
An axiom system for

XML and an algorithm

for filtering XFD

Joshua Amavi, Mirian Halfeld Ferrari

LIFO, Université d’Orléans

Rapport no RR-2012-03

2

An axiom system for XML and an algorithm for

filtering XFD

A step to interoperability

Joshua Amavi Mirian Halfeld Ferrari

Université d’Orléans - LIFO - Orléans - France
{joshua.amavi, mirian}@univ-orleans.fr

Abstract. XML has become the de facto format for data exchange. A
web application expected to deal with XML documents conceived on
the basis of divers sets of (local) constraints would be expected to test
documents with respect to all non contradictory constraints imposed by
these original (local) sources. The goal of this paper is to introduce an
optimized algorithm for computing the maximal set of XML functional
dependencies (XFD) over multiple systems. The basis of our method is
a sound and complete axiom system which is provided for relative XFD
allowing two kinds of equality. This paper covers important theoretical
and applied aspects of XFD. Not only do we present proofs and algo-
rithms but we also show the result of some experiments that emphasize
the interest of our approach.

Keywords: XML, Functional dependencies, XFD, constraints, interop-
erability

1 Introduction

Let S1, . . . , Sn be local systems, as shown in Figure 1, which deal with sets of
XML documents X1, . . . , Xn, respectively, and that inter-operate with a global,
integrated system S. System S may receive information from any local system.
Each set Xi conforms to schema constraints Di and to integrity constraints F i

and follows an ontology Oi. Our goal is to associate system S to type and in-
tegrity constraints which represent a conservative evolution of local constraints.
More precisely, given different triples (D1,F1, O1), . . . , (Dn,Fn, On), we are in-
terested in generating (D, coverF ,A), where:
(i) D is an extended type that accepts any local document;
(ii) coverF is a set of XFD equivalent to F the biggest set of functional depen-
dencies (XFD), built from F1, . . . ,Fn, that can be satisfied by all documents in
X1, . . . , Xn and
(iii) A is an ontology alignment that guides the construction of D and F in
terms of semantics mapping.

This paper focus only on the generation of coverF which contains the XFD
for which no violation is possible when considering document sets X1, . . . , Xn.

D1

F1

O1 X1

Dn

Fn

On Xn

S1 Sn

. . .

. . .

. . .

S

D

AcoverF

Fig. 1. System S interoperability. Schema and integrity constraints in system S are
built from constraints in local system. Type D accepts documents from all types
D1 . . .Dn. Integrity constraints in coverF are obtained by filtering non-contradictory
XFD obtained from F1, . . . ,Fn. The alignment A, built from ontologies O1, . . . , On, al-
lows finding equivalent concepts. Each local system deals with a set of XML document
Xi.

It is important to notice that our algorithm is based on an axiom system and,
thus, obtains coverF from F1, . . . ,Fn, disregarding data.

The contribution of this paper is twofold. On one hand we introduce an
axiom system together with the proofs of its soundness and completeness. On
the other hand, we present an efficient way for computing, on the basis of our
axiom system, the set coverF . We prove that the obtained set coverF has good
properties and some experiments show the efficiency of our approach.

The rest of this paper is organized as follows. Section 2 illustrates our goal
with an example. Section 3 presents some background while Section 4 introduces
our XFD. Section 5 focuses on our axiom system. An algorithm for computing
the closure of a set of paths, w.r.t. a set of XFD, is presented in Section 6.
Section 7 introduces our method for computing F and coverF while in Section 8
we discuss on some experiments. Finally, Section 9 comments on some related
work and Section 10 concludes the paper.

2 Motivating Example

Let the XML trees in Figure 2 be documents from two different local sources.
Each document is valid w.r.t. the functional dependencies presented in Table 1,
i.e., documents in X1 are valid w.r.t. F1, those in X2 are valid w.r.t. F2.

In the XML domain, a functional dependency (XFD) is defined by paths over
a tree. Each path selects a node on a tree. Values or positions of the selected nodes
are gathered to build tuples that will be used to verify whether a given XML doc-
ument satisfies an XFD. For example, consider the XFD f: (univ/, (undergradu-
ate/courses/course/codeC,→ undergraduate/courses/course/titleC)) on the first
document of Figure 2. It specifies that the context is univ, i.e., that the constraint
should be verified on data below a node labelled univ. In this context, f entails
the construction of tuples composed by values obtained by following the paths:

2

univ/undergraduate/courses/course/codeC, univ/undergraduate/courses/course/ti-
tleC. As in the relational model, a document is valid w.r.t. f if any two tu-
ples agreeing on values obtained from univ/undergraduate/courses/course/codeC
also agree on values obtained from univ/undergraduate/courses/course/titleC.
Therefore, in a university the code of a course determines its name. Similarly, the
XFD f1: univ/(undergraduate/courses/course/codeC→ undergraduate/courses/course/pre-
requisiteC)) entails tuples where the path univ/undergraduate/courses/course/pre-
requisiteC) leads us to obtain sub-trees having roots labelled prerequisiteC (i.e.,
sub-trees containing information about prerequisites). A document is valid w.r.t.
f1 if any two tuples agreeing on values obtained from univ/undergraduate/courses/-
course/codeC also agree on values obtained from univ/undergraduate/courses/cour-
se/prerequisiteC, i.e., obtained sub-trees are isomorphic.

Now consider the first three XFD in Table 1, concerning source 1. They
indicate that in a university, the code of a course determines its name, its domain
and its prerequisites. In other words, a course is identified by its code.

From the alignment of local ontologies we assume that Table 2 is available,
making the correspondence among paths on the different local sets of docu-
ments. Thus, it is possible to conclude that, for instance, XFD f: (univ/, (under-
graduate/courses/course/codeC, → undergraduate/courses/course/titleC)) and
(univ/, (courses/course/codeC, → courses/course/nameC)) are equivalent, i.e.,
they represent the same constraint since they involve the same concepts: in a
university, the code of a course determines its name.

undergraduate

univ

@domain courses

course

codeC title C prerequisiteC

codeC codeC

course

@domain codeC nameC@level

univ

courses

... course

course ...

codeC

prerequisiteC NbHours

Fig. 2. Two XML documents from different local sources.

Assuming that we have only these two local sources, we want to obtain, from
F1 and F2, the biggest set of XFD F that does not contradict any document in
X1 and X2. To reach this goal, we should consider all XFD derivable from F1

and F2, which may result in very big sets of XFD. Indeed, the set F is, usually,
a very big one - too big to work with. A better solution consists in computing
coverF , a cover of F (i.e., a (usually) smaller set of XFD that is equivalent to
F), without computing all XFD derivable from F1 and F2. In this paper, we
propose an algorithm that generates this set of XFD.

3

F XFD
1 (univ/, (undergraduate/courses/course/codeC,→ undergraduate/courses/course/titleC))
1 (univ/, (undergraduate/courses/course/codeC,→ undergraduate/courses/course/prerequisiteC))
1 (univ/, (undergraduate/courses/course/codeC,→ undergraduate/@domain))
2 (univ/, (courses/course/codeC,→ courses/course/nameC))
2 (univ/, (courses/course/codeC,→ courses/course/@domain))
2 (univ/, (courses/course/codeC,→ courses/course/@level))
2 (univ/, ({courses/course/nameC, courses/course/@level} → courses/course/NbHours))

Table 1. XFD in F1 and F2.

Paths from D1 Paths from D2

univ/undergraduate/courses/course/codeC univ/courses/course/codeC
univ/undergraduate/courses/course/titleC univ/courses/course/nameC
univ/undergraduate/courses/course/prerequisitesC univ/courses/course/prerequisitesC
univ/undergraduate/courses/course/prerequisitesC/codeC univ/courses/course/prerequisitesC/codeC
univ/undergraduate/@domain univ/courses/course/@domain

Table 2. Extract of the translation table

In our example, the resulting coverF would contain XFD of Table 3. Let us
analyse this solution. In Table 3, the first and the fourth XFD are equivalent.
They are kept in coverF since all documents inX1 andX2 are valid w.r.t. it. The
same reasoning is applied for the second and third XFD in Table 3. The two last
XFD involve concepts that occur only inX2 and, thus, cannot be violated by doc-
uments inX1. Notice that the XFD (univ/, (undergraduate/courses/course/codeC,→
undergraduate/courses/course/prerequisiteC)) in F1, which states that courses
with the same code have the same set of prerequisites, is not in F . The reason
is that, according to the ontology alignment, this XFD is equivalent to (univ/,
(courses/course/codeC, → courses/course/prerequisitesC)) in F2. However, as
F2 does not contain this XFD, documents in X2 may violate it (since the in-
volved concepts exist in X2).

(univ/, (undergraduate/courses/course/codeC,→ undergraduate/courses/course/titleC))
(univ/, (undergraduate/courses/course/codeC,→ undergraduate/@domain))
(univ/, (courses/course/codeC,→ courses/course/@domain))
(univ/, (courses/course/codeC,→ courses/course/nameC))
(univ/, (courses/course/codeC,→ courses/course/@level))
(univ/, ({courses/course/nameC, courses/course/@level} → courses/course/NbHours))

Table 3. XFD in the resulting set F .

3 Preliminaries

Our work uses XFD such as those in [2, 4]. This section recalls and introduces
some important concepts necessary in the definition of our XFD semantics. As
usual, XML document are seen as unranked labelled trees. We assume a finite
alphabet Σ and a set of positions U which denotes the set N∗ of all finite strings
of positive integers with the empty string ǫ (i.e., Dewey numbering).

4

Definition 1 (Prefix relation for positions). The prefix relation �pos in U
is: u �pos v iff uw = v for some w ∈ U . We say that D (D ⊆ U) is closed under
prefixes if u �pos v , v ∈ D implies u ∈ D. ✷

Definition 2 (XML Document). Let Σ = Σele ∪ Σatt ∪ {data} be an
alphabet where Σele is the set of element names and Σatt is the set of attribute
names. An XML document is represented by a tuple T = (t, type, value). The
tree t is the function t : dom(t) → Σ ∪{λ} where dom(t) is the set closed under
prefixes of positions u.j, such that (∀j ≥ 0) (u.j ∈ dom(t)) ⇒ (∀i 0 ≤ i <
j) (u.i ∈ dom(t)); where i and j ∈ N and u ∈ U . The symbol ǫ denoting the
empty sequence is the root position and the empty tree is {(ǫ, λ)}, with λ /∈ Σ.
Given a tree position p, function type(t, p) returns a value in {data, element,
attribute}.

Similarly, value(t, p) =

{

p if type(t, p) = element
val ∈ V otherwise

where V is an infinite recursively enumerable domain. ✷

As many other authors, we distinguish two kinds of equality in an XML tree,
namely, value and node equality. Two nodes are value equal when they are roots
of isomorphic sub-trees. Two nodes are node equal when they are at the same
position. To combine both equality notions we use the symbol E, that can be
represented by V for value equality, or N for node equality. Notice that our value
equality definition does not take into account the document order. For instance,
in Figure 3, nodes in positions 1.1.1 and 0.1.1 are value equal, but nodes 1.1
and 0.1 are not (elements title in their subtrees are associated to different data
values).

n

chapter

title section

title txt section

title chapter

title section

data

data

book

txt title

datadata

title chapter

title section

txttitle

data

data

book

data

library

0 1

0.0 0.1 0.2 1.0 1.1

1.1.0 1.1.1

data data
data section

txttitle

txt

data

data title

data

...

ǫ

English Lang Book

Journeys

Reading blabla
Reading

Animals

Vocabulary
...

Weather

Understanding ...

data data

1.0.0

BackPack

0.1.1 0.2.0 0.2.1

0.0.0

0.1.0

Readingblabla

Fig. 3. XML document: a library of English books. Each node has a position and a
label. For instance, t(ǫ) = library and t(0.1.1) = section.

5

Linear paths are used to address parts of an XML document. In our work,
paths are defined by using the path language PL.

Definition 3 (Path Language and Paths). Let PL be a path language where
a path is defined by

ρ ::= [] | l | ρ/ρ |ρ//l

where [] is the empty path, l is a label in Σ, ”/” is the concatenation operation,
”//” represents a finite sequence (possibly empty) of labels. Notice that l/[] =
[]/l = l and []//l = //l.
We distinguish between paths using the wild-card // and simple paths (those with
no wild-card) and we denote by IP the set of all possible rooted simple paths that
may occur in an XML tree t respecting a given schema D. ✷

In this work we consider that the set IP is generated from a given schema
D. Notice that IP is a finite set of simple (top-down) paths and, in this way,
the schema from which it is obtained should ensure a limited depth of label
repetitions. In other words, the language L(D), obtained from a finite state
automaton D (which is built from a given type D), should be finite. Such kind
of schema can be expressed, for instance, by a non-recursive DTD. In this way,
we are more general than [2, 4], where IP was the set containing only all possible
paths in one given tree.

It is important to notice that one path with wild-card can be associated
to a set of simple paths in IP. This set of simple paths is the language L(AP),
where AP is a finite-state automaton obtained on the basis of the two definitions
bellow.

Definition 4 (Finite state automaton BP built from P). Given a path
P in PL over Σ, we define the FSA BP as a 5-tuple (Q,Σ, I, δ, F) where Q
is a finite set of states, s0 is the initial state, δ is the transition function δ :
Q× (Σ ∪ {any})→ Q and F is the final state. The construction of BP is done
by parsing P , starting with Q = {s0}. Let s = s0 be the current state in BP . If
P is the empty path then F = {s0}, else while the end of P is not reached, let
C = Σ ∪ {[]} and let a be the next C symbol in P :
(1) If a ∈ Σ comes alone or a comes on the right of a ’/’ symbol (i.e., /a), then
we add a new state si (i ∈ N) to Q and define δ(s, a) = si. Let s = si be the
current state in BP .
(2) If a ∈ Σ comes on the right of a ’//’ symbol (i.e., //a), we add a new state
si to Q and define δ(s, a) = si. We also define δ(s, any) = s, where any is any
symbol in Σ. Let s = si be the current state in BP .
(3) If a =′ []′ comes on the right of a ’/’ symbol, we do nothing and continue
parsing P .
At the end of P , the current state is added to F . ✷

The automaton BP of Definition 4 has always the same format since paths in
PL are similar to restricted regular expressions. The deterministic FSA equiva-
lent to BP is easily obtained (just with more transitions).

6

Definition 5 (Finite state automaton AP associated to P in the context
of IP). Given a path P in PL and a set IP of simple paths, the FSA AP is the
one defined by path P such that L(AP) = L(BP) ∩ IP, where BP is the FSA of
Definition 4. ✷

Example 1. We suppose a DTD, concerning a library of English books as the one
in Figure 3, which constrains sections to have at most two lower levels of subsec-
tions. The FSA D built from this DTD is the one in Figure 4(a) and the language
L(D) = IP. Notice that D recognizes the language of prefixes of the paths defined
by the given DTD. Let P = library//section/title. The FSA built from P and
its deterministic counterpart are in Figure 4(b). Clearly L(BP) ∩ IP gives the
set of simple paths associated to P in the context of IP. In other words, this set
contains only the simple paths in L(BP) that trees respecting IP may have, i.e.,
{ library/book/chapter/section/title, library/book/chapter/section/section/title,
library/book/chapter/section/section/section/title}. Clearly, AP = D ∩BP . ✷

6

library
book

section

section

chapter

section

title

title, txt

title, txt

data

(a)

2

3

4

5

7

f

title

title, txt

library

1 2

(b)

Deterministic fsa for BP

library section

1 2 3

8

1
f

BP
any

title

3

section

section

f

other

other

other1

section title

Fig. 4. (a) Automaton D built from a DTD (L(D)) = IP). (b) Automaton BP (Def. 4)
for P = library//section/title and its deterministic counterpart (where other stands for
Σ \ {section} and other1 stands for Σ \ {section, title}).

