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ON MINIMUM (Kq, k) STABLE GRAPHS

J.L. FOUQUET, H. THUILLIER, J.M. VANHERPE AND A.P. WOJDA

Abstract. A graph G is a (Kq , k) vertex stable graph (q ≥ 3) if it contains
a Kq after deleting any subset of k vertices (k ≥ 0). We are interested by the
(Kq , κ(q)) vertex stable graphs of minimum size where κ(q) is the maximum

value for which for every nonnegative integer k < κ(q) the only (Kq , k) vertex
stable graph of minimum size is Kq+k.

1. Introduction

In [6] Horwárth and Katona consider the notion of (H, k) stable graph: given a
simple graph H, an integer k and a graph G containing H as subgraph, G is a a
(H, k) stable graph whenever the deletion of any set of k edges does not lead to a
H-free graph. These authors consider (Pn, k) stable graphs and prove a conjecture
stated in [5] on the minimum size of a (P4, k) stable graph. In [2], Dudek, Szymański
and Zwonek are interested in a vertex version of this notion and introduce the (H, k)
vertex stable graphs. In [4] we have characterized (Kq, k) vertex stable graphs with
minimum size for q = 3, 4, 5 (where Kq denotes the clique on q vertices).

Definition 1.1. [2] Given an integer k ≥ 0 and a graph H, a graph G containing
a subgraph isomorphic to H is said to be a (H, k) vertex stable graph if, for every
subset S of k vertices, G− S contains (a subgraph isomorphic to) H.

In this paper, we are only interested by (H, k) vertex stable graphs and, since no
confusion will be possible, a (H, k) vertex stable graph shall be simply called a
(H, k) stable graph.

Definition 1.2. A (H, k) stable graph with minimum size (i.e. with minimum
number of edges) is called minimum (H, k) stable graph. The minimum size of a
(H, k) stable graph shall be denoted by stab(H, k).

It is clear that if G is a (H, k) stable graph with minimum size then the graph
obtained from G by addition or deletion of some isolated vertices is also minimum
(H, k) stable. Hence we shall asume that all the graphs considered in the paper
have no isolated vertices.
Here we consider (Kq, k) stable graphs. We have proved in [4] that stab(Kq, k) =(
q+k
2

)
for q ≥ 3 and k = 1, 2. Moreover Kq is the only minimum (Kq, 0) stable

graph for q ≥ 2 and Kq+1 is the unique (Kq, 1) stable graph for q ≥ 4. Dudek,
Szymański and Zwonek have proved the following result.
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Theorem 1.3. [2] For every q ≥ 4, there exists an integer k(q) such that stab(Kq, k) ≤
(2q − 3)(k + 1) for k ≥ k(q).

As a consequence of this last result, for every k ≥ k(q) the graph Kq+k is not
minimum (Kq, k) stable.

Definition 1.4. For every integer q ≥ 4, we denote by κ(q) the greatest integer
such that for 1 ≤ k < κ(q) the only minimum (Kq, k) stable graph is Kq+k.

In two previous papers we have proved the following.

Theorem 1.5. [3, 4] κ(3) = 1, κ(4) = 3, κ(5) = 4 and for q ≥ 6 κ(q) > q
2 + 1.

In this paper we give an upper bound for the value of κ(q).

Theorem 1.6. For every q ≥ 4, if κ(q) is even then κ(q) <
√

2(q − 1)(q − 2) and

if κ(q) is odd then κ(q) <
√
1 + 2(q − 1)(q − 2)

We prove that these upper bounds are reached for values of q such that there exists
a minimum (Kq, κ(q)) stable disconnected graph (note that it is the case for q = 4
and q = 5).

Theorem 1.7. Let q ≥ 4 and suppose that there exists a disconnected minimum

(Kq, κ(q)) stable graph. Set ρ(q) = d
√

1
2 (q − 1)(q − 2) e − 1.

If 1
2 (q − 1)(q − 2) > ρ(q)2 + ρ(q) then κ(q) = 2ρ(q) + 1.

If 1
2 (q − 1)(q − 2) ≤ ρ(q)2 + ρ(q) then κ(q) = 2ρ(q).

Proofs of Theorems 1.6 and 1.7 shall be given in subsection 3.2.

If there is no minimum disconnected (Kq, κ(q)) stable graph then, by definition of
κ(q), there exists a connected minimum (Kq, κ(q)) stable graph Gq which is not
complete. We think that it never happens, so we propose the following conjecture.

