Finally, to increase the decentralized capabilities of our architecture, we
uses a work stealing algorithm as described in the section 5.2. It allows to
share the task of placing virtual machines on the cloud.

5.1 Services

As we previously say, all the components needed for our architecture are
supplied by services. We describe here each of these services and what they
do.

• Queue: It is the entrypoint of the cloud i.e. it is there that to-place
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vms are submitted. The service is reachable through the cloud but
also by the users outside the cloud. It is important that this service
can be reach through the cloud as it allows a vm to request new vms.
It helps to provide vertical elasticity i.e. duplicating virtual machines
to share the load.

• Score: It computes the score of the hn where it runs and returns it
back.

• MScore: It is the same service as the Score one but it is reachable
through a multicast address.

• LaunchVM: It receives a request to start a vm with all the related
parameters: vm quotas (quantity of memory, number of cpu cores,
etc) and the user’s objectives. Then it checks if it can start the vm
and runs it. If it can not start the vm, it migrates one (or more) vm(s)
to be able to start it.

• DHT: It uses the Chord [25] to store vms’ metadata into a distributed
hashtable. It allows any services to know for each vm its quotas,
objectives and where it is running.

• Monitor: This service receives monitoring events from all the other
services. It provides traceability for the scheduling architecture. For
example, it allows a user to known when and where each of his vms
have been place. Another use case of this service is to allow to verify
that the whole process of placing a vm does not have encounter failure.

• Migrate: It receives a vm and starts the live migration process. The
vm is migrated from the hn that calls the Migrate service to the hn
that hosts the service.

• WorkStealing: It allows the work-stealing process by exposing a
shared queue of to-place vm.

The Hypervisor Agent or HAgent runs on all hns. It is composed of the
following services: Score, MScore, LaunchVM, dht and Migrate. Moreover,
it contains an internal service, SystemMonitor, that monitors the resources
usage and detects bottleneck. It allows to migrate vms when the load on a
hn is to high.

The Scheduler Agent (SAgent) runs on all sns. It is composed of the
following services: Queue, dht, Monitor and WorkStealing. Furthermore,
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it contains an internal service, QueueMonitor, that takes to-place vms from
the local Queue service and launches the placement process for them. When
QueueMonitor can not retrieve to-place vm from the local Queue i.e. it is
empty, QueueMonitor steals a bunch of to-place vms from another SAgent.

To avoid the use of dedicated nodes for the scheduling process, the four
services (Queue, Monitor, QueueMonitor and WorkStealing) can be added
to the HAgent.

5.2 Decentralized Scheduler

Our work stealing algorithm implementation is straightforward. First, each
SAgent has two queues:

• a local queue: for the to-place vms that the local SAgent is placing
itself i.e. a list of task reserved for the local scheduler.

• a shared queue: for the to-place vms that can be placed either by
the local SAgent or by other ones through the use of work stealing.

To fit it in our decentralized peer-to-peer system, the second queue is made
available as a service for other SAgents i.e. the WorkStealing service.

The workstealing process works as follow, the local agent reserves a set
of to-place vms for itself (by removing them from the shared queue and
adding them to the local queue). When the local agent has placed all the
virtual machine in the local queue, it preempts another set. If there is no
more tasks in the shared queue, it randomly chooses a victim SAgent and
tries to take a set from it. By having the two queue (local, shared), we have
a better scalability with a limited latency due to lock. Moreover, we respect
our goal of no point of failure by using a distributed algorithm.

6 Election Algorithms

The purpose of the election algorithms is to elect a hn or vm. In both
placement and reconfiguration process, a hn needs to be elected to host the
vm. This hn needs to be selected based on two things: first, it respects the
user’s objectives and second, it will provide good performances for the vm.
The election of a vm is needed when we need to move a vm from a hn to
another but we do not know which vm to move as it will be explain in the
section 7 and 8.

Each vm are defined by a set of user’s objectives and two types of re-
sources quota for processor and memory. The first type of quota, soft, is
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the quantity of resources that is dedicated for the vm. The second type of
quota, hard, is the quantity of resources that can be used by the vm but is
not dedicated to it. Thus, based on resources consumptions of other vms,
the resources can be used or not.

Each hn are defined by a set of goals they can reach. For example, do
they have the ability to host a hpc vm. They also include their geographical
location and their resources (processor, memory, etc).