A path P is valid if: (i) it conforms to the syntax of PL, (ii) L(AP) 6= ∅,
(iii) for all label l ∈ P , if l = data or l ∈ Σatt, then l is the last symbol in P .

In this work, given a path P in PL we define the following functions:

– Last(P) = ln where ln is the last label on path P .
– Parent(P) = {l1/ . . . /ln−1 | l1/ . . . /ln−1/ln ∈ L(AP) for n > 1}, the set of

simple paths starting at a node labelled by l1 and ending at the parent of ln
(where Last(P) = ln).

Definition 6 (Prefix of a path). Let P be a valid path and let AP be its
associated finite state automaton (Definition 5). Let PREFIX(AP) be the finite

7

state automaton that accepts the language containing all prefixes of L(AP)
1. A

prefix of P is a simple path P ′ such that P ′ ∈ L(PREFIX(AP)) (and thus we
note P ′ � P). This notion is extended for non simple paths Q and P as follows:
we write Q �PL P , if L(AQ) ⊆ L(PREFIX(AP)). ✷

Definition 7 (The longest common prefix (path intersection)). Let P
and Q be valid paths and let AP and AQ be their associated finite state automaton
(Definition 5). The longest common prefix of P and Q is the path P ∩ Q that
describes the set of simple paths {P ′ ∩ Q′ | P ′ ∈ L(AP) ∧ Q′ ∈ L(AQ)}. The
longest common prefix of two simple paths P ′ and Q′ (denoted P ′ ∩ Q′) is the
simple path R where R � P ′ and R � Q′ and there is no path R′ such that
R ≺ R′, R′ � P ′ and R′ � Q′. ✷

From Definition 7, notice that simple paths in the longest common prefix
of paths P and Q are obtained by the intersection of each two simple paths
described by P and Q. We refer to Appendix A for the computation of the
longest common prefix.

Example 2. Consider the XML document of Figure 3 and the set IP = L(D)
of Figure 4. The simple path /library/book/chapter/section, is a prefix for path
/library/book/chapter/section/section/title. Given P ′ =/library/book/chapter/-
section/section/title and Q′ = /library/book/chapter/section/section/txt, their
longest common prefix is /library/book/chapter/section/section.
Given P = /library//section/title/data and Q = /library//section/txt/data, the
longest common prefix P ∩ Q can be written as /library//section since P ∩
Q = { /library/book/chapter/section/, /library/book/chapter/section/section/,
/library/book/chapter/section/section/section } ✷

Definition 8 (Instance of a path P over t). Let P be a path in PL, AP

the finite-state automaton associated to P in the context of IP, and L(AP) the
language accepted by AP . Let I = p1/ . . . /pn be a sequence of positions such that
each pi is a direct descendant of pi−1 in t. Then I is an instance of P over a
given tree t if and only if the sequence t(p1)/ . . . /t(pn) ∈ L(AP). We denote by
Instances(P, t) the set of all instances of P over t. ✷

Some particular notations on path instances are now introduced:

– Given a path instance I = p1/ . . . /pn, we define Last(I) = pn, the last
position on I.

– Given I = p1/ . . . /pn (for n > 1), we denote by Parent(I) the sequence
p1/ . . . /pn−1.

– Let I = p1/ . . . /pn and J = u1/ . . . /um be path instances. We say that I is a
prefix of instance J (also denoted by I � J) if n ≤ m and p1 = u1, . . . , pn =
un. We say that I = J when I � J and J � I.

1 The automaton PREFIX(AP) is obtained from AP (which has F as the set of final
states and q0 as the initial state) by replacing F by F ′ = F ∪{q | q is a state in AP ,
reachable from q0 and from which we can reach a state in F}.

8

– Let I = p1/ . . . /pn and J = u1/ . . . /um be path instances. The longest

common prefix of these two instances, denoted by I ∩ J , is the path instance
K = v1/ . . . /vk where K � J and K � I and there is no path instance K ′

such that K ≺ K ′, K ′ � J and K ′ � I.

Example 3. In the document of Figure 3, I1 = ǫ/0/0.1/0.1.0/0.1.0.0, I2 =
ǫ/0/0.2/0.2.0/0.2.0.0 and I3 = ǫ/1/1.1/1.1.0/1.1.0.0 are instances of path P =/li-
brary/book/chapter/title/data. We have Last(I1) = 0.1.0.0 and Parent(I1) =
ǫ/0/0.1/0.1.0. The longest common prefix of I1 and I2 is ǫ/0 and of I1 and I3 is
ǫ. ✷

Notice that the longest common prefix allows the identification of the least
common anscestor and that Definition 7 gives the path for it.

We now remark that, in this paper, we will only deal with complete trees.

Definition 9 (Complete trees). Let IP be a set of simple paths associated to
an XML document T . We say that T is complete w.r.t. IP if whenever there
exist path P and P ′ in the associated IP such that P ′ ≺ P and there exist an
instance I ′ for P ′ such that node v′ ∈ Last(I ′), then there exists an instance I
for P such that v ∈ Last(I) and v′ is an ancestor of v. ✷

Example 4. Let IP be composed by paths R/A/C, R/A/D, R/B and their pre-
fixes. Figure 5 shows complete and non complete trees w.r.t. IP.

A

R

C D

B

C D

A

R

A

C D

B

C

B

C D

A

R

A

R

(a) (b) (c) (d)

Fig. 5. Examples of complete trees ((a) and (b)) and non complete trees ((c) and (d))
w.r.t. IP.

Given two paths P and Q, the following definition allows us to verify whether
two given path instances match on the longest common prefix of P and Q.

Definition 10 (Testing instances of the longest common prefix of paths).
Let P and Q be two valid paths over a tree t. The boolean function isInst lcp(P, I,
Q, J) returns true when all the following conditions hold: (i) I ∈ Instances(P, t);
(ii) J ∈ Instances(Q, t) and (iii) I ∩ J is an instance of a path in P ∩Q; oth-
erwise, it returns false. ✷

Now we introduce the notion of branching paths also called a pattern in the
literature [3, 17]. A branching path is a non-empty set of simple paths having a
common prefix. The projection of a tree over a branching path determines the

9

tree positions corresponding to the given path. Thus, as defined below, this pro-
jection is a set of prefix closed simple path instances that respect some important
conditions.

Definition 11 (Branching path). A branching path is a finite set of prefix-
closed (simple) paths on a tree t. ✷

Definition 12 (Projection of a tree T over a branching path M). Let
M be a branching path over a tree T . Let LongM be the set of paths in M that
are not prefix of other paths in M . Let SetPathInst be the set of (simple) path
instances that verifies:

1. For all paths P ∈ LongM there is one and only one instance inst ∈ Instances(P, t)
in the set SetPathInst.

2. For all inst ∈ SetPathInst there is a path P ∈ LongM such that inst ∈
Instances(P, t).

3. For all instances inst et inst′ in SetPathInst, if inst ∈ Instances(P, t) and
inst′ ∈ Instances(Q, t), then isInst lcp(P, inst,Q, inst′) is true.

A projection of T over M , denoted by ΠM (T), is a tuple (ti, typei, valuei) where
typei(ti, p) = type(t, p), valuei(ti, p) = value(t, p) and ti is a function ∆ → Σ
in which:

– ∆ =
⋃

inst ∈ SetPathInst{p | p is a position in inst}

– ti(p) = t(p), ∀p ∈ ∆ ✷

Given the projection of two branching paths, ΠM 1
(T) and ΠM 2

(T), the
union ΠM 1

(T) ∪ ΠM 2
(T) is naturally obtained by considering all the path

instances used to obtain each projection.

Example 5. Consider the XML document of Figure 3. Let M be a branch-
ing path defined from the set {library/book/title, /library/book/chapter/title,
/library/book/chapter/section/title }, i.e., M contains these paths and all their
prefixes.
An example of a projection of T over M is the one where t(ǫ) = library,
t(0) = book, t(0.0) = title, t(0.1) = chapter, t(0.1.0) = title, t(0.1.1) = section,
and t(0.1.1.0) = title. However, if we take t(0) = book, t(0.0) = title, t(0.1) =
chapter, t(0.1.0) = title, t(0.2.1) = section, and t(0.2.1.0) = title we do not have
a projection of T overM . Indeed, in Definition 12, if we consider P =/library/book/chapter/-
title and its instance inst = ǫ/0/0.1/0.1.0 together with Q = /library/book/-
chapter/section/title and its instance inst′ = ǫ/0/0.2/0.2.1/0.2.1.0, we obtain
isInst lcp(P, inst,Q, inst′) = false. Notice that the longest common paths P∩Q
is /library/book/chapter/. ✷

From Definition 12, we remark that the projection of T over a branching
path M contains exactly one instance of every path in M . In the following,
when needed, we denote by ΠM (T)[P] the unique instance of the simple path P
in ΠM (T). Indeed, when we write ΠM (T)[P] we restrict the projection of T
over M to the instance (in the projection) of one simple path P .

10

Lemma 1. Let ΠM (T) be a projection of a tree T over a branching path M .
For each two simple paths P and Q in M if I = ΠM (T)[P] and J = ΠM (T)[Q]
then we have isInst lcp(P, I,Q, J) = true. ✷

Proof: Let P and Q be two simple paths in a branching path M . Let ΠM (T)
be the projection of M over a tree T and let I and J be the instances of P and
Q in ΠM (T). We have the following cases:

1. Case 1: P ≺ Q. In this case P ∩Q = P . Since I and J are the unique path
instances of P and Q in ΠM (T), we know that I ∩ J = I. Thus we have
that isInst lcp(P, I,Q, J) = true.

2. Case 2: P 6≺ Q and Q 6≺ P . We can distinguish three different situations.
(i) P andQ are in LongM . By Definition 12 we know that isInst lcp(P, I,Q, J) =
true. (ii) P ∈ LongM and Q 6∈ LongM . Let Q′ ∈ LongM such that Q ≺ Q′.
Let J ′ = ΠM (T)[Q′]. By Definition 12, we know that isInst lcp(P, I,Q′, J ′) =
true and thus I ∩ J ′ is the instance of P ∩Q′ in the projection ΠM (T). We
also know that I∩J ′ ≺ J ′. From item 1 we know that isInst lcp(Q, J,Q′, J ′) =
true and thus J ≺ J ′. As J 6≺ I (since Q 6≺ P) we have that I∩J ′ ≺ J . Since
J ≺ J ′ we conclude that I∩J = I∩J ′ and thus isInst lcp(P, I,Q, J) = true.
(iii) P 6∈ LongM and Q 6∈ LongM is similar to the situation (ii) ✷

4 Functional Dependencies in XML

Usually, a functional dependency in XML (XFD) is denoted by X → Y (where
X and Y are sets of paths) and it imposes that for each pair of tuples2 t1 and t2
if t1[X] = t2[X] then t1[Y] = t2[Y]. We assume that an XFD has a single path
on the right-hand side and possibly more than one path on the left-hand side -
generalizing the proposals in [1, 17, 13, 18]. The dependency can be imposed in
a specific part of the document, and, for this reason, we specify a context path.

Definition 13 (XML Functional Dependency). Given an XML tree t, an
XML functional dependency (XFD) is an expression of the form

f = (C, ({P1 [E1], . . . , Pk [Ek]} → Q [E]))
where C is a path that starts from the root of t (context path) ending at the
context node; {P1, . . . , Pk} is a non-empty set of paths in t and Q is a single
path in t, both Pi and Q start at the context node. The set {P1, . . . , Pk} is the
left-hand side (LHS) or determinant of an XFD, and Q is the right-hand side
(RHS) or the dependent path. The symbols E1, . . . , Ek, E represent the equality
type associated to each dependency path. When symbols E or E1, . . . , Ek are
omitted, value equality is the default choice. ✷

Notice that in an XFD the set of paths {C/P1, . . . ,C/Pk, C/Q} defines
branching paths and that, as in [18], our XFD definition allows the combination
of two kinds of equality.

2 Tuples formed by the values or nodes found at the end of the path instances of X
and Y in a document T .

11

Definition 14 (XFD Satisfaction). Let T be an XML document and f =
(C, ({P1 [E1], . . . , Pk [Ek]} → Q [E])) an XFD. Let M be a branching path
defined from f . We say that T satisfies f (noted by T |= f) if and only if for all
Π1

M (T) and Π2
M (T) that are projections of T on M and that coincide at least

on their prefix C, we have:
If τ1[C/P1, . . . , C/Pk] =Ei,i∈[1...k] τ

2[C/P1, . . . , C/Pk] then τ1[C/Q] =E τ2[C/Q]
where τ1 (resp. τ2) is the tuple obtained from Π1

M (T) (resp. Π2
M (T)). ✷

univ

@nameUniv
0

@cityUniv
1

unde rg radua te
2

...
3

unde rg radua te
4

Université d’Orléans Or léans @year
2.0

@domain
2.1

s t u d e n t s
2.2

courses
2.3

enroll
2.4

...

2012 Computer Sc ience s t u d e n t
2.2.0

cou rse
2.3.0

cou rse
2.3.1

reg is ter2.4.0

idSt2.2 .0 .0n a m e S t
2.2 .0 .1

addSt
2.2 .0 .2

d a t a d a t a d a t a

codeC
2.3.0.0

t i t leC
2.3 .0 .1

prerequis i tesC
 2.3.0.2

d a t a d a t a codeC
2.3.0.2.0

codeC

 2.3.0.2.1

d a t a d a t a

codeC
2.3.1.0

t i t leC
2.3 .1 .1

prerequis i tesC
2.3 .1 .2

d a t a d a t a codeC
2.3.1.2.0

codeC

 2.3.1.2.1

d a t a d a t a

idSt
2.4.0.0

d e g r e e
2.4 .0 .1

codeC
 2.4.0.2

d a t a d a t a d a t a

2039 Alex 10 rue co lombia 1 Java

3 4

2 SQL

4 3

2039 1st level 2

Fig. 6. XML document concerning the first degree (undergraduate) at a university

Example 6. Consider the following XFD on document of Figure 6.

XFD1: univ//courses/, ({course/codeC} → course/titleC)
Considering the set of courses of an undergraduate domain, courses having
the same code have the same title.

XFD2: univ/, ({undergraduate//course/codeC} → undergraduate//course/titleC)
Considering the set of all courses in an university, courses having the same
code have the same title.

XFD3: univ/, ({undergraduate/@year, undergraduate/@domain, undergraduate//register/idSt} →
undergraduate//register/degree).
At the university, for a given year and a given domain, a student can be
enrolled only for courses that correspond to the same degree.

XFD4: univ//students/, ({student/idSt} → student[N])
Considering the set of students of an undergraduate domain, no two students
have the same number and each student appears once. ✷

An XML document T satisfies a set of XFD F , denoted by T |= F , if T |= f
for all f in F . Usually it is important to reason whether a given XFD f is

12

also satisfied on T when F is satisfied. The following definition introduces this
notion.

Definition 15 (XFD Implication). Given a set F of XFDs we say that F
implies f , denoted by F |= f , if for every XML tree T such that T |= F then
T |= f . ✷

Based on the notion of implication we can introduce the definition of closure
for a set of XFDs.