Conjecture 1.8. If G is a minimum (Kq, k) stable graph then every component of
G is complete.

If this last conjecture is true then Theorem 1.7 gives the exact value of κ(q) for
every q ≥ 4.

2. Notations and general results

For terms not defined here we refer to [1]. As usually, the order of a graph G is the
number of its vertices and the size of G is the number of its edges (it is denoted by
e(G)). The disjoint union of two graphs G1 and G2 is denoted by G1 + G2. The
union of p mutually disjoint copies of a graph G is denoted by pG. For any set A of
vertices, we denote by G[A] the subgraph induced by A and by G−A the subgraph
induced by V (G) − A. If A = {v} we write G − v for G − {v}. For any set F of
edges, we denote by G− F the spanning subgraph (V (G), E(G)− F ). If F = {e}
we write G− e instead of G−{e}. A complete subgraph of order q of G is called a
q-clique of G. The complete graph of order q is denoted by Kq. When a graph G
contains a q-clique as subgraph, we say “G contains a Kq”.

Lemma 2.1. [2] Let G be a (H, k) stable graph with k ≥ 1. Then, for every vertex
v, G− v is (H, k − 1) stable.
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A set of vertices of G that intersects every subgraph of G isomorphic to H is called
a transversal of all the subgraphs isomorphic to H or simply a H-transversal of
G. A H-transversal of G having the minimum number of vertices is said to be a
minimum H-transversal of G. The number of vertices of a minimum H-transversal
is denoted by τH(G). Remark that G is (H, k) stable if and only if τH(G) ≥ k + 1

Definition 2.2. Let G be a (H, k) stable graph. If G has a minimum H-transversal
having exactly k + 1 vertices, G is said to be exactly (H, k) stable.

Remark 2.3. H is the unique (H, 0) stable graph with minimum size.

Lemma 2.4. [2] Let G be a (H, k) stable graph with k ≥ 1 and e ∈ E(G) such
that G− e is not (H, k) stable. Then G is exactly (H, k) stable and G− e is exactly
(H, k − 1) stable.

Definition 2.5. [2] Let G be a (H, k) stable graph. If G − e is not (H, k) stable
for every edge e ∈ E(G), G is said to be minimal (H, k) stable.

Remark 2.6. In [2] ”minimal (H, k) stable graphs” are called ”strong (H, k) stable
graphs” by the authors. Note that a (H, k) stable graph G is minimal (H, k) stable
if and only if for every e ∈ E(G) the graph G − e is exactly (H, k − 1) stable.
Moreover, a minimal (H, k) stable graph is exactly (H, k) stable.

If there exists an edge e of an (H, k) stable graph G such that there are no subgraph
isomorphic to H containing e then G− e is a (H, k) stable graph. Hence, we have
the following.

Lemma 2.7. [2] Every edge of a minimal (H, k) stable graph is contained in a
subgraph isomorphic to H. Consequently, every vertex of a minimal (H, k) stable
graph is also contained in a subgraph isomorphic to H.

Remark 2.8. Clearly, every minimum (H, k) stable graph is minimal (H, k) stable.

One may ask what happens for components of a (H, k) stable graph. The following
theorem gives us an answer.

Theorem 2.9. Let G be an exactly (H, k) stable graph, and let G1, G2, ..., Gr, with
r ≥ 1, be its components. Then, there exist integers k1, k2, ..., kr, with 0 ≤ ki ≤ k,
sucht that

i) for every i, with 1 ≤ i ≤ r, Gi is exactly (H, ki) stable,
ii)

r∑
i=1

ki + (r − 1) = k

G is minimal (H, k) stable if and only if for every i, 1 ≤ i ≤ r, Gi is minimal
(H, ki) stable. Moreover, if G is minimum (H, k) stable then for every i, 1 ≤ i ≤ r,
Gi is minimum (H, ki) stable.