6.1 User’s Objectives

The user’s objectives is a set of goals that an user can specify for his vms.
We have implemented a set of objectives that allow an user to define quality
of trust and protection. The purpose of these objectives is to able the user
to choose the level of trust and security he want for his vms on the cloud. Of
course, with the increase of trust and security, the price of running the vm
increases. Also the objectives eases the provisioning of virtual hpc cluster
or grid on top of a cloud. The objectives are also used to describe the
capabilities of hns e.g. if pcidss is defined for a hn, it means that the hn is
pcidss certified. We indifferently use hn capabilities and hn goals to refer
to the capacity of a hn to fulfill an objective.

We have defined 5 objectives related to trust:

• tier: The TIA-942:Data Center Standards Overview describes the
requirements of a datacenter architecture. Based on this standard, the
datacenters are graded from 1 to 4 where 1 is the simplest datacenter
and 4 the strongest one. Based on the tier grade, the datacenter can
be more or less trusted. Indeed, with the increase of tier grade, the
datacenter includes more and more fault tolerance equipments and an
increase availability and security. Of course, the highest tier grade
datacenter are more expensive than the lowest one. Accordingly, an
user can choose the highest or lowest tier grade based on his needs for
each of his vm. This goal is defined as an integer between 1 and 4.

• PCIDSS: It stands for Payment Card Industry Data Security Stan-
dard and consists of 12 requirements for all businesses that want to
process card payment transactions. Thus, this objective is needed if
an entity want to create a card payment system on top of the cloud.
Of course, it only provides the infrastructure to build it and the top
software layers need to fulfill pcidss too but it enables the ability to
build pcidss approves infrastructure on top of a cloud. This goal is
defined as a boolean.
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• ISO-27001: It is a standard for Information Security Management
System (ISO/IEC 27001:2005 - Information technology – Security tech-
niques – Information security management systems – Requirements).
The purpose of iso-27001 is to certify the quality of protection of an
infrastructure. For an user, running a vm on an iso-27001 infrastruc-
ture can be required for his entirely infrastructures or just a part of
it. This goal is defined as a boolean.

• EAL: The Evaluation Assurance Level of a system is a grade given
following the completion of a Common Criteria evaluation. With the
highest grade, the system provides higher security features. It ranks
the level of security brought by the system. The requirements that
must be reach for each grade, involve different measures from pene-
tration testing to design analysis. Based on his needs, the user can
specify the level of security for his vm. Of course, as high grade sys-
tems are more expensive, running vms on them is more expensive too.
This goal is defined by an integer between 1 and 7.

• SLA: A Service Level Agreement is a part of the service contract
between an user and a service provider. In the case of the cloud, it is
a contract between the Cloud Service Provider (csp) and the Cloud
Service User (CSU) that defines the quality of service guaranteed on
the cloud (or a part of the cloud). Currently, most of sla on clouds
contain just the expected uptime i.e. the mean time between failures
but sla can be more complex. For example, the project MyCloud
supported by a grant from the French National Research Agency has
proposed sla for clouds [28]. Other projects have done the same like
the European project SLA@SOI [5]. This goal is defined by a float
that ranges between 0 and 100.

We have 4 goals for protection. The first three are related to geographical
location and the fourth increases the isolation of an user on the cloud. The
location is very important in term of protection as it defined which judicial
jurisdiction will applied for the data and its processing within the cloud.
Indeed, the laws change from country to country and thus it can forbid that
data and its processing are outsourced to another country. To tackle this
issue, an user can specify, by using the location objectives, where he want to
run his vms. But, enforcing a vm location decreases the consolidation of the
cloud as it reduces the placement to a smaller set of hn. Accordingly, more
the user specifies a specific location e.g. a datacenter, more it will reduce
the consolidation. Geographical location can also help to ease the creation
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of fault tolerance and resilient systems that are built on top of a cloud as an
user can specify to span an architecture into different geographical locations.
The fourth goal allows an user to ask to be alone on a hn. Thus, when his
vms run on a hn, he knows he is the only user on it. It helps to reduce the
risk of inter-vm attacks that pass through the virtualization layer as explain
in [21]. Of course, it dramatically reduces the consolidation of the cloud as
some of the hn are dedicated to one user.