Definition 16 (Closure of a set of XFD). The closure of a set of XFD F ,
denoted by F+, is the set containing all the XFDs which are logically implied by
F , i.e., F+ = {f | F |= f}. ✷

Notation: In the rest of this paper, given an XFD (C, (X → A)) where X =
{P1, . . . , Pn} is a set of paths and A is a path, we use C/X as a shorthand for
the set {C/P1, . . . , C/Pn}.

5 Axiom System

To find which XFDs f are also satisfied when a given set of XFDs F is satisfied
we need inference rules that tell how one or more dependencies imply other
XFDs. In this section we present our axiom system and prove that it is sound
(we cannot deduce from F any false XFD) and complete (from a given set F ,
the rules allow us to deduce all the true dependencies). Our axiom system is
close to the one proposed in [16], but has two important differences: our XFD
are defined w.r.t. a context (and not always w.r.t. the root) and we use two kinds
of equality.

Definition 17. - Inference Rules for XFDs: Given a tree T and XFD de-
fined over paths in IP, our axioms are:

A1: Reflexivity
(C, ({P1 [E1], . . . , Pn [En]} → Pi [Ei])), ∀i ∈ [1 . . . n].

A2: Augmentation
If (C, ({P1 [E1], . . . , Pn [En]} → {Q1 [E

′
1], . . . , Qm [E′

m]})) then
(C, ({P0 [E0], P1 [E1], . . . , Pn [En]} → {P0 [E0], Q1 [E

′
1], . . . , Qm [E′

m]})).
A3: Transitivity

If (C, ({P1 [E1], . . . , Pn [En]}→ {Q1 [E
′
1], . . . ,Qm [E′

m]})) and (C, ({Q1 [E
′
1],

. . . , Qm [E′
m]} → S [Es])) then (C, ({P1 [E1], . . . , Pn [En]} → S [Es])).

A4: Branch Prefixing
If (C, ({P ′

1 [E
′
1], . . . , P

′
n [E

′
n]}→ Pn+1 [En+1])) and there exist paths C/P1, . . . , C/Pn

(not necessarily distinct) such that:
(i) P ′

i ∩ Pn+1 �PL Pi and
(ii) Pi �PL P ′

i or Pi �PL Pn+1

then (C, ({P1 [E1], . . . , Pn [En]} → Pn+1 [En+1])).

13

A5: Ascendency
If Last(P) ∈ Σele and Q is a prefix for P then (C, (P [N] → Q [N])).

A6: Attribute Uniqueness
If Last(P) ∈ Σatt then (C, (Parent(P) [E] → P [E])).

A7: Root Uniqueness
(C, ({P1 [E1], . . . , Pn [En]} → [] [En+1])).

A8: Context Path Extension
If (C, ({P1 [E1], . . . , Pn [En]} → Pn+1 [En+1])) and there is a path Q such
that P1 = Q/P ′

1, . . . , Pn+1 = Q/P ′
n+1

then (C/Q, ({P ′
1 [E1], . . . , P

′
n [En]} → P ′

n+1 [En+1])).

Example 7. A given university has one or more undergraduate specialties (first
degree) and, for each of them, we store its domain and year together with infor-
mation concerning students, courses and enrollment. Figure 6 shows part of this
XML document over which we illustrate the intuitive meaning of our axioms.

A1 : univ/undergraduate/, ({idSt, nameSt, addSt} → addSt). As usual, the
reflexivity axiom concerns trivial functional dependencies.

A2 : If univ//courses/, ({course/codeC} → course/titleC)
then univ//courses/, ({course/codeC, course/prerequisitesC} →

{course/titleC, course/prerequisitesC}).
Clearly, if courses having the same code correspond to only one title then
courses with the same code and the same set of prerequisites also correspond
to one title and set of prerequisites.

A3 : If univ/undergraduate/, ({courses//codeC} → course[N])
and univ/undergraduate/({courses/course[N]} → titleC[N])

then univ/undergraduate/({courses//codeC} → titleC[N]).
In the context of an undergraduate specialty, we consider that a course is
uniquely defined by codeC (i.e., CodeC is the key), and thus there is no two
courses with the same codeC. Moreover, a course has only one title node. In
this context, we can derive by axiom A3, that given codeC, one can determine
the unique titleC associated to it.

A4 : If univ/, ({undergraduate/domain, courses//codeC} →
undergraduate/enroll//degree)

then we can say, for instance, that:
univ/, ({undergraduate/domain, undergraduate/courses/course} →

undergraduate/enroll//degree)
or univ/, ({undergraduate/domain, undergraduate/courses} →

undergraduate/enroll//degree)
or univ/, (undergraduate→ undergraduate/enroll//degree)
We consider the XFD stating that all courses having codeC in the same do-
main correspond to the same degree. From this XFD, we can deduce, among
others XFD, an XFD stating that an undergraduate specialty is associated
to only one degree. In other words, an undergraduate specialty prepares to
only one degree (e.g., Bachelor’s)

A5 : Given a path P = undergraduate//register/idSt, by A5 we can derive, for
instance, univ/, ({undergraduate//register/idSt} → undergraduate//register).

14

A6 Given P = undergraduate/@year, by A6, we derive that
univ/, ({undergraduate[N]} → @year[N].

A8 If univ/udergraduate, ({/students/student/idSt} → /students/student/nameSt)
then univ/udergraduate/students, ({/student/idSt} → /student/nameSt). If,
in the context of an undergraduate domain, the idSt identifies the name of
a student; this is also true in the context of students.

Notice that A5 does not hold when dealing with value equality. The tree on Fig-
ure 6 violates the XFD univ/, ({undergraduate//course/prerequisitesC [V]} →
undergraduate//course [V]). Indeed Last(2.3.0.2) =V Last(2.3.1.2) but Last(2.3.
0) 6=V Last(2.3.1). ✷

The set of axioms in Definition 17 establishes an inference system with which
one can derive other XFDs.

Definition 18. - XFD Derivation: Given a set F of XFDs, we say that an
XFD f is derivable from the functional dependencies in F by the set of inference
rules in Definition 17, denoted by F ⊢ f , if and only if there is a sequence of
XFDs f1, f2, . . . , fn such that (i) f = fn and (ii) for all i = 1, . . . , n the XFD
fi is in F or it is obtainable from f1, f2, . . . fi−1 by means of applying an axiom
A1-A8 (from Definition 17). ✷

5.1 Soundness of the Axiom System

In this section we prove that our axiom system is sound, i.e., our axioms al-
ways lead to true conclusions when we deal with complete XML trees. We start
by proving some lemmas. The first one deals with properties concerning the
longest common prefix of paths. The following example illustrates the situation
it concerns.

Example 8. We consider the XML document in Figure 6 and the following paths:
PK = univ/undergraduate/@domain.
PJ = univ/undergraduate/students/student/idSt.
PI = univ/undergraduate/students/student/nameSt.

In this situation we have PI ∩PJ = univ/undergraduate/students/student and
PJ ∩ PK = univ/undergraduate/. Clearly, PJ ∩ PK � PI ∩ PJ . Then, consider
path instances where isInst lcp(PI , I, PJ , J) = true and isInst lcp(PI , I, PK ,K) =
true. For instance, let instance K = ǫ/2/2.1, instance J = ǫ/2/2.2/2.2.0/2.2.0.0
and I = ǫ/2/2.2/2.2.0/2.2.0.1. Notice that in this case we also have isInst lcp(PJ , J,
PK ,K) = true. ✷

The above example suggests that a kind of transitivity property could be
established for the function isInst lcp. The following lemma proves that this is
actually possible.

Lemma 2. Let T be an XML document and IP its associated set of simple
paths. Let PI , PJ , PK be distinct paths in IP. If we have:

15

1. PJ ∩ PK � PI ∩ PJ and
2. isInst lcp(PI , I, PJ , J) = true and isInst lcp(PI , I, PK ,K) = true

then isInst lcp(PJ , J, PK ,K) = true. ✷

Proof: In the following, let vi, vj and vk be the nodes corresponding to Last(I),
Last(J) and Last(K), respectively. From the conditions stated in the lemma,
we can distinguish the three situations illustrated in Figure 7. When PJ ∩PK ≺
PI ∩ PJ we have the situation shown in Figure 7(a). When PJ ∩ PK = PI ∩ PJ

we can have the situations in Figure 7(b) or (c).

vj,k = vi,k

vi,j

vj vi

vk

PI ∩ PJ ≻ PJ ∩ PK

PI ∩ PJ

PJ PI

PK

(a)

vj,k

vj vi vk

PI ∩ PJ = PJ ∩ PK

PJ PI PK

(b)

vj,k = vi,j

vj

vi,k

vi vk

PI ∩ PJ = PJ ∩ PK

PI ∩ PK

PI PK

PJ

(c)

Fig. 7. Three situations obtained from the conditions of Lemma 2.

From condition 2 and Definition 12 we know that I ∩ J is the instance of the
longest common prefix of PI and PJ (PI ∩PJ). The same reasoning is applied for
I ∩K. We denote by vi,j the node Last(I ∩J) and by vi,k the node Last(I ∩K).
Clearly, vi,j is an ancestor for vi and vj while vi,k is an ancestor for both vi
and vk.
Case 1 - Figure 7(a): In this case, we have PI ∩ PK = PJ ∩ PK . From this
fact together with condition 1, we can say that node vi,k is an ancestor of vi,j .
Therefore vi,k is also an ancestor of vj . Since PI ∩ PK = PJ ∩ PK we have that
Last(J ∩K) = Last(I ∩K) = vi,k. Thus, isInst lcp(PJ , J, PK ,K) = true.
Case 2 - Figure 7(b): In this case, we also have PI ∩ PK = PJ ∩ PK and the
proof is similar to the previous one.
Case 3 - Figure 7(c): In this case, we have PJ ∩PK ≺ PI∩PK . From condition 1
and the fact that PJ ∩ PK ≺ PI ∩ PK , we can say that node vi,j is an ancestor
of vi,k. Therefore vi,j is also an ancestor of vk. Since PI ∩PJ = PJ ∩PK we have
that Last(J ∩K) = Last(I ∩J) = vi,j . Thus, isInst lcp(PJ , J, PK ,K) = true. ✷

The following lemma deals with the extension of a branching path (and its
projection) by the addition of a path (and its instance).

16

Lemma 3. Let M be a branching path over a complete tree T and let P ′ be a
valid path. Let M ′ be the branching path obtained by the union M ∪ {P ′}. If
there is a projection ΠM (T) then there exists an instance of P ′ on T (denote
by Π{P ′}(T)[P

′]) such that ΠM ′(T) = ΠM (T) ∪Π{P ′}(T). ✷

Proof : Following Definition 12, we consider LongM = {P1, . . . , Pn} and the set
of instances SetPathInstM = {ΠM (T)[P1], . . . , ΠM (T)[Pn]}. We rename P ′ as
Pn+1. Let us consider the set of paths {P1 ∩ Pn+1, . . . , Pn ∩ Pn+1}. These paths
can be totally ordered w .r .t . the prefix relation ,�, since each path is a prefix
of Pn+1. Then, we relabel the subscripts of P1, . . . , Pn such that:

i < j ⇒ (Pi ∩ Pn+1) � (Pj ∩ Pn+1) (1)

In the lights of (1), let us consider the path Pn. As T is complete, there exists
an instance Π{Pn+1}(T)[Pn+1] of the path Pn+1 such that:

isInst lcp(Pn, ΠM (T)[Pn], Pn+1, Π{Pn+1}(T)[Pn+1]) = true (2)

Let ΠM ′(T) = ΠM (T) ∪ Π{Pn+1}(T). The proof consists in showing that the
set of path instances SetPathInstM ′ = SetPathInstM ∪Π{Pn+1}(T)[Pn+1] also
verifies the three conditions in Definition 12. The verification of the first two
conditions is obvious. We now consider the verification of the third condition,
namely:

∀ i, j ∈ [1, . . . , n+ 1], isInst lcp(Pi, ΠM ′(T)[Pi], Pj , ΠM ′(T)[Pj]) = true (3)

By hypothesis, the construction of SetPathInstM assumes that ∀ i, j ∈ [1, . . . , n],
isInst lcp(Pi, ΠM (T)[Pi], Pj , ΠM (T)[Pj]) = true. SinceΠM ′(T)[Pi] = ΠM (T)[Pi]
(for i ∈ [1, . . . , n]), and by considering (2), the condition (3) is reduced to:

∀ i ∈ [1, . . . , n− 1], isInst lcp(Pi, ΠM (T)[Pi], Pn+1, ΠM ′(T)[Pn+1]) = true (4)

Finally, by using the Lemma 2 with PI = Pn, PJ = Pn+1, PK = Pi, and the fact
that (Pi ∩Pn+1) � (Pn ∩Pn+1) (from (1)), we obtain (4) which ends the proof
of the lemma. ✷

To illustrate Lemma 3, consider the following example.

Example 9. We consider the XML document of Figure 6. Let M = {univ/under-
gradute/courses/course/codeC , univ/undergradute/courses/course/titleC}. We
consider the projection ofM which contains the path instances ǫ/2/2.3/2.3.0/2.3.0.0
and ǫ/2/2.3/2.3.0/2.3.0.1. Let P ′ = univ/undergradute/@domain and M ′ =
M ∪ P . Instance (ǫ/2/2.1) of P ′ is the one for which we have ΠM ′(T) =
ΠM (T) ∪Π{P ′}(T). ✷

The next example illustrates a special situation where an XFD not satisfied
by a given document has at the left-hand side a path which is a prefix of the
path on the right-hand side.

Example 10. We consider the example in Figure 6, the XFD

17

f = (univ/undergradute/, ({courses//titleC, courses//prerqtC}
→ courses//prerqtC/CodeC))

and the branching pathM definded by f . The document of Figure 6 does not sat-
ify f . Notice that P2 = univ/undergradute/courses/course/prerqtC in the left-
hand side of f is a prefix for P = univ/undergradute/courses/course/prerqtC/CodeC
in right-hand side of f . Also remark that we can find two projections of the XML
tree over M such that Last(Π1

M (T)[C/P2]) =N Last(Π2
M (T)[C/P2]): the two

projections ending on node 2.3.0.2 ✷

The following lemma proves that in situations as the one illustrated by Ex-
ample 10 we can always find two projections of the XML tree over the branching
path M such that Last(Π1

M (T)[C/Pj]) =N Last(Π2
M (T)[C/Pj]), where Pj is

the path on the left-hand side which is a prefix of the one on the right-hand
side.

Lemma 4. Let T be an XML document, f = (C, ({P1 [E1], . . . , Pn [En]} →
Pn+1 [En+1])) an XFD and let M be the branching path {C/P1, . . . , C/Pn+1}.
If T 6|= f and there exists a j ∈ [1 . . . n] such that Pj � Pn+1 then we can find two
projections Π1

M (T) and Π2
M (T) for M in T such that Last(Π1

M (T)[C/Pj]) =N

Last(Π2
M (T)[C/Pj]). ✷

Proof : The proof is by contradiction. Suppose that for any two projections
Π1

M (T) andΠ2
M (T) for the branching pathM in T we have Last(Π1

M (T)[C/Pj]) 6=N

Last(Π2
M (T)[C/Pj]). Since T 6|= f , then from Definition 14, we can deduce that

there exists two projections (let Π1
M (T) and Π2

M (T) be these two instances) for
the branching path M in T such that τ1[C/P1, . . . , C/Pn] =Ei,i∈[1...n]

τ2[C/P1, . . . , C/Pn] and τ1[C/Pn+1] 6=En+1
τ2[C/Pn+1].