Proof For each i, 1 ≤ i ≤ r, let us consider a minimum H-transversal of Gi, say
Ti, and set ki = |Ti| − 1. Clearly, for each i the graph Gi is exactly (H, ki) stable
and the set T =

⋃
1≤i≤r Ti is a minimum H-transversal of G. Note that the number

of elements of T is |T | =
∑r

i=1 ki + l and we have |T | > k. Let S be any set of
vertices of G such that |S| ≤ |T |−1 and for every i denote by Si the set S∩V (Gi).
Clearly, there exists i0 ∈ {1, · · · r} such that |Si0 | ≤ ki0 = |Ti0 |−1. Then, Gi0 −Si0
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contains a subgraph isomorphic to H, that is, G is exactly (H, |T | − 1) stable, and
we have

∑r
i=1 ki + (r − 1) = k.

Let e be an edge of G and let Gi be the component containing e.

Claim . G− e is (H, k) stable if and only if Gi − e is (H, ki) stable.

Proof Suppose that Gi− e is (H, ki) stable. Let U be a H-transversal of G− e.
Set Ui = U ∩ V (Gi − e) = U ∩ V (Gi) and for every j 6= i, Uj = U ∩ V (Gj). Since
(Gi− e)−Ui and each Gj −Uj , j 6= i, contain no subgraphs of G− e isomorphic to
H, we have for every j, 1 ≤ j ≤ r, |Uj | ≥ kj + 1. Then, |U | =

∑r
j=1 |Uj | ≥ k + 1.

Hence, for every set S of k vertices (G− e)− S contains a subgraph isomorphic to
H, that is, G− e is (H, k) stable.
Conversely, suppose that Gi − e is not (H, ki) stable. Let Ti be a H-transversal of
(Gi − e) − Ti having ki vertices. For every j 6= i let Tj be a H-transversal of Gj

having kj + 1 vertices. The set T = ∪r
j=1Tj has k vertices and is a H-transversal

of G− e, that is, G− e is not (H, k) stable. �

Thus, G is minimal (H, k) stable if and only if for every i, 1 ≤ i ≤ r, Gi is minimal
(H, ki) stable.
Note that, by replacing a minimal (H, ki) stable component Gi by any minimal
(H, ki) stable graph G′

i (connected or not), we obtain again a minimal (H, k) stable
graph. Thus, if G is minimum (H, k) stable then for every i, 1 ≤ i ≤ r, Gi is
minimum (H, ki) stable.

�

Remark 2.10. Let r be an integer ≥ 2, k1, · · · , kr be r non negative integers and
k =

∑r
i=1 ki + (r − 1). If for every i, 1 ≤ i ≤ r, Gi is a minimum (H, ki) stable

graph then the disjoint union G1 + G2 + · · · + Gr may not be a minimum (H, k)
stable graph. For example, Kq is minimum (Kq, 0) stable, 2Kq and Kq+1 are
minimal (Kq, 1) stable, but since e(2Kq) > e(Kq+1), for q ≥ 4 the graph 2Kq is not
minimum (Kq, 1) stable.

3. Minimum (Kq, k) stable graphs

In this section we are interested by (Kq, k) stable graphs with minimum size (q ≥ 3).
Recall that stab(Kq, k) = Min{e(G) | G is (Kq, k) stable}.

3.1. Some known results. We give here some known results about this topic.
By Remark 2.6 and Lemma 2.7 we have:

Properties 3.1. [2] A minimal (Kq, k) stable graphs G has the following properties:
P1) G is exactly (Kq, k) stable.
P2) For every edge e, G− e is exactly (Kq, k − 1) stable.
P3) For every vertex v, G− v is exactly (Kq, k − 1) stable.
P4) Every vertex of G belongs to some q-clique of G.
P5) Every edge of G belongs to some q-clique of G.

Remark 3.2. For any two integers q ≥ 3 and k ≥ 1, Kq+k is minimal (Kq, k) stable.

Proposition 3.3. [4] For every integer q ≥ 4, Kq+1 is the unique minimum (Kq, 1)
stable graph.
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Proposition 3.4. [4] For every integer q ≥ 4, Kq+2 is the unique minimum (Kq, 2)
stable graph.

Proposition 3.5. [4] For every integer q ≥ 5, Kq+3 is the unique minimum (Kq, 3)
stable graph.

Theorem 3.6. [2] For every k ≥ 1, stab(K3, k) = 3k+3 and stab(K4, k) = 5k+5.

Theorem 3.7. [4] Let G be a minimum (K3, k) stable graph, with k ≥ 0. Then G
is isomorphic to sK4 + tK3, for any choice of s and t such that 2s+ t = k + 1.