Finally, we have defined four objectives for hpc. The goal is to ease the
deployment of virtual hpc cluster or grid on top of a cloud.

• HPC: It allows to specify that the hardware must be hpc grade ma-
terial. For example, classic hn could included no-ecc memory but
all the hpc hn will included ecc memory. Moreover, on hpc hn,
the processor allocated to a vm is not a part of a virtual cpu but a
dedicated physical processor. Thus, the user accesses more directly
to the underlying hardware, thus it limits the overhead that is due to
virtualization layer. This goal is defined as a boolean.

• HPN: It allows to specify that the hardware must include high through-
put and low latency network card such as Infiniband. The Infiniband
cards are dedicated to one vm that accesses it directly without any
virtualization layer. It eases the deployment of a hpc architecture
with rdma capability 2. This goal is defined as a boolean.

• GPU: It allows to specify that the hardware must include a dedicated
gpu allocated to the vm. As more and more hpc architectures include
gpu, a cloud that ease the deployment of such architecture needs to
be able to provide such materials on-demand. This goal is defined as
a boolean.

• nearVM: With hpc architecture, high throughput and low latency are
discriminant criteria but the geographical distance between two vms
biases the quality of the architecture. Thus, with this goal, an user can
required that two (or more) of his vms are running the more closely
(in term of geographical location) that it is possible. For example, all
the vms could run on the same hn or different hn within the same
rack. Of course, as many goals, it reduces the overall consolidation
of the cloud and thus must be charged back to the user. This goal is
defined as a boolean.

2Remote Direct Memory Access (rdma) is a direct memory access from one computer
to another without passing through the operating system.
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Using these goals, an user can specify its requirements and build his
custom architecture on top of the cloud.

6.2 hn Score

Using the static, free and used resources of a host and the running vm
combined with the soft and hard resources quotas, we are able to compute a
score that is more relevant than a classical weight given to each host based
on their static resources (and other static metrics).

In order to balance the load between the hns of our architecture, a score
is computed for each node. The computation of the score needs to be quick,
does not require too much resources and does not need a central controller
or repository. But at the same time, the score needs to closely reflect the
amount of resources used by each vm. To reach those goals, we introduced
our score algorithm. Furthermore, it can be extended on-demand to take
into account other resources than cpu and memory usage like network or
hard drive bandwidth. This score is divided into 2 parts. A static score
that takes into account static resources e.g. the amount of cpu core on a
node and the resources (soft and hard) quota reserved for virtual machines.
A dynamic score that is based on dynamic resources e.g. the amount of
free memory.

As shown in the listing 1, the algorithm to compute the static score
takes two arguments: a structure, host, that contains the static resources of
the node and a list of virtual machines, vmlist, that contains vm resources’
quotas. For each virtual machine in the list, the ram and cpu soft quotas
are added and multiplied by a static parameter α 3, then the result for each
virtual machine is added into the variable static vm soft. The same thing
is done with the hard quota and the static parameter β into the variable
static vm hard. Secondary, the static host score is computed by dividing
the processor speed host(CPU)speed in Mhz by a static parameter γ then
it is multiplied by the number of core host(CPU)number of core. The final
static score static score for the given host with the list of virtual machine
vmlist is computed by summing the amount of memory to the result of last
computation.

Listing 1: ”Score computation algorithm”� �
compute score ( host )

s t a t i c vm s o f t = 0
stat i c vm hard = 0
s t a t i c s c o r e = 0

3All the static parameters are set through experimentations (see section 9).
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f o r each VM xvm in host . vm l i s t
do

s t a t i c vm s o f t += ( so f t cpu quo ta (xvm) + so f t ram quota (xvm) ) x α
s ta t i c vm hard += ( hard cpu quota (xvm) + hard ram quota (xvm) ) x β

done

s t a t i c h o s t s c o r e = ram s i ze ( host )

+ s i z e ( host . c p u l i s t ) x (
cpu speed(host)

γ
)

i f ! ( s t a t i c vm s o f t > s t a t i c h o s t s c o r e )
then

s t a t i c s c o r e = s t a t i c h o s t s c o r e − s t a t i c vm s o f t

i f ! ( s ta t i c vm hard > s t a t i c h o s t s c o r e )
then

s t a t i c s c o r e = ( δ x s t a t i c s c o r e )
+ ( s t a t i c h o s t s c o r e − s ta t i c vm hard )

re turn s t a t i c s c o r e
� �
The computation shown in Listing 2 is the dynamic part of the score.