– If Ej = N then Last(Π1
M (T)[C/Pj]) =N Last(Π2

M (T)[C/Pj]) which con-
tradicts the assumption Last(Π1

M (T)[C/Pj]) 6=N Last(Π2
M (T)[C/Pj]).

– Otherwise, if Ej = V then Last(Π1
M (T)[C/Pj]) =V Last(Π2

M (T)[C/Pj]).
First suppose that the instances Π1

M (T)[C/Pj], Π
2
M (T)[C/Pj] are prefix for

two instances of path Pn+1. Let Π
1
M (T)[C/Pj] be the prefix for I and J and

let Π2
M (T)[C/Pj] be the prefix for I ′ and J ′.

1. If Last(I) 6=V Last(J) then consider that:
• Π1

M (T)[C/Pn+1] = I;
• there is a projection Π3

M (T) that coincides with Π1
M (T) except for the

instance of path Pn+1, since we make Π3
M (T)[C/Pn+1] = J .

In this case, Last(Π1
M (T)[C/Pj]) =N Last(Π3

M (T)[C/Pj]) and, thus,
we have a contradiction w.r.t.the intial assumption which says that for
any projection of M on T , the last nodes of Pj ’s instance are not node
equal. The same argument is used when Last(I ′) 6=V Last(J ′).

2. Else, we are in the situation where Last(I) =V Last(J) and Last(I ′) =V

Last(J ′). Since Last(Π1
M (T)[C/Pn+1]) 6=V Last(Π2

M (T)[C/Pn+1]), this
implies that also Last(Π1

M (T)[C/Pj]) 6=V Last(Π2
M (T)[C/Pj]). We have

a contradiction with our premise which says that Last(Π1
M (T)[C/Pj]) =V

Last(Π2
M (T)[C/Pj]).

18

Now suppose that each instance Π1
M (T)[C/Pj] and Π2

M (T)[C/Pj] is a prefix
for only one Pn+1’s instance. Since Last(Π1

M (T)[C/Pn+1]) 6=V

Last(Π2
M (T)[C/Pn+1]), this implies that also Last(Π1

M (T)[C/Pj]) 6=V

Last(Π2
M (T)[C/Pj]). We have again a contradiction with our premise that

Last(Π1
M (T)[C/Pj]) =V Last(Π2

M (T)[C/Pj]). ✷

We can now prove the soundness of our axiom system on complete XML
trees.

Theorem 1. Axioms A1-A8 are sound for XFD on complete XML trees. ✷

Proof : We consider a complete XML document T = (t, type, value).

A1: Let f = (C, ({P1 [E1], . . . , Pn [En]} → Pi [Ei])). The proof is by contra-
diction. Assume that T 6|= f . From Definition 14, we can deduce that
there exists two projections Π1

M (T) and Π2
M (T) for the branching path

M = {C/P1, . . . , C/Pn} in T such that τ1[C/P1, . . . , C/Pn] =Ei,i∈[1...n]

τ2[C/P1, . . . , C/Pn] and for a j ∈ [1 . . . n], τ1[C/Pj] 6=Ej
τ2[C/Pj]. To sat-

isfy the left-hand side equality we know that τ1[C/Pj] =Ej
τ2[C/Pj]. But

this is a contradiction with the fact that τ1[C/Pj] 6=Ej
τ2[C/Pj].

A2: Let f = (C, ({P1 [E1], . . . , Pn [En]} → {Q1 [E
′
1], . . . , Qm [E′

m]})) and f ′ =
(C, ({P0 [E0], P1 [E1], . . . , Pn [En]} → {P0 [E0], Q1 [E

′
1], . . . , Qm [E′

m]})).
The proof is by contrapositive. We show that if T 6|= f ′ then T 6|= f . Let
us define Q0 = P0 and E′

0 = E0. From Definition 14, we can deduce that
there exist Qj with j ∈ [0, . . . ,m] such that τ1[C/Qj] 6=E′

i
τ2[C/Qj]. Sup-

pose first that Qj = Q0. Then by using the same arguments as in A1, we
obtain a contradiction since from Definition 14, τ1[C/Q0] =E′

0
τ2[C/Q0]

but τ1[C/Q0] 6=E′

0
τ2[C/Q0]. Thus suppose that j > 0. As T 6|= f ′, from

Definition 14 we have that ∀ i ∈ [1, . . . , n] τ1[C/Pi] =Ei
τ2[C/Pi] and that

there exist a j > 0, such that τ1[C/Qj] 6=E′

j
τ2[C/Qj]. Therefore T 6|= f as

claimed.
A3: Let f = (C, ({P1 [E1], . . . , Pn [En]} → {Q1 [E

′
1], . . . , Qm [E′

m]})), f ′ = (C,
({Q1 [E

′
1], . . . , Qm [E′

m]} → S [Es])) and f ′′ = (C, (P1 [E1], . . . , Pn [En]} →
S [Es])). The argument is by contrapositive: we show that if T 6|= f ′′ then
either T 6|= f ′ or T 6|= f . Let us define Pn+1 = S and En+1 = Es. Since
T 6|= f ′′ then by using Definition 14, there exist two projections Π1

M (T) and
Π2

M (T) for the branching path M = {C/P1, . . . , C/Pn+1} in T such that
τ1[C/P1, . . . , C/Pn] =Ei,i∈[1...n] τ

2[C/P1, . . . , C/Pn] and τ1[C/Pn+1] 6=En+1

τ2[C/Pn+1]. We extend the branching path M = {C/P1, . . . , C/Pn+1} to
obtain M ′ = {C/P1, . . . , C/Pn+1, C/Q1, . . . , C/Qm}. From several applica-
tions of Lemma 3 we know that we can build instances Π1

M ′(T) from Π1
M (T)

and Π2
M ′(T) from Π2

M (T). In instances Π1
M ′(T) and Π2

M ′(T) the two fol-
lowing situations are possible (where u1 and u2 are tuples from Π1

M ′(T) and
Π2

M ′(T) respectively):

1. u1[C/Q1, . . . , C/Qm] =E′

i
,i∈[1...m] u

2[C/Q1, . . . , C/Qm] and in this case

we have T 6|= f ′ because u1[C/Pn+1] 6=En+1
u2[C/Pn+1],

19

2. or there is j ∈ [1 . . .m] such that u1[C/Qj] 6=E′

j
u2[C/Qj]. In this case

we have T 6|= f .

We can conclude that A3 is correct.
A4: Let f = (C, ({P ′

1 [E
′
1], . . . , P

′
n [E

′
n]} → Pn+1 [En+1])) and f ′ = (C, ({P1 [E1],

. . . , Pn [En]} → Pn+1 [En+1])). The proof is by contradiction. Suppose that
T |= f but T 6|= f ′. From Axiom A1, we can assume that for all i ∈ [1 . . . n],
Pi 6= Pn+1. From Definition 14, we can deduce that there exists two projec-
tions Π1

M (T) and Π2
M (T) for the branching path M = {C/P1, . . . , C/Pn+1}

in T such that τ1[C/P1, . . . , C/Pn] =Ei,i∈[1...n] τ
2[C/P1, . . . , C/Pn] and

τ1[C/Pn+1] 6=En+1
τ2[C/Pn+1]. We now show that there exist two projec-

tions Π1
M ′(T) and Π2

M ′(T), construct from Π1
M (T) and Π2

M (T), for the
branching path M ′ = {C/P ′

1, . . . , C/P ′
n, C/Pn+1} in T such that:

u1[C/P ′
1, . . . , C/P ′

n] =E′

i
,i∈[1...n] u

2[C/P ′
1, . . . , C/P ′

n] and (5)

u1[C/Pn+1] 6=En+1
u2[C/Pn+1]. (6)

However from our hypothesis we know that for all two projections Π1
M ′(T)

and Π2
M ′(T) such that (5) is satisfied then we have u1[C/Pn+1] =En+1

u2[C/Pn+1]. If Π
1
M ′(T) and Π2

M ′(T) really exist, we have a contradiction
with (6) and the axiom A4 will be satisfied.

We detail the proof by showing that it is possible to obtain two projections
for M ′ satisfying (5) and (6). We start by considering that Π1

M ′(T)[C/Pi] =
Π1

M (T)[C/Pi] and Π2
M ′(T)[C/Pi]) = Π2

M (T)[C/Pi] ∀ i ∈ [1 . . . n+ 1].

n

Pi

Pn+1

Pk

P
′

i

Fig. 8. Graphical representation of paths to be projected on a tree. Here, path Pk ≺
Pn+1 where Pk is one of the paths in the left-handside of XFD f ′ and Pi � P ′

i .

1. If ∃ k ∈ [1 . . . n] such that Pk � Pn+1 (Figure 8) then, from Lemma 4,
we can consider that :

Last(Π1
M ′(T)[C/Pk]) =N Last(Π2

M ′(T)[C/Pk]). (7)

By considering Π1
M ′(T) we know that ∀ i ∈ [1 . . . n],

isInst lcp(C/Pi, Π
1
M ′(T)[C/Pi], C/Pn+1, Π

1
M ′(T)[C/Pn+1]) = true

and isInst lcp(C/Pi, Π
1
M ′(T)[C/Pi], C/Pk, Π

1
M ′(T)[C/Pk]) = true.

(8)

20

We have isInst lcp(C/Pi, Π
1
M ′(T)[C/Pi], C/Pk, Π

2
M ′(T)[C/Pk]) = true

from (7) and (8). Then, by using Lemma 2 with I = Π2
M ′(T)[C/Pk], J =

Π1
M ′(T)[C/Pi], K = Π2

M ′(T)[C/Pn+1], and (Pi ∩ Pn+1) � (Pk ∩ Pn+1)
we obtain ∀ i ∈ [1 . . . n],

isInst lcp(C/Pi, Π
1
M ′(T)[C/Pi], C/Pn+1, Π

2
M ′(T)[C/Pn+1]) = true. (9)

Since t is complete there exist instances Ji such that ∀ i ∈ [1 . . . n],
Π1

M ′(T)[C/Pi] � Ji and Ji ∈ Instances(C/P ′
i , t). Let ∀ i ∈ [1 . . . n],

Π1
M ′(T)[C/P ′

i] = Π2
M ′(T)[C/P ′

i] = Ji. Then by using Lemma 2, (8), (9)
we obtain ∀ i, j ∈ [1 . . . n+1] (recall that we consider that P ′

n+1=Pn+1):

isInst lcp(C/P ′
i , Π

1
M ′(T)[C/P ′

i], C/P ′
j , Π

1
M ′(T)[C/P ′

j]) = true (10)

and isInst lcp(C/P ′
i , Π

2
M ′(T)[C/P ′

i], C/P ′
j , Π

2
M ′(T)[C/P ′

j]) = true. (11)

Thus, in this case, it is possible to have projections Π1
M ′(T) and Π2

M ′(T)
satisfying 5 and 6.

2. Otherwise if ∀ i ∈ [1 . . . n], Pi 6� Pn+1 and Pi � P ′
i we can have the

following situations:
(a) If we consider node equality, we have Last(Π1

M ′(T)[C/Pi]) =N

Last(Π2
M ′(T)[C/Pi]) (Figure 9(a)). Since t is complete there exist an

instance Ji such thatΠ1
M ′(T)[C/Pi] � Ji and Ji ∈ Instances(C/P ′

i , t).
Let Π1

M ′(T)[C/P ′
i] = Π2

M ′(T)[C/P ′
i] = Ji.

(b) If we consider value equality, we have Last(Π1
M ′(T)[C/Pi]) =V

Last(Π2
M ′(T)[C/Pi]). Since t is complete there exist instances J1

i ,
J2
i such that Π1

M ′(T)[C/Pi] � J1
i , Π

2
M ′(T)[C/Pi] � J2

i and J1
i , J

2
i ∈

Instances(C/P ′
i , t).

• If Last(J1
i) =V Last(J2

i) then let Π1
M ′(T)[C/P ′

i] = J1
i and

Π2
M ′(T)[C/P ′

i] = J2
i (Figure 9(b)).

• Otherwise if Last(J1
i) 6=V Last(J2

i) then, since Pi � P ′
i and

Last(Π1
M ′(T)[C/Pi]) =V Last(Π2

M ′(T)[C/Pi]), there exists two
instances J3

i , J
4
i such thatΠ1

M ′(T)[C/Pi] � J3
i ,Π

2
M ′(T)[C/Pi] �

J4
i and J3

i , J
4
i ∈ Instances(C/P ′

i , t), Last(J
1
i) =V Last(J4

i) and
Last(J2

i) =V Last(J3
i). In this case, let Π1

M ′(T)[C/P ′
i] = J1

i and
Π2

M ′(T)[C/P ′
i] = J4

i (Figure 9(c)).

Now, we know that:

isInst lcp(C/Pi, Π
1
M ′(T)[C/Pi], C/P ′

i , Π
1
M ′(T)[C/P ′

i]) = true and

isInst lcp(C/Pi, Π
1
M ′(T)[C/Pi], C/Pn+1, Π

1
M ′(T)[C/Pn+1]) = true.

By using Lemma 2 with I = Π1
M ′(T)[C/Pi], J = Π1

M ′(T)[C/P ′
i], K =

Π1
M ′(T)[C/Pn+1], and (P ′

i ∩ Pn+1) � (Pi ∩ Pn+1), we obtain (10). Pro-
ceeding in a similar way with projection Π2

M ′(T) we obtain (11).

Since Π1
M ′(T) and Π2

M ′(T) exist and conditions (5), (6) are satisfied, we can
conclude that A4 is sound.

21

n

Pi

Pn+1

P
′

i

Pi

P
′

i

Pn+1

P
′

i

Pi

Pn+1
P

′

i

P
′

i
P

′

i
P

′

i

Pi Pi

(c)(b)(a)

Pn+1 Pn+1

Fig. 9. Graphical representation of paths and possible projections. Case (a): Node
equality for last nodes in Pi. Both projections Π1

M′(T) and Π2
M′(T) have the same

instance for path P ′

i . Case (b) and (c): Value equality for last nodes in Pi. In case (b)
there is only one instance of P ′

i (Pi � P ′

i). In case (c) there are two instances of P ′

i

(Pi � P ′

i).

A5: Let f = (C, (P [N] → Q [N])). The proof is by contradiction. Suppose that
T 6|= f . From Definition 14 there exist two projections Π1

M (T) and Π2
M (T)

for the branching path M = {C/P,C/Q} in T such that τ1[C/P] =N

τ2[C/P] and τ1[C/Q] 6=N τ2[C/Q]. However, since Last(P) ∈ Σele and
τ1[C/P] =N τ2[C/P] we have, due to the node equality, that the instance of
the path C/P is the same inΠ1

M (T) andΠ2
M (T). Then, since C/Q is a prefix

of C/P , the path C/Q has the same instance in Π1
M (T) and Π2

M (T). There-
fore τ1[C/Q] =N τ2[C/Q] and we have a contradiction with our previous
assumption that τ1[C/Q] 6=N τ2[C/Q].

A6: Let f = (C, (Parent(P)[E] → P [E])). The proof is again by contradic-
tion. Suppose that T 6|= f . From Definition 14 there exist two projections
Π1

M (T) and Π2
M (T) for the branching path M = {C/P,C/Parent(P)} in T

such that τ1[C/Parent(P)] =E τ2[C/Parent(P)] and τ1[C/P] 6=E τ2[C/P].
However, since Parent(P) ≺ P and T 6|= f , then by applying Lemma 4 we
obtain that the instance of the path C/Parent(P) is the same in Π1

M (T)
and Π2

M (T). From the definition of an XML tree, we know that the instance
Π1

M (T)[Parent(P)] = Π2
M (T)[Parent(P)] has only one attribute child for

the label Last(P) and so the instance of the path C/P must be the same in
Π1

M (T) and Π2
M (T). Thus τ1[C/P] =E τ2[C/P], which is a contradiction

with the initial assumption that τ1[C/P] 6=E τ2[C/P].