Theorem 3.8. [4] Let G be a minimum (K4, k) stable graph, with k ≥ 1. Then G
is isomorphic to sK6 + tK5, for any choice of s and t such that 3s+ 2t = k + 1

Theorem 3.9. [4] For every k ≥ 5, stab(K5, k) = 7k + 7.

Theorem 3.10. [4] Let G be a minimum (K5, k) stable graph, with k ≥ 5. Then
G is isomorphic to sK8 + tK7, for any choice of s and t such that 4s+ 3t = k + 1

Dudek et al. [2] defined the family A(Kq,k)
r with k ≥ 0, q ≥ 3, 1 ≤ r ≤ k + 1 as

the family of graphs consisting of r complete graphs Kij with i1 ≥ · · · ≥ ir ≥ q

satisfying the condition
∑r

i=1(ij − q)+(r−1) = k and they prove that every graph

in A(Kq,k)
r is minimal (Kq, k) stable. We observe that if G is a (Kq, k) stable graph

disjoint union of r ≥ 1 cliques Kij , 1 ≤ j ≤ r, then by Theorem 2.9, G ∈ A(Kq,k)
r .

They defined a graph G ∈ A(Kq,k)
r as a balanced union if |ij − il| ∈ {0, 1} for every

j and l in {1, 2, · · · , r} and they proved that given q, k and r there is exactly one

balanced union B(Kq,k)
r in A(Kq,k)

r , and that B(Kq,k)
r has the minimum number of

edges among the graphs in A(Kq,k)
r .

In [2] the following lemma has been given. We give its proof for completeness.

Lemma 3.11. [2] Let G0 be a (Kq, k0) stable graph (k0 ≥ 0) which has the mini-
mum size among all graphs beeing a disjoint union of r cliques (r ≥ 1) Gi ≡ Kq+kj

with 1 ≤ j ≤ r, kj ≥ 0. There exists a positive integer s and a nonnegative integer
k such that

k ≥ 0, s ≤ r, G0 = sKq+k + (r − s)Kq+k−1 with rk + s = k0 + 1 and

e(G0) =
(r(q − 1) + k0 + 1− s)(r(q − 2) + k0 + 1 + s))

2r
.

Proof Suppose, without loss of generality, that k1 ≥ k2 ≥ · · · ≥ kr and that there
exist two components Gi and Gj with i < j such that ki − kj ≥ 2. By substituting
G′

i ≡ Kq+ki−1 for Gi and G′
j ≡ Kq+kj+1 for Gj , we obtain a new (Kq, k) stable

graph G′
0 such that e(G′

0) = e(G0)− (ki−kj−1) < e(G0), which is a contradiction.
Thus, for any i and any j, 0 ≤ |ki − kj | ≤ 1. Hence, either for any i and any j
ki and kj have the same value k and we have G0 = rKq+k with k ≥ 0, or there
exist distinct ki and kj and we have G0 = sKq+k + (r − s)Kq+k−1 with k ≥ 1 and
1 ≤ s ≤ r − 1.

If G0 = sKq+k + (r − s)Kq+k−1 then a minimum Kq-transversal of G0 has
k0 + 1 = s(k + 1) + (r − s)k = s+ rk vertices. Note that r divides k0 + 1− s. We
have 2e(G0) = s(q+ k)(q+ k− 1)+ (r− s)(q+ k− 1)(q+ k− 2). Since k = k0+1−s

r ,

we obtain e(G0) =
(r(q−1)+k0+1−s)(r(q−2)+k0+1+s))

2r . �
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3.2. Minimum (Kq, k) stable graph for small k. Recall that for every integer
q ≥ 2, Kq is the unique minimum (Kq, 0) stable graph.

Remark 3.12. By Propositions 3.3 and 3.4, K5 is the unique minimum (K4, 1) stable
graph, K6 is the unique minimum (K4, 2) stable graph and, by Theorem 3.8, 2K5

is the unique minimum (K4, 3) stable graph.

Remark 3.13. By Propositions 3.3, 3.4 and 3.5, for every k ∈ {1, 2, 3} the graph
K5+k is the unique minimum (K5, k) stable graph.

Lemma 3.14. [3] K9 and K6 +K7 are the only minimum (K5, 4) stable graphs.

Theorem 3.15. [3] Let G be a minimum (Kq, k) stable graph, where q ≥ 6 and
k ≤ q

2 + 1. Then G is isomorphic to Kq+k.