It takes into account the free resources of the hn and the resources used
by the running vms. Our approach is based on a global scheduler on all
cores of each hn but our score can be extended to take into account the
need of a dedicated core (or a part of it). For each cpu cores, it gets the
amount of free cpu and sums them. Then it multiplies this result by the
static variable (γ) and sums the result to the amount (in Kb) of free ram.
For each virtual machine, it retrieves the amount of cpu and memory used.
Then it multiplies the amount of cpu used by all vms by a static value (β)
and then sums it with the amount of free ram. Finally, the dynamic score
is computed by dividing the amount of free resources by the number of used
resources by the vm.

Listing 2: ”Score computation algorithm”� �
dyn score ( host ) :

f r e e c p u t o t a l = 0 ; u s ed cpu to t a l = 0 ; used ram tota l = 0
f o r each CPU core xcpu in host . c p u l i s t :

f r e e c p u t o t a l += f r e e cpu ( xcpu )
f o r each VM xvm in host . vm l i s t :

u s ed cpu to t a l += used cpu (xvm)
used ram tota l += used ram (xvm)

dyn score = ( f r e e c p u t o t a l x γ + free ram ( host ) )
/ ( u s ed cpu to t a l x β + used ram tota l )

r e turn dyn score
� �
To compute the resource-centric score score(host), the static part of the
score is multiplied by a static value (κ) and then adds to the dynamic score
that gives the score of a given node. Our approach permits a better place-
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ment and helps to limit the needs of migration by taking into account re-
sources that can be potentially used by the vm (the soft and hard quota).

But this resource-centric score is not enough, we need to take into ac-
count the user’s objectives. This process is divided into two parts: first, is
the hn fulfill the user’s objectives (else the score must be 0) and second, what
is the ratio between the capabilities of the hn and the vm’s requirements.
Indeed, we want to limit the number of vms that are place on a hn that
overfits its requirements. We prefer to keep those hns for vms that really
need the full capabilities of the hns. For example, if a vm does not required
a hpc hn but the one with the highest resource-centric score is a hpc hn,
we want to see if a good enough hn is available without hpc capabilities
to place the vm. This requirement is due to the cost of reconfiguration.
Indeed, when another vm will need the hpc hn, we will need to migrate the
first vm to a new hn. Thus, it is simpler and costs less in term of migration
to directly place the vm on a hn that does not overfit too much the vm’s
objectives.

The function fitV M(host, V M) checks if a hn, host, provides all the ca-
pabilities required by a virtual machine, VM . If the hn fulfills the goals then
the function returns 1 else 0. Both variables VM and host provide a set of
functions to browse their goals and capabilities. The def...() functions allow
to know if a given goal or capability is defined. For example, defQualT ier()
permits to know if one of the vm’s objectives is to have a minimum datacen-
ter tier grade. Another set of functions get...() permits to retrieve the value
of an objective. For example, getQualT ier(), retrieves the tier grade asked
(from 1 to 4). For all the objectives defined as boolean, if the objective is
defined for the vm e.g. VM.defQualPCIDSS() = True, then it must be
defined for the hn e.g. host.defQualPCIDSS() = True, and their values
must be the same i.e. host.getQualPCIDSS() = VM.getQualPCIDSS().
For the objectives define as integer or float, the objective must be defined
for the vm and for the hn as for boolean objectives. Moreover, the value of
the objectives for the hn must be higher or equal than the one defined for
the vm i.e. VM.getQualT ier() ≤ host.getQualT ier().