A7: Since the context node is unique, this axiom is automatically satisfied.

A8: Let f = (C, ({P1 [E1], . . . , Pn [En]} → Pn+1 [En+1])) and f ′ = (C/Q,
({P ′

1 [E1], . . . , P
′
n [En]} → P ′

n+1 [En+1])). The proof is by contrapositive.
We show that if T 6|= f ′ then T 6|= f . Assume that T 6|= f ′. From Defini-
tion 14, we can deduce that there exists two projections Π1

M (T) and Π2
M (T)

for the branching path M = {C/Q/P ′
1, . . . , C/Q/P ′

n+1} in T such that
τ1[C/Q/P ′

1, . . . , C/Q/P ′
n] =Ei,i∈[1...n] τ

2[C/Q/P ′
1, . . . , C/Q/P ′

n] and τ1[C/Q/P ′
n+1] 6=En+1

τ2[C/Q/P ′
n+1]. Since P1 = Q/P ′

1, . . . , Pn+1 = Q/P ′
n+1 then Π1

M (T) and
Π2

M (T) are also projections for the branching pathM = {C/P1, . . . , C/Pn+1}.
By considering the projectionsΠ1

M (T) andΠ2
M (T), we have τ1[C/Pn+1] 6=En+1

τ2[C/Pn+1]. Thus we obtain T 6|= f .

22

✷

5.2 Additional Inferece Rules for the Axiom System

From the inference rules in the axiom system introduced in Definition 17, we
can derive other rules which will be useful and will greatly simplify the proof of
the completeness.

Definition 19. - Additional Inference Rules: Given a tree T and XFD
defined over paths in IP, our additional axioms are:

A9: Union
If (C, ({P1 [E1], . . . , Pn [En]}→Q [En+1])) and (C, ({P1 [E1], . . . , Pn [En]}→
R [En+2])) then (C, ({P1 [E1], . . . , Pn [En]} → {Q [En+1], R [En+2]})).

A10: Decomposition
If (C, ({P1 [E1], . . . , Pn [En]} → {Q1 [E

′
1], . . . , Qm [E′

m]})) and the set of
paths {R1, . . . , Rk} ⊆ {Q1, . . . , Qm} then (C, ({P1 [E1], . . . , Pn [En]} →
{R1 [E

′′
1], . . . , Rk [E

′′
k]})).

A11: Pseudotransitivity
If (C, ({P1 [E1], . . . , Pn [En]}→ {Q1 [E

′
1], . . . ,Qm [E′

m]})) and (C, ({Q1 [E
′
1],

. . . , Qm [E′
m], R1 [E

′′
1], . . . , Rk [E

′′
k]} → S [Es])) then (C, ({P1 [E1], . . . ,

Pn [En], R1 [E
′′
1], . . . , Rk [E

′′
k]} → S [Es])).

A12: Subtree Uniqueness
If (C, ({P1 [E1], . . . , Pn [En]} → Pn+1 [En+1])) and for all i ∈ [1 . . . n] the
longest common prefix of C/Pi and C/Pn+1 is the context path C (i.e.,
Pi ∩ Pn+1 = {[]}) then (C, (P0 [E0] → Pn+1 [En+1])) for any path C/P0.

The intuition of axioms A9, A10 and A11 is the usual one. Let us consider an
example to illustrate A12. Assume we have univ/undergraduate, ({students//idSt} →
domain) then univ/undergraduate({courses//codeC} → domain), i.e., in the
context of one undergraduate speciality, a student is associated to only one do-
main. Then, by A12, we can deduce, for instance, that courses having the same
codeC belong to the same domain.

Next we prove the soundness of these additional inference rules.

Theorem 2. Axioms A9-A12 are sound for XFDs on complete XML trees. ✷

Proof : We consider a complete tree T .

A9: Let f1 = (C, ({P1 [E1], . . . , Pn [En]} → Q [En+1])). We can augment f1 with
{C/P1, . . . , C/Pn} by using Axiom A2 to derive f ′

1 = (C, ({P1 [E1], . . . ,
Pn [En]} → {P1 [E1], . . . , Pn [En], Q [En+1]})).
Let f2 = (C, ({P1 [E1], . . . , Pn [En]} → R [En+2])). We can augment f2 with
C/Q by using AxiomA2 to derive f ′

2 = (C, ({P1 [E1], . . . , Pn [En], Q [En+1]}→
{Q [En+1], R [En+2]})).
Now from f ′

1, f ′
2 and by using Axiom A3 we derive (C, ({P1 [E1], . . . ,

Pn [En]} → {Q [En+1], R [En+2]})).

23

A10: Let f = (C, ({P1 [E1], . . . , Pn [En]} → {Q1 [E
′
1], . . . , Qm [E′

m]})). Since
{R1, . . . , Rk} ⊆ {Q1, . . . , Qm}, then by using Axiom A1 and A9 we derive
f ′ = (C, ({Q1 [E

′
1], . . . , Qm [E′

m]} → {R1 [E
′′
1], . . . , Rk [E

′′
k]})).

Now from f , f ′ and by using AxiomA3 we derive (C, ({P1 [E1], . . . , Pn [En]}→
{R1 [E

′′
1], . . . , Rk [E

′′
k]})).

A11: Let f1 = (C, ({P1 [E1], . . . , Pn [En]} → {Q1 [E
′
1], . . . , Qm [E′

m]})). We
can augment f1 with {C/R1, . . . , C/Rk} by using Axiom A2 to derive
f ′
1 = (C, ({P1 [E1], . . . , Pn [En], R1 [E

′′
1], . . . , Rk [E

′′
k]} → {Q1 [E

′
1], . . . ,

Qm [E′
m], R1 [E

′′
1], . . . , Rk [E

′′
k]})).

Let f2 = (C, ({Q1 [E
′
1], . . . , Qm [E′

m], R1 [E
′′
1], . . . , Rk [E

′′
k]} → S [Es])).

From f ′
1, f2 and by using AxiomA3 we derive (C, ({P1 [E1], . . . , Pn [En], R1 [E

′′
1],

. . . , Rk [E
′′
k]} → S [Es])).

A12: Let f = (C, ({P1 [E1], . . . , Pn [En]} → Pn+1 [En+1])). With Axiom A7 we
have ∀ C/P0, f

′ = (C, (P0 [E0] → [] [E])). ∀i ∈ [1 . . . n] let P ′
i = [], we have

Pi ∩ Pn+1 = [] �PL P ′
i �PL Pi and by using Axiom A4 on the XFD f we

obtain f ′′ = (C, ([] [E] → Pn+1 [En+1])). Finally by using Axiom A3 on f ′

and f ′′, we obtain (C, (P0 [E0] → Pn+1 [En+1])).

✷

5.3 Completeness of the Axiom System

Before tackling the completeness issue, it is important to define the closure of a
set of paths w.r.t. a set of XFDs.

Definition 20. - Closure of a set of Paths: Let X be a set of paths and let
C be a path defining a context. The closure of (C,X) with respect to F , denoted
by (C,X)+F , is the set of path {P1, . . . , Pn} such that (C, (X → {P1, . . . , Pn}))
can be deduced from F by the axiom system in Definition 17. In other words,
(C,X)+F = {C/P | F ⊢ (C, (X → P))}. When there is no ambiguity about the

set F being used, we just note (C,X)+. ✷

As in the relational model, the central fact about the closure of a set of paths
is that it enables us to tell on a glance whether an XFD follows from a set F by
the axiom system. The next lemma tells us how.

Lemma 5. Let X = {C/P1, . . . , C/Pn} and Y = {C/Pn+1, . . . , C/Pn+m} be
two sets of paths. We have F ⊢ (C, ({P1 [E1], . . . , Pn [En]} → {Pn+1 [En+1],
. . . , Pn+m [En+m})) iff Y ⊆ X+. ✷

Proof:

1. Let Y ⊆ X+. By the definition of X+ we know that (C, ({P1 [E1], . . . ,
Pn [En]} → Pn+1 [En+1])), . . . , (C, ({P1 [E1], . . . , Pn [En]} → Pn+m [En+m])).
By applying the union rule A9 we have (C, ({P1 [E1], . . . , Pn [En]} →
{Pn+1 [En+1], . . . , Pn+m [En+m})).

24

2. Let F ⊢ (C, ({P1 [E1], . . . , Pn [En]} → {Pn+1 [En+1], . . . , Pn+m [En+m})).
By the decomposition rule A10 we know that (C, ({P1 [E1], . . . , Pn [En]} →
Pn+1 [En+1])), . . . , (C, ({P1 [E1], . . . , Pn [En]} → Pn+m [En+m])). Thus each
path C/Pn+1 . . . C/Pn+m is in X+ and we have Y ⊆ X+. ✷

To prove the completeness of our axiom system, we would like to define
a special tree having two instances (except for the root node) for every path
P ∈ IP. However, the following examples show that depending on the conditions
imposed on paths, it is not possible to have two instances for every path P ∈ IP.

Example 11. We want to build a complete tree having exactly two instances for
each path in IP. Let us consider value equality and two paths P and Q such
that P ≺ Q. We denote by IP1

and IP2
the two instances of P on a tree t.

We denote by IQ1
and IQ2

the two instances of Q on a tree t. Suppose that
Last(IP1

) =V Last(IP2
) and Last(IQ1

) 6=V Last(IQ2
). Based on this situation,

the functional dependency P → Q is not satisfied by this tree. Then, we can
apply Lemma 4, to conclude that there is an instance of P which is a prefix
of both (distinct) instances of Q. As we want just two instances for each path,
to have two instances of Q we should have Last(IP1

) =N Last(IP2
). In other

words, in this situation, we cannot have a tree with two instances for P . Indeed,
Figure 10 illustrates that, a tree having two instances of P and respecting the
constraints Last(IP1

) =V Last(IP2
) and Last(IQ1

) 6=V Last(IQ2
) must have

four instances of Q.
Now let us consider that a node equality condition is imposed on the instances
of a path P . In this situation we have Last(IP1

) =N Last(IP2
). Clearly, in this

case, P has only one instance. ✷

r

v
1

p

v
1

q

1

v
2

q

2

v
2

p

v
3

q

2

v
4

q

1

IP1

IQ1
IQ2

IP2

IQ3
IQ4

Fig. 10. An XML tree with two instances value equal for the path P and four instances
for the path Q with IP1

prefix of IQ1
, IQ2

and IP2
prefix of IQ3

, IQ4
.

Based on Example 11, we introduce the definition of our special tree, having
at most two instances for each path in IP.

25

Definition 21. - Two-instance Tree: Let F be a set of XFDs. Let T =
(t, type, value) be an XML document where the tree t, built according to the
construction properties below, is called two-instance tree. Let IP be the set of
paths associated to T and letX ⊆ IP. We denote by |Instances(P, t)| the number
of instances of a path P in t.

construction properties:

1. For each P ∈ IP, |Instances(P, t)| is at most 2 (I1 or I2) and:

(a) when |Instances(P, t)| = 2 we have P ∈ X+ iff Last(I1) =V Last(I2);

(b) when |Instances(P, t)| = 2 we have P ∈ IP\X+ iff Last(I1) 6=V Last(I2)

(c) if |Instances(P, t)| = 1 then Last(P) ∈ Σele or Last(P) ∈ Σatt

2. For each P ∈ IP, |Instances(P, t)| = 2 except when:

(a) Last(P) is the root of t, or

(b) by considering value equality, |Instances(P, t)| = 2 provokes the viola-
tion of condition 1 for another path Q ∈ IP with P ≺ Q, or

(c) X[E]→ P [N] or

(d) Last(P) ∈ Σatt and Parent(P) verifies condition 2b or condition 2c. ✷

Lemma 6. Let F be a set of XFD. Let T = (t, type, value) be an XML document
where t is a two-instance tree. Let IP be the set of paths associated to T and let
X ⊆ IP. The following properties hold for t:

1. If P ∈ IP and |Instances(P, t)| = 1 then P ∈ X+.

2. If P,Q ∈ IP, P � Q and there is an instance IP ∈ Instances(P, t), and
instances IQ1

and IQ2
∈ Instances(Q, t) such that IP � IQ1

and IP � IQ2

then |Instances(P, t)| = 1.

3. If P ∈ IP then P ∈ X+ iff T |= X → P . ✷

Proof :

1. From Definition 21, we know that if |Instances(P, t)| = 1 then one of the
conditions 2a-2d holds.

Firstly, we consider case 2a, and we suppose that Last(P) is the root of t.
From axiom A7 we have ∀Pi ∈ X+, Pi → P and so P ∈ X+. Secondly,
consider case 2c, and suppose that X[E] → P [N]. In this case P ∈ X+ is
straightforward.

Thirdly, consider case 2b. We suppose that Last(P) is different from the
root and not in Σatt. Let IP1

be the instance of P on t. The proof is by
induction on the number of paths Q1, . . . , Qn (∀ i ∈ [1 . . . n], Qi ∈ IP and
P ≺ Qi) imposing P to have only one instance on t (as stated by condition
2b of Definition 21).

We have the following situations for n = 1 (only Q1 imposes P to have only
one instance on t):

26

(a) If |Instances(Q1, t)| = 1 then according to Definition 21(2b), there exist
a path Q′ that imposes the path Q1 to have only one instance. Since
P ≺ Q1 the path Q′ imposes also P to have only one instance on t. This
case is not possible because Q1 is supposed to be the only path that
imposes P to have only one instance on t.

(b) If |Instances(Q1, t)| = 2 and Q1 ∈ X+ then let IQ1,1
and IQ1,2

be
these two instances of Q1. Let the subtree concerning the instance of
P have the format illustrated on Figure 11(a). As Q1 ∈ X+, we have
Last(IQ1,1

) =V Last(IQ1,2
). In order to ensure that t is a two-instance

tree, we have to verify whether it is not possible to have a two-instance
tree with two instances for P that respects the conditions imposed on
Q1. Let us consider the tree t′ identical to t except for the subtree
concerning the instances of P in Figure 11(b). The tree t′ has two
instances of P and two instances of Q1 (I ′Q1,1

and I ′Q2,1
) such that

Last(I ′Q1,1
) =V Last(I ′Q2,1

) =V Last(IQ1,1
). Notice that tree t′ is a

two-instance tree, no matter whether P ∈ X+ or P 6∈ X+. On the
one hand, P ∈ X+ when for the two instances, I ′P1

and I ′P2
, of P on

t′ we have Last(I ′P1
) =V Last(I ′P2

). On the other hand, P 6∈ X+ when
Last(I ′P1

) 6=V Last(I ′P2
). Thus t′ is a two instance tree. The existence

of a two-instance tree t′ having two instances of P proves that, when
Q1 ∈ X+ and |Instances(Q1, t)| = 2, tree t does not respect condition 2b
of Definition 21. Thus, t is not a two-instance tree. In other words, it is
not possible to consider Q1 ∈ X+ with Q1 having 2 instances and being
the path that imposes P to have only one instance.