Recall that for every integer q ≥ 4, κ(q) is the greatest integer such that for 1 ≤ k <
κ(q) the only minimum (Kq, k) stable graph is Kq+k. Then, either e(Kq+κ(q)) >
stab(Kq, κ(q)) or e(Kq+κ(q)) = stab(Kq, κ(q)) but there is a minimum (Kq, κ(q))
stable graph G such that Kk+κ(q) 6≡ G.

Lemma 3.16. κ(4) = 3 and κ(5) = 4.

Proof By Remark 3.12, κ(4) = 3 (and 2K5 is the unique minimum (K4, 3) stable
graph). By Remark 3.13 and by Lemma 3.14, κ(5) = 4 (and K9 and K6 +K7 are
the minimum (K5, 4) stable graphs). �

In the following, if no confusion is possible, we simply denote the integer κ(q) by κ.

Lemma 3.17. Suppose that q ≥ 4. If κ is even then stab(Kq, κ−1) < e(2Kq+κ
2 −1)

and stab(Kq, κ) ≤ e(Kq+κ
2
+Kq+κ

2 −1) .
If κ is odd then stab(Kq, κ−1) < e(Kq+κ−1

2
+Kq+κ−3

2
) and stab(Kq, κ) ≤ e(2Kq+κ−1

2
) .

Proof Recall that, by definition of κ, Kq+κ−1 is the only one minimum (Kq, κ−1)
stable. If κ is even then 2Kq+κ

2 −1 is exactly (Kq, κ−1) stable and Kq+κ
2
+Kq+κ

2 −1

is exactly (Kq, κ) stable. If κ is odd then Kq+κ−1
2

+Kq+κ−3
2

is exactly (Kq, κ− 1)

stable and 2Kq+κ−1
2

is exactly (Kq, κ) stable. �

Lemma 3.18. Let q ≥ 3 and p ≥ 0 be two integers. Then,
e(Kq+2p) < e(Kq+p +Kq+p−1) if and only if p2 + p < 1

2 (q − 1)(q − 2) and

e(Kq+2p) = e(Kq+p +Kq+p−1) if and only if p0 = 1
2 (
√

1 + 2(q − 1)(q − 2) − 1) is
an integer and p = p0.
e(Kq+2p+1) < e(2Kq+p) if and only if (p+ 1)2 < 1

2 (q − 1)(q − 2) and

e(Kq+2p+1) = e(2Kq+p) if and only if p1 = 1
2 (
√
2(q − 1)(q − 2) − 1) is an integer

and p = p1.

Proof It is easy to check that e(Kq+2p)−e(Kq+p+Kq+p−1) = p2+p− 1
2 (q−1)(q−2)

and e(Kq+2p+1) − e(2Kq+p) = (p + 1)2 − 1
2 (q − 1)(q − 2). These polynomials

of degree 2 in p have respectively p0 = 1
2 (
√
1 + 2(q − 1)(q − 2) − 1) and p1 =

1
2 (
√
2(q − 1)(q − 2)− 1) as positive roots. �

Proof of Theorem 1.6. If κ = 2p then, by Lemma 3.17, stab(Kq, κ − 1) <
e(2Kq+κ

2 −1). Since κ− 1 = 2(p− 1)+1, by Lemma 3.18, p2 < 1
2 (q− 1)(q− 2), that

is, κ <
√
2(q − 1)(q − 2).
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If κ = 2p + 1 then by Lemma 3.17, stab(Kq, κ − 1) < e(Kq+κ−1
2

+ Kq+κ−3
2
).

Since κ − 1 = 2p, by Lemma 3.18, p < 1
2 (
√
1 + 2(q − 1)(q − 2) − 1), that is,

κ <
√
1 + 2(q − 1)(q − 2). �

Lemma 3.19. For every integer q ≥ 4 and κ = κ(q) we have e((κ + 1)Kq) >
e(Kq+κ)

Proof We have 2(e((κ + 1)Kq) − e(Kq+κ)) = κ(q2 − 3q − κ + 1). By Theorem

1.6, κ <
√

1 + 2(q − 1)(q − 2) < 3q
2 , and hence κ(q2 − 3q − κ+ 1) > 0. �

Theorem 3.20. Let q ≥ 4 and suppose that there exists a minimum (Kq, κ) stable
graph G0 which is disconnected. Then G0 is isomorphic to Kq+bκ

2 c +Kq+bκ−1
2 c.