The function overfitV M(host, V M) returns a metric that represents the
fitting of a vm on a hn. As we explain earlier, the purpose of this function
is to avoid to place a vm on a hn with too many capabilities that vm will
not used. The function is presented in the equation 1. First, it does an
intersection between the set of goals of the vm and the goals of the hn and
computes the size of the resulting set. Then it divides this result by the size
of the set of hn’s capabilities. Finally, it subtracts the resulting number to
2 and returns the result of the computation. The return is a float between
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1 and 2 where 2 indicates that the vm fits perfectly on the hn and 1 that
the vm does not use any capabilities given by the hn.

overfitV M(host, V M) = 2− |VM.goals set \ host.goals set|
|host.goals set|

(1)

Finally, we use the three functions score(host), fitV M(host, V M) and
overfitV M(host, V M) to compute the hn score. The equation 2 describes
this computation. It multiplies the result of the three functions.

hn score = fitV M(host, V M)× score(host)× overfitV M(host, V M) (2)

6.3 vm Score

The vm score is used to elect a vm when a migration must happen but it is
not targeted toward a specific vm. First, we want to avoid to migrate a vm
that fits perfectly on a hn in term of objectives as it will be more difficult
to find another hn for it. Second, as the migration cost increases with the
amount of memory used by the virtual machine, we need to take it into
account. Third, we want to avoid circular migrations e.g. when a vm A is
migrated to make space for a vm B that has been migrated to make space
for A. To avoid such issues, we have a list of vm, prevVM , that contains
all the vms that have been migrated to perform a reconfiguration. Thus, we
avoid to move a vm multiple times in the same reconfiguration process.

As for the hn score, the vm score is divided into two parts: resource-
centric and user’s objectives. For the user’s objectives part, we reuse the
function overfitV M(host, V M) presented in the equation 1 to compute the
fitting of the vm on the current hn. Then, we use the algorithm presented in
the Listing 3 to compute vm score. The first thing is to return 0 if the vm has
already been move by this reconfiguration process. Then we compute the
overfitV M() score and the resource-centric score, dyn score. VM.free cpu
returns the number of megahertz between the soft quota of processor and
the number of megahertz currently used by the vm. VM.free ram does
the same for the memory. This value is in megaoctet. VM.used cpu and
VM.used ram returns respectively the number of megahertz and the num-
ber of megaoctet used by the vm. γ and β are set to a value smaller than
1 (0.05 in our evaluation) because as we explain before it is the amount
of memory used that impacts the time of migrating a vm. Finally, the
dyn score is multiply by the overfitting score.

17



Figure 1: Legend for the flowcharts

Listing 3: ”VM Score computation algorithm”� �
vm score ( host ,VM) :

i f VM in prevVM :
return 0

ovm = overfitVM ( host ,VM)
dyn score = ( VM. f r e e c p u t o t a l x γ + VM. f ree ram )

/ ( VM. used cpu x β + VM. used ram )

return ovm ∗ dyn score
� �
7 Placement

Our architecture takes into account user’s objectives and a dynamic-resources
centric algorithm to place the vms. In this section, we describe how the dif-
ferent steps of the placement process are working. All the flowcharts, in this
section and in the section 8, use the same legend presented in the figure 1.

As described in the figure 2, all the new to-place vms are sent to the
Queue service. Then the Queue service adds them into the shared queue.

The figure 3 shows the process of selecting a to-place vm. This process
is contained in the QueueMonitor service. It is an infinite loop that always
looks for new vms to place. First, it checks if the local queue contains virtual
machines. If it is the case, it pops one and starts the placement process. If
not, it checks if the shared queue contains to-place vms. If it is the case, it
adds a set of vms taken from the shared queue to the local queue. Then, it
goes back to the first step i.e. it checks if the local queue is empty. If the
shared queue is empty, it randomly selects another Queue service. Then, it
tries to steal a set of vms from the selected Queue service. If the set is not
empty, it adds it to the local queue and goes back to the first step. If not,
it goes back to the step where it randomly selects another Queue service.

The placement function is presented in the figure 4. Its goal is to create
a set of hns where the vm can fit. First, based on the user’s objectives,
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Figure 2: Sending the request to start a new Virtual Machine

Figure 3: Function to retrieve a to-place vm
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a score request is built. If the user’s objectives do not specify a location
or if they fit with the local datacenter, a score request is built for the hns
within the local datacenter i.e. the datacenter where the SAgent is running.
If the user’s objectives state that the local datacenter does not fit e.g. the
user defined another country that the one of the current datacenter, a score
request is built for a datacenter that fits the user’s objectives. Then, the
score request is sent through multicast i.e. through the MScore service. If
at least one hn sent back its score (within 200ms), the election function is
called. If no hn returns its score, the placement function tries to expand the
score request. Next, if the election function was not able to place the vm,
the placement function tries to expand the score request.