(c) If |Instances(Q1, t)| = 2 and Q1 6∈ X+ then let IQ1,1
and IQ1,2

be
these two instances of Q1. From Definition 21, we have Last(IQ1,1

) 6=V

Last(IQ1,2
). Let the subtree concerning the instance of P have the format

illustrated on Figure 12(a). In order to ensure that t is a two-instance
tree, we have to verify whether it is not possible to have a two-instance
tree with two instances for P that respects the conditions imposed on
Q1. We have:

– Consider that P 6∈ X+ and the tree t′ identical to t except for the
subtree concerning the instances of P in Figure 12(b). With the
same arguments as in Case 1b, the existence of a two-instance tree
t′ contradicts the fact that t is a two-instance tree.

– Finally consider that P ∈ X+. Since Q1 6∈ X+, by using Lemma 4,
we can deduce that a tree with two instances of P is the tree t′,
identical to t except for the subtree concerning the instances of P
which is illustrated in Figure 12(c). Clearly t′ is not a two-instance
tree because |Instances(Q1, t)| = 4. Therefore the fact that t is a
two-instance tree, is justified and consequently we have P ∈ X+.

In conclusion, the only situation justifying the fact that P has one instance
in t is the one where there exist a path Q1 ∈ IP such that P ≺ Q1,
|Instances(Q1, t)| = 2 and Q1 6∈ X+. Thus, when |Instances(P, t)| = 1,

27

we have P ∈ X+.

Now suppose that ∀m < n, the paths Q1, . . . , Qm impose P to have only one
instance on t, P ∈ X+ and ∀ i ∈ [1 . . .m], P ≺ Qm, |Instances(Qm, t)| = 2
and Qm 6∈ X+. We now prove that P ∈ X+ when the paths Q1, . . . , Qn

impose P to have only one instance on t. We have:
– If there exist a path R such that Parent(R) = P and |Instances(R, t)| =

1 then there exists a path Q′ which imposes R to have one instance. By
induction hypothesis, R ≺ Q′, |Instances(Q′, t)| = 2 , Q′ 6∈ X+ and
R ∈ X+. By applying the same reasonning of situation 1c above, we
conclude that P ∈ X+.

– Otherwise, we are in the situation where for all path Ri we have:
Parent(Ri) = P and |Instances(Ri, t)| = 2. We can distinguish two
cases:
• For all Ri we have Ri ∈ X+. This case is similar to the situation 1b.

Therefore, we can build a tree with two instances of P which is a
two-instance tree respecting the constraints over paths Ri. Thus the
tree t (with only one instance of P) is not a two-instance tree.

• There is a path Rj such that Rj 6∈ X+. This case is similar to the the
situation 1c. Therefore, we cannot build a tree with two instances of
P which is a two-instance tree respecting the constraints over paths
Rj . Thus, we conclude that P ∈ X+.

Finally, consider case 2d of Definition 21. We consider that Last(P) ∈ Σatt.
We first prove by contradiction that |Instances(Parent(P), t)| = 1. Suppose
that |Instances(Parent(P), t)| 6= 1. Thus, |Instances(Parent(P), t)| = 2,
because t is a two-instance tree. Now, since t is a complete tree, each of
the two instances of Parent(P) must have a node attribute Last(P) and
so |Instances(P, t)| = 2. We obtain a contradiction with the hypothesis
|Instances(P, t)| = 1. In conclusion, the tree t has only one instance for
the path Parent(P). Notice that, since Last(Parent(P)) ∈ Σele, we have
already proved that Parent(P) ∈ X+. By using the axiom Attribute Unique-
ness (A6) we have Parent(P)→ P and then we conclude that P ∈ X+.

2. The proof is done by contradiction and we suppose that |Instances(P, t)| 6=
1. Then, by considering the above document T , |Instances(P, t)| must be
equal to 2. By hypothesis, we know that there is an instance IP such that
IP � IQ1

and IP � IQ2
. Now, let I ′P be the second instance of P . Since t is

complete, ∃ IQ3
∈ Instances(Q, t) such that IP ′ � IQ3

. Thus |Instances(Q, t)| ≥
3. This is a contradiction with the fact that t has exactly one or two instances
for each path in IP. This properties is illustrated in Figure 13.

3. (→): From Definition 21 and Lemma 6(1), we have that if P ∈ X+ then
|Instances(P, t)| = 2 and there exist I1, I2 instances of the path P such
that I1 =V I2 or |Instances(P, t)| = 1. Since X ⊆ X+, we have also that for
all Pi ∈ X, |Instances(Pi, t)| = 2 and there exist Ii1, I

i
2 instances of the path

Pi such that Ii1 =V Ii2 or |Instances(Pi, t)| = 1. Hence by using Definition 14

28

v
1

p

v
1

r
v
2

r
v
1

q
v
2

q

IP1

I
Ri

1,1

I
Ri

1,2
IQ1,1

IQ1,2

(a)

v
1
′

p

v
1
′

r
v
1
′

q

v
2
′

p

v
2
′

r
v
2
′

q

I′
P1

I′

Ri
1,1

I′
Q1,1

I′
P2

I′

Ri
2,1

I′
Q2,1

(b)

Fig. 11. Construction of a new two-instance tree t′ with Q ∈ X+.

v
1
p

v
1
r v

2
r

v
1
q v

2
q

IP1

I
Ri

1,1

I
Ri

1,2
IQ1,1

IQ1,2

(a)

v
1
′

p

v
1
′

r
v
1
′

q

v
2
′

p

v
2
′

r
v
2
′

q

I′
P1

I′

Ri
1,1

I′
Q1,1

I′
P2

I′

Ri
2,1

I′
Q2,1

(b)

v
1
′

p

v
1
′

r
v
1
′

q v
2
′

q

v
2
′

p

v
2
′

r
v
3
′

q v
4
′

q

I′
P1

I′

Ri
1,1

I′
Q1,1

I′
Q1,2

I′
P2

I′

Ri
2,1

I′
Q2,1

I′
Q2,2

(c)

Fig. 12. Construction of a new two-instance tree t′ with Q 6∈ X+.

we conclude that T |= X → P .
(←): If |Instances(P, t)| = 1 then by using Lemma 6(1) we have Pi ∈ X+.
Else if |Instances(P, t)| = 2, we know from the hypothesis that the two

29

instances I1, I2 of the paths P in T are such that I1 =V I2. By using
Definition 21 we have Pi ∈ X+. ✷

v
1

p

v
1

q
v
2

q

IP

IQ1
IQ2

(a)

v
1

p

v
1

q
v
2

q

v
2

p

v
3

q

IP

IQ1
IQ2

I′
P

IQ3

(b)

Fig. 13. Adding another instance of path P to the tree in (a) implies
|Instances(Q, t)| ≥ 3 for the tree in (b).

We now prove that the axiom system introduced in Definition 17 is complete.
In other words, given a set of XFD F , by using our inference rules, we can derive
all XFD f such that F |= f .

Theorem 3. If F |= f then F ⊢ f . ✷

Proof: The proof is by contrapositive: we show that if F 6⊢ f then F 6|= f .

Let f = (C, ({P1 [E1], . . . , Pn [En]} → {Pn+1 [En+1] . . . Pn+m[En+m]})). Then,
we consider that X = {C/P1, . . . , C/Pn}, Y = {C/Pn+1, . . . , C/Pn+m} and that
both X and Y are in a given IP.

If F 6|= f then there must be an XML document that satisfies F but does not
satisfy f . The proof consists in showing the existence of such a document.

Let us suppose an XML document T = (t, type, value) where t is a two-instance
tree defined on the set of paths X = {C/P1, . . . , C/Pn}.

Fact 1: T |= F .

The proof is by contradiction. We suppose that T 6|= g, where g is an XFD
(C,({Q1 [E1], . . . , Qk [Ek]} → Qk+1 [Ek+1])) in F . From Definition 14, as T 6|= g,
we can deduce that there exists two projections Π1

M (T) and Π2
M (T) for the

branching path M = {C/Q1, . . . , C/Qk+1} in T such that:

τ1[C/Q1, . . . , C/Qk] =Ei,i∈[1...k] τ
2[C/Q1, . . . , C/Qk] and (12)

τ1[C/Qk+1] 6=Ek+1
τ2[C/Qk+1]. (13)

30

From (13) we have thatΠ1
M (T)[C/Qk+1] 6= Π2

M (T)[C/Qk+1] and |Instances(Qk+1,
t)| = 2. From Definition 21(1), we obtain:

Qk+1 6∈ X+. (14)

From Definition 12, we know that the instances of two paths belonging to the
same branching path match on their longest common prefix path. Formally, for
all combination of paths Qi and Qj such that 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ k + 1,
we have:

Considering Π1
M (T)

isInst lcp(C/Qi, Π
1
M (T)[C/Qi], C/Qj , Π

1
M (T)[C/Qj]) = true and (15)

Considering Π2
M (T)

isInst lcp(C/Qi, Π
2
M (T)[C/Qi], C/Qj , Π

2
M (T)[C/Qj]) = true (16)

and we can also determine the following special nodes for 1 ≤ i ≤ k:

v1i,k+1 = Last(Π1
M (T)[C/Qi] ∩Π1

M (T)[C/Qk+1]) and (17)

v2i,k+1 = Last(Π2
M (T)[C/Qi] ∩Π2

M (T)[C/Qk+1]) (18)

From (15) and (16), together with Definition 10 we know that positions v1i,k+1

and v2i,k+1 exist in t. We have to consider two cases:

(a) v1i,k+1 = v2i,k+1

(b) v1i,k+1 6= v2i,k+1

and choose for each i ∈ [1 . . . k], a path Ri ∈ IP respecting the following property:

Ri ∈ X+ and Qi ∩Qk+1 � Ri � Qi (19)

– When we are in case (a), we consider Ri = Qi∩Qk+1 - which clearly respects
property (19). This case is illustrated in Figure 14(a).

From (13) we know that Π1
M (T)[C/Qk+1] 6=Ek+1

Π2
M (T)[C/Qk+1]. Since

v1i,k+1 = v2i,k+1, intersections in (17) and (18) are equal and correspond to
an instance of Ri (call it IRi

) i.e.,

IRi
= Π1

M (T)[C/Qi]∩Π
1
M (T)[C/Qk+1] = Π2

M (T)[C/Qi]∩Π
2
M (T)[C/Qk+1].

(20)

We can now see that:
IRi

= Π1
M (T)[C/Qi] ∩Π1

M (T)[C/Qk+1] � Π1
M (T)[C/Qk+1] and that

IRi
= Π2

M (T)[C/Qi] ∩Π2
M (T)[C/Qk+1] � Π2

M (T)[C/Qk+1]
and that, by applying Lemma 6(2), we have |Instances(Ri, T)| = 1.
Then, from Lemma 6(1), we obtain that Ri ∈ X+.

31

– When we are in case (b), we consider Ri = Qi which also respects prop-
erty (19). This case is illustrated in Figure 14(b).

As v1i,k+1 6= v2i,k+1, instances Π1
M (T)[C/Qi] and Π2

M (T)[C/Qi] are always
distinct and so are the instances associated to the path Ri. More precisely,
|Instances(Ri, t)| = 2. From this fact and the situation described in (12),
we obtain that Π1

M (T)[C/Qi] =V Π2
M (T)[C/Qi]. By considering Defini-

tion 21(1) we conclude that Ri ∈ X+.

ρ

v1i,k+1
= v2i,k+1

v1i v1k+1 v2i v2k+1

Ri

Qi
Qk+1 Qi Qk+1

(a)

ρ

v1i,k+1

v1i v2k+1

v2i,k+1

v2i v2k+1

Qi = Ri

Qk+1

Qi = Ri
Qk+1

(b)

Fig. 14. Illustration of the two cases (a)v1i,k+1 = v2i,k+1 and (b)v1i,k+1 6= v2i,k+1.

Now, from property (19), the XFD g =(C,({Q1 [E1], . . . ,Qk [Ek]}→Qk+1 [Ek+1]))
in F , and the axiom Branch Prefixing (Definition 17, axiom A4) we deduce the
XFD g′ = (C,({R1 [E1], . . . , Rk [Ek]} → Qk+1 [Ek+1])). Next, we assume that
if {R1, . . . , Rk} ⊆ X+ then Qk+1 ∈ X+. Indeed, by Definition 20 and the axiom
Union (Definition 19, axiom A9), we know that X → {R1 [E1], . . . , Rk [Ek]}.
From this rule and g′, we derive X → Qk+1 by using the axiom Transitivity
(A3). Thus, from Definition 20, we obtain Qk+1 ∈ X+ which contradicts (14):
Qk+1 6∈ X+. Thus, we conclude that T |= g for any g ∈ F . In other words,
T |= F .

Fact 2: T 6|= f

Recall, from the beginning of our proof, that f is the XFD X → Y . As X ⊆ X+,
for all Pi ∈ X we have Last(Π1

M (T)[Pi]) =Ei
Last(Π2

M (T)[Pi]) for two given
projections of M on T . From our hypothesis, F 6⊢ f and so Y 6⊆ X+. Thus there
is at least one path P ∈ Y having instances I1 and I2 such that Last(I1) 6=E

Last(I2). We deduce that T 6|= f .

In conclusion we have built a tree T such that T |= F and T 6|= f which
establishes the proof of Theorem 3. ✷

32

6 An Algorithm for Computing the Closure of a Set of

Paths

In this section we present an algorithm for computing (C,X)+ and we prove
that this computation is sound and complete.

Algorithm 1 Closure Algorithm of a set of Paths

Input: A finite set of paths IP, a set of XFD F , a context path C, and a set of paths
X such that C/X ⊆ IP

Output: The set of paths (C,X)+

1: T = {P | P � Q and Q ∈ X}
2: V = {P | Q ∈ T, Parent(P) = Q and Last(P) ∈ Σatt}
3: X(0) = T ∪ V
4: while X(i) 6= X(i−1) do
5: Y = {P | there exist an XFD (C, ({P1 [E1], . . . , Pn [En]} → P [En+1])) in F

such that one of the conditions below is satisfied:

(a) {P1, . . . , Pn} ⊆ X(i) or
(b) ∀ k ∈ [1, . . . , n], Pk ∩ P = {[]} or
(c) ∃P ′

1, . . . , P
′

n ∈ X(i) and ∀ k ∈ [1, . . . , n], Pk ∩ P � P ′

k and (P ′

k � Pk or
P ′

k � P)

}
6: T = {P | P � Q and Q ∈ Y }
7: V = {P | Q ∈ T, Parent(P) = Q and Last(P) ∈ Σatt}
8: X(i+1) = X(i) ∪ T ∪ V
9: end while
10: return C/X(i)

In Algorithm 1, set T contains the prefixes of each path in X (line 1). Set
V contains all the paths ending on attributes and having a path in T as its
parent (line 2). We compute the closure of (C,X) in the while loop. In line 5 we
compute the set Y . For each XFD f , with the form (C, ({P1 [E1], . . . , Pn [En]} →
P [En+1])), in F , we insert P in Y when one of the following conditions hold:

(a) all paths of the left-hand side of f are in X(i), or
(b) axiom A12 can be applied or
(c) if there are paths P ′

1, . . . , P
′
n in X(i) that verify conditions of Axiom A4,

then A4 is applied.
In lines 6 and 7 we compute the new sets T and V which are added to X(i).

The loop ends when no new path can be added to X(i).

Theorem 4. The set which is returned by Algorithm 1 is (C,X)+. ✷

Proof: First of all, the algorithm terminates: since IP is finite, we must eventually
reach j such that X(j) = X(j+1). Thus we have a guarantee that the loop stops
and the set X(j) is returned by the algorithm. We now prove that X+ is X(j)

33

for this value of j.
Soundness (X(j) ⊆ X+): We show by induction on i that if a path P is placed

in X(i) during Algorithm 1, then P is in X+ (or X → P from Definition 20).