Proof Let G0 be a minimum (Kq, κ) stable disconnected graph having r ≥ 2
connected components G1, G2, · · · , Gr. By Theorem 2.9, there are integers k1 ≥
k2 ≥ · · · ≥ kr with

∑r
i=1 ki + (r − 1) = κ such that for 1 ≤ i ≤ r, Gi is minimum

(Kq, ki) stable. For every i, since ki < κ, we have Gi ≡ Kq+ki .
We shall prove first that r = 2. In fact, it is clear that r ≥ 2. Let us sup-
pose that r ≥ 3. We have kr + kr−1 = κ − (kr−2 + kr−3 + ... + k1) − (r −
1) ≤ κ − 2. Hence, e(Kq+kr+kr−1+1) < e(Kq+kr

) + e(Kq+kr−1
) and the graph

Kq+k1+Kq+k2+· · ·+Kq+kr−2+Kq+kr−1+kr+1 is (Kq, κ) stable with strictly smaller

size than Kk1 +Kk2 + · · ·+Kkr , a contradiction. So, G0 ∈ B(Kq,κ)
2 and the proof

follows. �

Note that Theorem 3.20 implies that there exists at most one disconnected (Kq, κ)
stable graph and this graph, if it exists, is

• either isomorphic to Kq+κ
2
+Kq+κ

2 −1 (if κ is even)
• or else isomorphic to 2Kq+κ−1

2
(if κ is odd).

Proof of Theorem 1.7 By Lemma 3.17 and Theorem 3.20,
if κ is odd then

e(Kq+κ−1) < e(Kq+κ−1
2

+Kq+κ−3
2
) < stab(Kq, κ) = e(2Kq+κ−1

2
) ≤ e(Kq+κ)

(note that, by Lemma 3.18, it may be possible that e(2Kq+κ−1
2
) = e(Kq+κ) for

some values of q),

if κ is even then

e(Kq+κ−1) < e(2Kq+κ
2 −1) < stab(Kq, κ) = e(Kq+κ

2
+Kq+κ

2 −1) ≤ e(Kq+κ)

(note that, by Lemma 3.18, it may be possible that e(Kq+κ
2
+Kq+κ

2 −1) = e(Kq+κ)
for some values of q).

For κ = 2p+ 1 we have

1

2
(q + 2p)(q + 2p− 1) < (q + p− 1)2 < (q + p)(q + p− 1) ≤ 1

2
(q + 2p+ 1)(q + 2p) .

This implies that

(A) p2 + p <
1

2
(q − 1)(q − 2) ≤ (p+ 1)2 .
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For κ = 2p we have

1

2
(q+2p−1)(q+2p−2) < (q+p−1)(q+p−2) < (q+p−1)2 ≤ 1

2
(q+2p)(q+2p−1) .

This implies that

(B) 2p2 <
1

2
(q − 1)(q − 2) ≤ p2 + p .

Combining (A) and (B) yields

p2 <
1

2
(q − 1)(q − 2) ≤ (p+ 1)2 .

This implies that√
1

2
(q − 1)(q − 2)− 1 ≤ p <

√
1

2
(q − 1)(q − 2) .

Hence, p = ρ(q) = d
√

1
2 (q − 1)(q − 2) e − 1.

By inequalities (A) and (B), position of 1
2 (q−1)(q−2) in comparison to ρ(q)2+ρ(q)

determines the parity of κ. Hence, if 1
2 (q − 1)(q − 2) > ρ(q)2 + ρ(q) then κ =

2ρ(q) + 1 = 2d
√

1
2 (q − 1)(q − 2) e − 1 else κ = 2ρ(q) = 2d

√
1
2 (q − 1)(q − 2) e − 2 �

If there is no minimum disconnected (Kq, κ(q)) stable graph then, by definition of
κ(q), there exists a connected minimum (Kq, κ(q)) stable graph Gq distinct from a
clique. Note that if such a graph exists then

e(Gq) ≤ Min{e(Kq+κ(q)), e(Kq+κ
2
+Kq+κ

2 −1)} if κ(q) is even

or
e(Gq) ≤ Min{e(Kq+κ(q)), e(2Kq+κ−1

2
)} if κ(q) is odd .

Conjecture 1.8 states that there is no such graph Gq.
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