If possible, the score request is expanded to a larger geographic location
i.e. if the user’s objectives allow it or if the score request does not already
span on the whole cloud. For example, if the score request targets one
datacenter and the user’s objectives sets a specific country, the score request
is rewritten to target not only a datacenter but all the datacenters within
the given country. Then, the new score request is sent. If it is not possible
to expand the score request, the vm placement failed. A failure ”to place
the VM“ event is built and sent to the Monitor service. Thus, the user can
know that his vm has not been started and why.

The placement function calls the election function with the parameter
depth = 0. This parameter will limit the number of recursive migrations (see
section 8). Finally, if the placement succeed i.e. if the election function has
placed the vm, a successful ”to place the vm“ event is sent to the Monitor
service. Thus, the user can know that his vm has been started and where.
Accordingly, it ables the user to verify if his objectives have been respected.

The election function is described in the figure 5. Based on the list of
hns that have returned their score in the placement function, a hn is elected
i.e. the one with the highest score. Then, through the LaunchVM service,
the hn is asked to start the vm. At the same time, a counter, n, is initialized
to 0. This counter will limit (to 3) the number of vms that can be migrated
to free resources for this new vm. Without the counter, an infinite loop can
happen. If there is enough resources available, the vm is started.

If there is not enough resources on the hn, it tries to free resources by
migrating one (or multiple) virtual machine(s). But before, it checks if n
is smaller than 3. If it is not the case, the vm placement has failed. Else,
it increments n and creates a second counter m initialized to 0. m limits
the number of failed migration to 3. As n, m protects against an infinite
loop. First, it elects a virtual machine to migrate (this election process is
described in the section 6.3) then tries to migrate it. To migrate the vm, it
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Figure 4: Function to retrieve a set of hn where to place the vm
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calls the Migrate function (described in the section 8) with two parameters
depth and vm, the elected vm. At the same time, m is incremented. If it
fails, it checks if m is smaller than 4. If it is the case, it elects a new vm
and tries to migrate it. Else, the vm placement fails.

If the migration successes, the function goes back to check if enough
resources are available on the hn to start the vm for which the placement
function has been invoked.

8 Reconfiguration

In this section, we describe how the reconfiguration process takes place.
The reconfiguration function described in the figure 6 is invoked when a
migration event is received. First, the function checks if the event contains
a targeted vm i.e. a vm to migrate. If the event contains no vm, it elects
one and set the parameter depth to 0 and adds the elected vm into the list
prevVM .

If not, it checks if the depth parameter is smaller than 3. depth allows
to limit the number of recursive migration. A recursive migration happens
when we need to migrate a vm to migrate another vm. If we were not able
to limit the number of recursive migration, a complete migration process
could span on hundreds of vms and hns. Thus, the migration process will
consume most of the resources of the cloud and deteriorates the performance
of a large set of vms.

If depth is smaller than 3 or when a vm is elected, depth is incremented.
Then using the same approach than the one described in the figure 4, a list
of hns that can run the vm is built. Then the migration function is called
to migrate the vm. If the migration succeeds, a successful ”to migrate the
vm“ event is sent. Else, the score request is expanded and the function goes
back to build a list of hns.

The migration function shown in the figure 7 is similar to the placement
function described in the figure 5 except it is dedicated to migrate a selected
vm to a list of hns. As we explain in the section 6.3, the protection against
cyclic migration is done through the vm score algorithm. Thus, we do not
need to add anything against it in our migration function.
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Figure 5: Function to elect a hn for a vm and place it
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Figure 6: Function to reconfigure a hn based on a migration event
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Figure 7: Function to elect a hn for a vm and migrate it
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9 Evaluation

9.1 Simulation

Our architecture is implemented on top of the Java based library jxta [11]
because of its capabilities of services discovery and multi-cast communica-
tion. To evaluate our cloud scheduler, the vm, hn and sn are simulated
by a Java thread. For the vm, we simulate the resources’ consumption by
adding or reducing the amount of resources used by the vm. This amount
is randomly peak between 0 and the soft quota of the vm. The time lapse
between adding and reducing the resources is randomly select between 10ms
and 1s. The hn are simulated by three different resources scenario presented
in the table 1.