– Basis: i = 0. From Line 3 of Algorithm 1, the path P is in X, or T or V
(notice that X ⊆ T since each path in X is its proper prefix). If P is in X
then, by Reflexivity (A1), we have X → P . Otherwise if P is in T then there
exist a path Q in X such that P � Q. We know that X → Q. By Ascendency
(A5) we have Q → P and by Transitivity (A3) we obtain X → P . Or else,
if P is in V then Last(P) ∈ Σatt and there exist a path Q in T such that
Q = Parent(P). We know that X → Q. By Attribute Uniqueness (A6) we
have Q→ P and by Transitivity (A3) we obtain X → P .

– Induction: Let i > 0 and assume that X(i−1) contains only paths in X+. We
prove that if P is placed in X(i) then P is in X+.

1. From line 8 of Algorithm 1, we have X(i) = X(i−1) ∪ Y ∪ T ∪ V . If P is
in X(i−1) then by induction hypothesis P is in X+.

2. Otherwise, if the path P is in Y then there exist an XFD (C, ({P1 [E1],
. . . , Pn [En]} → P [En+1])) in F such that one of the conditions a-b of
Line 5 is satisfied. Let us analyse these three conditions:
(a) Firstly we suppose that Y = {P1, . . . , Pn} ⊆ X(i−1). Since Y ⊆

X(i−1), we know Y ⊆ X+ by inductive hypothesis. Thus, X → Y by
Lemma 5. By Transitivity (A3), X → Y and Y → P imply X → P
and so P is in X+.

(b) Secondly we suppose that ∀ k ∈ [1, . . . , n], Pk ∩ P = {[]}. From
Subtree Uniqueness (A11) we deduce that for any path Q, Q → P .
Let Q be a path in X(i−1). By Transitivity (A3), X → Q and Q→ P
imply X → P . Thus, X is in (C,X)+.

(c) Finally, we suppose that ∃P ′
1, . . . , P

′
n ∈ X(i−1) and ∀ k ∈ [1, . . . , n],

Pk ∩ P � P ′
k and (P ′

k � Pk or P ′
k � P). If the set Y = {P ′

1, . . . , P
′
n}

respect these conditions then by Branch Prefixing (A4), we have
Y → P . Since Y ⊆ X(i−1), by inductive hypothesis and Lemma 5,
we have X → Y . By Transitivity (A3), X → Y and Y → P imply
X → P .

3. Or else, if P is in T ∪ V then with the same arguments as in the basis
step, we assume that P is in X+.

Completeness (X+ ⊆ X(j)): Now we prove that if P is in X+ then P is in X(j).

The proof is by contradiction. Suppose that P is in X+ but P is not in X(j).
Recall that Algorithm 1 returns an answer only if X(j) = X(j+1).

We suppose a two-instance tree t defined on X(j). This two-instance tree t
has two instances such that their last nodes are equal for paths in X(j), and their
last nodes are not equal for other paths. We claim that t satisfies F . If not, let
U → V be an XFD in F that is violated by t. Then U ⊆ X(j) and V cannot be
a subset of X(j). If the violation occurs then we can use the same argument in
the proof of Theorem 3(Fact 1). Thus, as V 6⊆ X(j) and U → V is not violated,
the set X(j+1) should contain V . Therefore, X(j+1) cannot be the same as X(j)

34

as supposed.

Consequently, the two-instance tree t must also satisfy X → P . The reason
is that P is assumed to be in X+, and therefore, X → P follows from F by
the axiom system. Since the axiom system is sound, any tree satisfying F also
satisfies X → P . But the only way X → P could hold in t is if P is in X(j).
Hence we have a contradiction because P is supposed not to be in X(j). We
conclude that P is in X(j) which is the set returned by Algorithm 1. ✷

7 Computing Functional Dependencies for

Interoperability

Given XFD sets F1, . . . ,Fn, our goal is to propose an algorithm that computes
a set coverF of XFD equivalent to the biggest set F containing XFD that are
not in contradiction with any set F1, . . . ,Fn. In other words, all documents in
X1, . . . , Xn valid w.r.t. F1, . . . ,Fn should stay valid w.r.t. F .

To obtain F , two strategies can be considered. On one hand, we may consider
the computation of F itself, which is more natural to conceive. This computation
takes into account all the XFD in F+

1 and F+
2 (which are very expensive to

compute), and generates a too big set F . On the other hand, we can consider
the computation of a set coverF , built from F1 and F2, equivalent to F . This
computation should take into account some important situations and ensure that
all XFD f , derived by both F1 and F2, will also be derived by F . This second
strategy requires a finer algorithm but produces a manipulable set of XFD. This
report presents both strategies.

Notice that, for the sake of simplicity, we suppose only two local sources, but
our algorithms can be easily extended for n local sources. Translation functions
Φ1 and Φ2 are available. These functions work on the translation table (obtained
from the ontology alignment A): given a path P from, for instance IP2, Φ1(P)
gives its equivalent path in IP1, if it exists; otherwise it returns the identity.
The function Φ2 works on a symmetric way. Indeed, we note i and ī to indicate
symmetric sources (e.g., when i = 1, ī = 2).

As input, both algorithms receive the local sets of XFD together with the set
of possible paths given by each local schema.

7.1 Algorithm for Computing F

Algorithm 2 generates F as expected. Notice that to know whether an XFD
follows from two given sets F1 and F2, one have to consider the closure of
these two sets. Algorithm 2 considers each local set F+

i . Then, each XFD f =
(C, (X → B)) in F+

i is checked and added to F when one of the following
properties hold:
(i) There is no path in the source ī equivalent to the right-hand side of f (line 4).
Thus, documents in ī do not violate f .
(ii) There is no set of paths in the source ī equivalent to the set on the left-hand

35

Algorithm 2 Set of XFD ensuring the interoperability of S w.r.t. S1 and S2

Input:
– A set of XFDs F1 for schema D1

– A set of XFDs F2 for schema D2

– The set of paths IP1, IP2 specified by D1 and D2

– Translation functions Φ1 and Φ2

Output: The set of XFD F for the integrated system
1: F = ∅
2: for i = 1 to 2 do
3: for each (C, (X → B)) ∈ F+

i do
4: if Φī(C/B) 6∈ IPī then
5: F = F ∪ {(C, (X → B))}
6: else if Φī(C/X) 6⊆ IPī then
7: F = F ∪ {(C, (X → B))}
8: else if Φī(C/B) ∈ Φī(C,X)+F ī

then

9: F = F ∪ {(C, (X → B))}
10: end if
11: end for
12: end for
13: return F

side of f (line 6). Since no set of paths in the source ī correspond to X, no
document in ī violates f .
(iii) In the source ī, there is a path equivalent to C/B that belongs to the closure
of a set of paths equivalent to C/X (line 8). Therefore, XFD f exists in both
sources and can be added to F .

We prove that F is the subset of F+
i ∪ F

+
ī

that contains all the XFD in

the intersection F+
i ∩ F

+
ī

together with all those XFD whose left-hand side or
right-hand side concerns concepts existing only in Di. To present this theorem,
we first define the following sets of XFD.

Given two sets of XFD, F i and F ī, we define set Ki of XFD as:

Ki = {X → A | X → A ∈ F+
i and [((X ⊆ IPi) and (X 6⊆ IPī)) or

(A ∈ (IPi \ IPī)]}

Intuitively, Ki contains all the XFD f which can be obtained from F i but
that cannot be violated by documents in Xī due to one of the two reasons:
(a) the right-hand side of f is a path B which belongs to IPi but not to IPī or
(b) the left-hand side of f is a set of paths X which is included in IPi but not
in IPī.

Theorem 5. The set F , returned by Algorithm 2, is the union F = (F+
1 ∩F

+
2)

∪ K1 ∪ K2. ✷

Proof: Straightforward from Algorithm 2. ✷

36

Theorem 6. The set F , returned by Algorithm 2, is the biggest subset of F+
1 ∪

F+
2 such that we can guarantee, without considering data, that X1 |= F and

X2 |= F . ✷

Proof: Proving that X1 |= F and X2 |= F is straightforward. Next we prove by
contradiction that F is the biggest subset of F+

1 ∪ F
+
2 ensuring this property.

Suppose there is a set G of XFD that is a subset of F+
1 ∪ F

+
2 such that F ⊂ G

and that we always have Xi |= G for i = 1, 2. Let (C, (X → A)) be an XFD in
G that is not in F . As (C, (X → A)) 6∈ F , we know that:

1. C/A is in IP1 and in IP2; otherwise the XFD is added to F in step 4 of
Algorithm 2.

2. C/X is included in IP1 and IP2; otherwise the XFD is added to F in step 6
of Algorithm 2.

3. C/A ∈ X+

F1

and C/A 6∈ X+

F2

, or vice-versa; otherwise the XFD is added to

F in step 8 of Algorithm 2.

From 3, we know that (C, (X → A)) ∈ F+
1 but (C, (X → A)) 6∈ F+

2 . In this
case, from items 1-2 above, documents in X2 may violate (C, (X → A)). This
is a contradiction with the assumption that it is always true that Xi |= G for
i = 1, 2. ✷

Corollary 1. F+ ∩ (F+
1 ∪ F

+
2) = F . ✷

Proof: Let (C, (X → A)) be an XFD in F+ which is not in F . Thus (C, (X →
A)) is not in F+

1 ∪ F
+
2 , otherwise, from Theorem 6, it is not always true that

Xi |= (C, (X → A)), which is impossible (since (C, (X → A)) ∈ F+ and that we
have the assurance that Xi |= F for i = 1, 2). ✷

7.2 Towards an optimized version

Algorithm 2 depends on two main procedures: Algorithm 1 which computes the
closure of a set of paths ((C,X)+) and an algorithm for computing the closure
of a set of XFD (F+). As expected, the computation of F+ is the bottleneck of
our method. Our computation consists in generating all the possible subsets X

of the set of paths IP (i.e., 2|IP| − 1 subsets) and in computing X+ for each of
them. For each path P ∈ X+, the XFD X → P is added to F+. For computing

F+, we have to call 2|IP| times Algorithm 1.
Algorithm 2 uses Algorithm 1 to compute each F+

i . Each F
+
i has about

2|IP| XFD and, for each of them, we have to test conditions from lines 4-8. The

complexity of Algorithm 2, set aside the computation of F+
i , is O(2|IP|.g) where

g is the complexity of Algorithm 1.
It is important to notice that we cannot just change F+

i by F i in line 3
of Algorithm 2. To understand this problem, let us consider sets F1 and F2

from which we can derive an XFD f = (C, (X → B)) by different derivation
sequences. Suppose that in F1 we have f1, . . . , fk, . . . , f while in F2 we have

37

f ′
1, . . . , f

′
k, . . . , f . Moreover, we assume that, due to conditions stated in lines 4, 6

and 8, the dependencies fk and f ′
k are not included in F and, thus, the derivation

of f is not possible from the new set F built by Algorithm 2. This would be a
mistake, since f is derived by both F1 and F2. This is why Algorithm 2 takes
into account all XFD in the closure of F1 and F2. Now, in order to optimize
Algorithm 2 we build a new version which use F i instead of F+

i with some
modifications. The complexity of this optimized version does not have the factor

2|IP| present on the complexity of Algorithm 2.

7.3 Algorithm for Computing coverF

Algorithm 3 Computation of coverF (set of XFD ensuring the interoperability
of S w.r.t. S1 and S2)

Input:
– A set of XFDs F1 for schema D1

– A set of XFDs F2 for schema D2

– The set of paths IP1, IP2 specified by D1 and D2

– Translation functions Φ1 and Φ2

Output: The set of XFD coverF for the integrated system
1: coverF = ∅
2: for i = 1 to 2 do
3: G = F i

4: for each (C, (X → B)) ∈ G do
5: if Φī(C/B) 6∈ IPī then
6: coverF = coverF ∪ {(C, (X → B))}
7: else if Φī(C/X) 6⊆ IPī then
8: coverF = coverF ∪ {(C, (X → B))}
9: else if Φī(C/B) ∈ Φī(C,X)+F ī

then

10: coverF = coverF ∪ {(C, (X → B))}
11: else
12: H = closure1Step(C,B,F i) \ {C/B}
13: G = G ∪ {(C, (X → D)) | C/D ∈ H}
14: K = inverseClosure1Step(C,X,F i) \ {C/X}
15: G = G ∪ {(C, (Y → B)) | C/Y ∈ K}

% Recall that C/Y is a shorthand for {C/A1, . . . , C/An} and that K is
a set of path sets.

16: G = G ∪ {(C, (Z → B)) | (C, (Z → B)) is obtained by using Axiom A4
on (C, (X → B))} % Notice that Z is a set of prefixes of
paths in X or B

17: end if
18: end for
19: end for
20: return coverF

38

In this section we present Algorithm 3 that generates the set coverF of XFD
equivalent to the biggest set F . As in Algorithm 2 each XFD f = (C, (X →
B)) in F i is checked and added to coverF according to the properties (i)-(iii)
established on page 35 Section 7.1.

From line 12 to 16, Algorithm 3 takes into account the fact that, working
with F i, some XFD in F+

i may be neglected. To understand this problem, let us
consider sets F1 and F2 from which we can derive an XFD f = (C, (X → B)) by
different derivation sequences. Suppose that in F1 we have f1, . . . , fk, . . . , f while
in F2 we have f ′

1, . . . , f
′
k, . . . , f . Moreover, we assume that, due to conditions

stated in lines 5, 7 and 9, the dependencies fk and f ′
k are not included in F

and, thus, the derivation of f is not possible from the new set coverF built by
Algorithm 3. This would be a mistake, since f is derived by both F1 and F2.
One solution (as mentioned in the beginning of this section) would be to start
with (in line 4) the closure of F1 and F2. However, this solution implies the
generation of a too big and, thus, not manipulable set of XFD. Algorithm 3 does
better: when the test in line 9 fails, it computes all XFD fj = (C, (Y → A))
such that:
(i) C/X ∈ (C, Y)+ and A = B or
(ii) C/Y = C/X and C/A ∈ (C,B)+ or
(iii) C/A = C/B and fj is obtained by using Axiom A4 on f .
Tests from lines 12-16 are then performed on these computed XFD. In this
way, we do not compute the entire closure of a set F i but, when necessary,
we calculate part of it. This computation is done by using closure1Step and
inverseClosure1Step. Function closure1Step computes one step of the closure
of a set of paths. Its implementation consists in deleting from Algorithm 1 the
while loop: in this way all the instructions are executed only once. Function
inverseClosure1Step consider XFD inversely and computes an ”inverse closure”
one step backward.

The following example illustrates the computation performed in lines 12-16
of Algorithm 3.