Nb of Core Mhz RAM in Gb

Host 1 4 3.2 16

Host 2 8 3 32

Host 3 16 3 64

Table 1: hn Resources Configuration

We have created a simulated cloud presented in the table 2. This cloud
is composed of 6 different datacenters in 5 countries. Three countries are
within Europe and three from America. Each datacenter has a set of hns
and one sn. The hns have different capabilities as exposed in the table 2.

Continent Country Datacenter Tier Hypervisor Node
Quantity Capabilities Config

AM USA SF 3 10 PCIDSS, ISO-27001 Host 2
50 HPC, HPN, GPU Host 3
100 Host 1

NY 4 50 PCIDSS, ISO-27001 Host 2
50 HPC, HPN, GPU Host 3
100 Host 1

CA OT 2 200 Host 1

EU FR PA 4 45 PCIDSS, ISO-27001 Host 2
50 HPC, HPN, GPU Host 3
70 Host 1

NL AM 4 150 HPC, HPN, GPU Host 3
100 Host 1

HU BU 1 100 Host 1

Table 2: hn Resources Configuration

We try different vm scenario:
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1. A web site: 3 vms that require 1x2Ghz cpu and 2Gb of ram. There
is no user’s objective.

2. A social web site: 70 vms that require 1x2Ghz cpu and 2Gb of ram.
There is no user’s objective.

3. A card payment software: 20 vms that require 2x2Ghz cpu and 2Gb
of ram. The user’s objectives for them are a pcidss, iso-27001 and
Tier 4 grade datacenter.

4. A critical data mining software: 30 vms that require 4x2Ghz and
4Gb of ram. The user’s objectives for them are a Tier 3 datacenter.
Moreover, all the vms need to be located within Europe and no vm
from other users must run on the same hardware.

5. An image rendering software: 40 vms that require 2x2.5Ghz and 4Gb
of ram. There is no user’s objective.

6. A scientific simulation hpc cluster: 40 vms that require 4x3Ghz and
8Gb of ram. The hn must provide hpc, hpn and gpu capabilities.
Moreover, all the vms must be allocated within the same datacenter.

7. An industrial simulation hpc cluster: 30 vms that require 4x3Ghz and
8Gb of ram. The hn must provide hpc, hpn and gpu capabilities.
Moreover, all the vms must be allocated within the same European
datacenter and no vm from other users must run on the same hardware.

8. A hpc grid: 200 vms that require 4x3Ghz and 8Gb of ram. The hn
must provide hpc, hpn and gpu capabilities. The grid can span on
multiple datacenter around the world with at least 50 vms in Europe
and 50 in America.

In our simulation, we uses the following static parameters for the score
algorithm:

• α = 1, β = 1: to give the same importance to the soft quota of
processor or memory.

• γ = 0.75: because we want to give more weight to the virtual machine
resources quota than the static resources on the node.

• δ = 1: to give the same importance to the amount of free processor or
free memory.
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9.2 Results

As shown on the figure 8 and 9, previous experimentation with an increasing
number of hn as shown that the amount of time taken by the startup process
for a virtual machine grows linearly with the number of nodes on the cloud.
Indeed, with large size distributed systems, most of the interactions between
agents can be parallelized. When a larger number of nodes are part of the
cloud, more interactions can be done in parallel on different agents and thus
the overall throughput increases i.e. the number of vm placement in a given
time grows. Moreover, most of the placement and reconfiguration take place
in one datacenter or one country thus limiting the scope of the score request.

We compute the average time between the detection of an overloaded hn
and its solving. Each simulation was kept running for one day to evaluate
if the placement of virtual machines was “good“ enough. 15 migrations
for the 1,000 virtual machines has been required and they took 19 seconds
each. Consequently, we state that the placement of virtual machines on the
distributed system is sufficiently “good” because the number of migrations
is low.

With cooperative schedulers, both placement and migration processes
are speed up as shown on the figures 8 and 9. It can be done because a vast
majority of services can be loosely coupled.

Using the vm scenario presented in the section 9.1, we have computed
preliminary results: an average deployment time for each one (figure 10)
and an average deployment time per vm for each one (figure 11). This time
does not take into account the actual deployment time but just the time
to place the vm. As it is loosely coupled, the deployment of multiple vms
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can be done at the same time. Three objectives impact the vm placement
time and thus the vm scenario deployment time: nearVM, alwaysAlone and
different location within the same scenario.

9.3 Traceability

As we previously state, traceability within cloud allows an user to check if
his objectives have been respected. Moreover, it helps to increase the user’s
trust to the cloud’s infrastructure as he can verify the enforcement of his
objectives by himself. Thus, we have created monitoring services that allow
a user to extract information about the placement and reconfiguration of
his vms.

For example, in the Listing 9.3, an user has received a report about one
of his vm placement process. The first line registers the event representing
the user request to start a new vm. The second line displays that the vm
has been added in a scheduler queue. The third shows that the scheduler
is trying to place the vm. Finally, the fourth line shows that the vm has
been started and on which hn it is placed. The fifth registers that the whole
process has finished without encoring any issues. Using the hn name, the
user can check that his objectives have been respected. But, these traces do
not show where the scheduling happens as it is not useful for the user and
can leak informations about the inner architecture of the cloud.
10/2/2011 12 : 43 : 0 − Asking to add a VM Event : VM #1 i s sent to the cloud .
10/2/2011 12 : 43 : 0 − Add VM to Queue Event : VM #1 added to the queue
10/2/2011 12 : 43 : 0 − Try to Place VM Event : Trying to p lace VM #1
10/2/2011 12 : 43 : 0 − Adding a VM Event : VM #1 has been added on LD PEER 4
10/2/2011 12 : 43 : 0 − Have Place VM Event : VM #1 has been placed .

Other traces like the one in the Listing 9.3 show the inner working of
the scheduling infrastructure. The two lines describe a scheduler stealing
to-place vms from another scheduler.

9/2/2011 20 : 30 : 0 − SAgent 1 − Have s t o l e n VM( s ) Event : 1 VM( s ) .
9/2/2011 20 : 30 : 0 − SAgent 2 − VM( s ) have been s t o l e n Event :

Too much work : someone s t o l e me 1 VM( s ) .
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Finally, the trace in the Listing 9.3 shows how the cloud manages an
overloaded hn. First, the overloaded hn is detected. Then, it elects a vm
and asks other hns their score. At the third line, when a hn is elected and
it can host the vm, the migration is allowed. The migration itself is divided
into two part, one representing the suspension of the vm on the overloaded
hn (LD PEER 2) and one representing the resume of the vm on the new
hn (LD PEER 3).

26/1/2011 0 : 4 : 1 0 − Overload Event : LD PEER 2 i s over loaded
26/1/2011 0 : 4 : 1 0 − Asking Migrat ion Event : 32 migrat ion asked to LD PEER 2
26/1/2011 0 : 4 : 1 1 − Allowed Migrat ion Event : 32 has migrated to LD PEER 3
26/1/2011 0 : 4 : 1 1 − Removing a VM Event : VM #32 has been de l e t ed on LD PEER 3
26/1/2011 0 : 4 : 1 1 − Adding a VM Event : VM #32 has been added on LD PEER 2

10 Conclusion

Our paper presents a novel scheduler dedicated for vm placement and re-
configuration on clouds. It is based on p2p architecture allowing a fully de-
centralized model. The scheduling decisions are based on dynamic-resources
centric algorithm that computes a score and on user’s objectives. The score
is based on both static and dynamic resources usage of processor and mem-
ory but also uses the resources quota associated with each vm. The user’s
objectives eases the expression of quality of trust and protection and the
deployment of hpc architecture. These objectives are given by the user for
each of his vms.

Moreover, the scheduler agents can cooperate together through a dis-
tributed and decentralized facility. We have implemented our model using
Java and jxta. Then, we implement it within our cloud testbed to evaluate
our model efficiency. As we show, the simulation results are encouraging. In-
deed, we do not see any scalability bottleneck and the balancing of resources
works great. Furthermore, the user’s objectives eases the deployment and
the expression of user’s goals without impacting too much the scheduling
time.

Future works will tackle the over-migration issue when a vm is migrating
constantly from a node to another. Indeed, this type of issue can lead to a
major overhead for the migrating vm but also increases the load on agents.
The fault tolerance of the stealing algorithm is still an open question for our
work stealing algorithm. Moreover, we want to do extensive experiments
of our architecture and on even larger scale than the one proposed here.
Another future work will be to test our solution on a real cloud. We have
already implemented libvirt on our solution, thus, bringing the support for
all mainstream hypervisors.
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