Example 12. Let F1 = {(C, (A → B)), (C, (B → M)), (C, (M → D)), (C, (D →
E)), (C, (O → Z))} and let F2 = {(C, (A → B)), (C, (B → M)), (C, (B →
O)), (C, (O → E)), (C, (D → N))}. Without lines 12-16 in Algorithm 3, the
XFD (C, (A→ E)), derivable from both F1 and F2, would not be derived from
coverF .
Let us consider part of the execution of Algorithm 3. Table 4 shows the XFD
we obtain when considering each XFD in F1 (line 3 of Algorithm 3). The first
column of this table shows the XFD in G being verified. The second column
indicates XFD that are added to G due to lines 12-16. Finally the last column
shows XFD that are inserted in coverF .
Table 4 is obtained by following the execution of Algorithm 3. For instance, let
us consider the third line in Table 4: the case when the XFD (C, (M → D)) in
F1 is taken in line 4 of Algorithm 3. This XFD does not verify any condition
among conditions in lines 5, 7 and 9. When line 12 is executed, the set H =
{C/E} is computed, since closure1Step(C, D, F1) gives {C/D,C/E}. Thus,

39

G (XFD being considered) Add to G coverF contains

(C, (A → B)) (C, (A → B)) (cond. line 9)

(C, (B → M)) (C, (B → M)) (cond. line 9)

(C, (M → D)) (C, (M → E))
(C, (B → D))
(C, ([] → D))

(C, (D → E)) (C, (M → E))
(C, ([] → E))

(C, (O → Z)) (C, (O → Z)) (cond. line 5)

(C, (M → E)) (C, (B → E))
(C, ([] → E))

(C, (B → D)) (C, (B → E))
(C, (A → D))
(C, ([] → D))

(C, (B → E)) (C, (B → E)) (cond. line 9)

(C, (A → D)) (C, (A → E))
(C, ([] → D))

(C, (A → E)) (C, (A → E)) (cond. line 9)

Table 4. Computation of (part) of coverF : XFD obtained when considering F1

the XFD (C, (M → E)) is added to G (line 13). When line 14 is executed,
the set K = {{C/B}} is computed, since inverseClosure1Step(C,M,F1) gives
{{C/B}, {C/M}}. Thus, the XFD (C, (B → D)) is added to G (line 15). When
line 16 is executed, the XFD (C, ([] → D)) is added to G. Notice that these
three XFD are analysed later (lines 6 and 7 of Table 4). They are not included
in coverF , but generate other XFD as, for instance, (C, (A → E)), which is
finally added to coverF . ✷

Function inverseClosure1Step considers XFD inversely and works one step
backward, starting from a giving set of paths. It is implemented by Algorithm 4.
The computed result is a set S containing sets of paths. Lines 2-9 represent the
initialisation of S. To this end, Algorithm 4 stores in set R all sets of paths that
imply the given path P due to axioms A1, A5 and A6.

– If Last(P) is an element (line 3), by applying A5 we have C, (Q → P) for
all path Q having the path P as a prefix. Remember that P � P .

– If Last(P) is an attribute (line 5), by applying A6 we have C, (Parent(P)→
P). The set S is initialized with two sets: one containing P itself (A1) and
another containing Parent(P) (A6).

– If Last(P) is data (line 8) the set S is initialized with {P} due to A1.

In line 10, Y1 contains all the set of paths Z appearing on the left-hand side of
an XFD that has P as its right-hand side, i.e., C, (Z → P). In line 11, Y2 contains
all the set of paths respecting the conditions for applying the Axiom A4 on an
XFD that has P as its right-hand side. Finally, in line 12, the result is computed
from Y1, Y2 and R by performing a distributing union defined as follows: Let S1

40

Algorithm 4 One Step of Inverse Closure

Input: A finite set of paths IP, a set of XFD F , a context path C, and a set of paths
X such that C/X ⊆ IP

Output: The set of paths inverseClosure1Step(C,X,F)
1: S = {∅}
2: for each P ∈ X do
3: if Last(P) ∈ Σele then
4: R = {{Q} | P � Q}
5: else if Last(P) ∈ Σatt then
6: R = {{P}} ∪ {{Parent(P)}}
7: else
8: R = {{P}}
9: end if
10: Y1 = {{P1, . . . , Pn} | there exist an XFD (C, ({P1 [E1], . . . , Pn [En]} →

P ′ [En+1])) in F such that P ′ = P }
11: Y2 = {{P1, . . . , Pn} | there exist an XFD (C, ({P ′

1 [E1], . . . , P ′

n [En]} →
P ′ [En+1])) in F such that P ′ = P and ∀ k ∈ [1, . . . , n], P ′

k ∩ P � Pk and
(Pk � P ′

k or Pk � P)}
12: S = S ⊎ (R ∪ Y1 ∪ Y2) % where ⊎ stands for the distributing union of two sets
13: end for

% C/S a contracted form to express C/P for each path P appearing in a set Z ∈ S
14: return C/S

and S2 be sets of path sets. The set S1 ⊎ S2 contains all sets resulting from the
union of each W1 ∈ S1 to each W2 ∈ S2. The following example illustrates the
computation of Algorithm 4.

Example 13. Let us consider three XFD in F : (C, (D → O)), (C, ({A,B} → O))
and (C, ({M,N} → Q)). Moreover, we assume that Q ≺ J and that O ≺ I.
Let X = {O,Q} where O and Q are paths reaching element nodes. Following
Algorithm 4, we obtain, step by step, the results shown below:

1st Step of the for loop 2nd Step of the for loop

path P ∈ X O Q
set R (line 3) {{O}, {I}} {{Q}, {J}}
set Y1 (line 10) {{A,B}, {D}} {{M,N}}
set Y2 (line 11) {{[]}} {{[]}}
set S (line 12) {{O}, {I}, {A,B}, {D}, {[]}} {{O,Q}, {O, J}, {O,M,N}, {O, []},

{I,Q}, {I, J}, {I,M,N}, {I, []},
{A,B,Q}, {A,B, J},
{A,B,M,N}, {A,B, []},
{D,Q}, {D, J}, {D,M,N}, {D, []},
{[], Q}, {[], J}, {[],M,N}, {[]}}

The computed result indicates that XFD such as (C, ({I,Q} → X)) or (C, ({A,B,
M,N} → X)) are derivable from our initial set F . Thus, Algorithm 4 returns a

41

set S = {{C/O,C/Q}, {C/O,C/J} . . . {C/[]}}. Notice also that, in this case, in
line 14 of Algorithm 3 the set K will contain all sets in S except {C/O,C/Q}
which corresponds to our X. ✷

7.4 Properties of coverF

In this section we prove that Algorithm 3 works correctly, and fulfil our goals.

Lemma 7. Let F be a set of XFD such that (C, (X → Y)) ∈ F . Let (C, (Z1 →
Z2)) be an XFD different from (C, (X → Y)).

If F ⊢ (C, (Z1 → Z2)) then G ⊢ (C, (Z1 → Z2)) where G is the set of XFD
defined as follows:

G = F ∪ ({(C, (X → V)) | V ∈ closure1Step(C, Y,F)}
∪ {(C, (W → Y)) |W ∈ inverseClosure1Step(C,X,F)}
∪ {(C, ({P ′

1, . . . , P
′
n} → Y)) | X = {P1, . . . , Pn} and ∀ k ∈ [1, . . . , n],

Pk ∩ Y � P ′
k and (P ′

k � Pk or P ′
k � Y)}) \ {(C, (X → Y))}. ✷

Proof:

– Suppose that (C, (Z1 → Z2)) ∈ F . Since (C, (Z1 → Z2)) is different from
(C, (X → Y)), and G contains each XFD in F except (C, (X → Y)) then
G ⊢ (C, (Z1 → Z2)).

– Otherwise (C, (Z1 → Z2)) 6∈ F . As F ⊢ (C, (Z1 → Z2)), there exist a
sequence α of XFD containing XFD in F such that α derives (C, (Z1 → Z2)).
When α does not contain (C, (X → Y)), it is obvious that G ⊢ (C, (Z1 →
Z2)).
We consider now that α contains (C, (X → Y)).
1. Let α1 be the derivation sequence f1 . . . fn such that :

(a) each fi (for 1 ≤ i ≤ n) is in α and
(b) each fi (for 1 ≤ i ≤ n) is of the form Xi → X, i.e., X1, . . . , Xn are
the paths in inverseClosure1Step(C,X,F).
We say that α1 is the sub-sequence of α which derives the set of paths
X in one step.
Since F ⊢ (C, (Xi → X)) and F ⊢ (C, (X → Y)) then by transitivity
F ⊢ (C, (Xi → Y)). We construct the sequence α′ by replacing, in α,
the sub-sequence

α1, (C, (X → Y))
by

(C, (X1 → Y)), . . . , (C, (Xn → Y)).
By considering α′ we have proved that G ⊢ (C, (Z1 → Z2)) since each
XFD (C, (Xi → Y)) ∈ G.

2. Similarly to step 1, let α2 be the sub-sequence of α which derives the
paths Y1, . . . , Yn in one step from the path Y . The paths Y1, . . . , Yn are in
closure1Step(C, Y,F). Since F ⊢ (C, (X → Y)) and F ⊢ (C, (Y → Yi))
∀i ∈ [1 . . . n] then by transitivity F ⊢ (C, (X → Yi)). We construct
the sequence α′′ by replacing the sub-sequence (C, (X → Y)), α2 by

42

(C, (X → Y1)), . . . , (C, (X → Yn)) in α. By considering α′′ we have
proved that G ⊢ (C, (Z1 → Z2)) since each XFD (C, (X → Yi)) ∈ G.

3. Similarly to step 1, let α3 be the sub-sequence of α which derives the path
Y in one step from each set of paths Xi (i ∈ [1, . . . , n]) and by using
Axiom A4 on the XFD (C, (X → Y)). The sets of paths X1, . . . , Xn

are in inverseClosure1Step(C, Y,F). We construct the sequence α′′′ by
deleting the XFD (C, (X → Y)) in α. Since each XFD (C, (Xi → Y)) ∈
G then by considering α′′′ we have proved that G ⊢ (C, (Z1 → Z2)).

✷

Now, given two sets of XFD, F i and F ī, we recall the definition of the set
Ki of XFD as:

Ki = {X → A | X → A ∈ F+
i and [((X ⊆ IPi) and (X 6⊆ IPī)) or (A ∈ (IPi\IPī)]}

(21)
Intuitively, Ki contains all the XFD f which can be obtained from F i but

that cannot be violated by documents in Xī due to one of the two reasons:
(a) the right-hand side of f is a path B which belongs to IPi but not to IPī or
(b) the left-hand side of f is a set of paths X which is included in IPi but not
in IPī. In Section 7.1 we show an algorithm, starting with F+

1 and F+
2 , instead

of F1 and F2, that computes the set

F = (F+
1 ∩ F

+
2) ∪ K1 ∪ K2 (22)

and we prove some properties of F .

Theorem 7. The set coverF , returned by Algorithm 3, is equivalent to (or is a
cover of) the set of XFD F = (F+

1 ∩ F
+
2) ∪ K1 ∪ K2 (coverF ≡ F). ✷

Proof: We prove that: (A) Algorithm 3 terminates, and that (B) coverF ≡ F .

(A) For each XFD h = (C, (Y → A)) which is considered in line 4 of Algorithm 3,
we have that h is added to coverF due to tests in lines 5-10 or h is analysed and
implies zero or several XFD added to G (lines 11-15).
Recall that the set (C, Y)+ w.r.t. F i (denoted by (C, Y)+Fi

) is finite and com-

puted by adding, at each iteration k of Algorithm 1, a set of paths Zk to (C, Y)+Fi
.

The process goes on until no more inclusions are possible in (C, Y)+Fi
. The set

of paths Zk (1 ≤ k ≤ n) is obtained from successive calls of function clo-
sure1Step. More precisely, we have that Zn ⊆ closure1Step(C,Zn−1,F i), . . .,
Z2 ∈ closure1Step(C, Y,F i).
Functions closure1Step(C,A,F i) and inverseClosure1Step(C, Y,F i) just fol-
low XFD forward or backward, ”visiting” paths in (C, Y)+Fi

. Thus, as (C, Y)+Fi
is

finite the number of calls to closure1Step(C,A,F i) and inverseClosure1Step(C, Y,F i)
are also finite.
Thus, Algorithm 3 terminates because the only possible situations are the fol-
lowing ones:

43

– A new XFD, added to G due to XFD h, is also added to coverF .
– A new XFD, found in lines 12-16 from the XFD h, corresponds to an XFD

already treated and, thus, is not added to G (recall that G is a set).
– XFD h = (C, (Y → A)) is such that inverseClosure1Step(C, Y,F i) = ∅ and

closure1Step(C,A,F i) = ∅, and then no XFD is added to G.

(B) For proving that coverF ≡ F , we will prove that:
(B1) ∀f ∈ coverF , F ⊢ f and
(B2) ∀f ∈ F we have that coverF ⊢ f .

(B1) In fact, we can prove that coverF ⊆ F (which is stronger than just proving
that F ⊢ f for any XFD f ∈ coverF).
From Algorithm 3, two kinds of XFD are added to coverF :

1. Those that are in F1 or F2 and succeed the tests in lines 5, 7 and 9.
Clearly, according to (21) and (22), these XFD are also in F .

2. Those derived from XFD in F1 or F2 (lines 12 to 16) and that also succeed
the tests in lines 5, 7 and 9.
To prove that these XFD are also in F , let us consider an XFD g = (C, (X →
B)) in G for which lines 12 to 16 of Algorithm 3 are executed. From line 13
we obtain an XFD g1 = (C, (X → D)) such that C/D ∈ (C,B)+F i

, which

is in F+
i . From line 15 we obtain an XFD g2 = (C, (Y → B)) such that

C/X ∈ (C, Y)+F i

, which is in F+
i . From line 16 we obtain an XFD g3 =

(C, (Y → B)) such that C/B ∈ (C, Y)+F i

, which is in F+
i . Since these new

XFD are in F+
1 or F+

2 and satisfy conditions stated in lines 5, 7 and 9 then
they are also in F (see (21) and (22)).

We have just proved that coverF ⊆ F .

(B2) The final step is to prove that for each XFD f ∈ F = (F+
1 ∩ F

+
2) ∪ K1 ∪

K2 then f is also in coverF+ (i.e., coverF ⊢ f).

1. Let (C, (Y → A)) be an XFD in F+
1 ∩F

+
2 . Thus, we know that (C/Y ∪{C/A})

⊆ IP1, (C/Y ∪ {C/A}) ⊆ IP2, C/A ∈ (C, Y)+F1
and C/A ∈ (C, Y)+F2

.

(a) If (C, (Y → A)) ∈ F1 then, as C/A ∈ (C, Y)+F2
, from line 9 of Algo-

rithm 3, we have (C, (Y → A)) ∈ coverF . Clearly, (C, (Y → A)) ∈
coverF+.

(b) Otherwise, if (C, (Y → A)) ∈ F2, with the same arguments as those
in 1a, we conclude that (C, (Y → A)) ∈ coverF and so (C, (Y → A)) ∈
coverF+.

(c) Otherwise, we have that f = (C, (Y → A)) 6∈ F1 and (C, (Y → A)) 6∈
F2. As C/A ∈ (C, Y)+F1

, there is a derivation sequence α = f1, . . . , fn
which derives f .
Firstly, assume that coverF contains all the XFD of F1 taking part in the
derivation sequence α. In this case, it is straightforward that coverF ⊢ f .

44

Now assume the contrary, i.e., there is at least one XFD of F1 that takes
part in the derivation sequence α but does not belong to coverF . Denote
it by fk. We know that fk does not satisfy conditions on lines 5, 7, 9
and, thus, is considered in lines 12-16. From lines 12-16, we know that
fk is deleted from G and that some other XFD h is inserted in G. From
Lemma 7, we know that G ⊢ f .
All new functional dependencies h are going to be considered in line 4.
If they satisfy conditions in lines 5, 7, 9 they are added to coverF .
Otherwise, they are analysed in lines 12-16 and the process goes on until
f is added to G and, thus, to coverF .
To see why f is eventually added to G, recall the following facts. We
know that f = (C, (Y → A)) and that f ∈ F+

1 . We also know that
new XFD h which is not inserted in coverF , provokes the insertion in
G of XDF having the form (C, (Z → W)) where C/Z ⊆ (C, Y)+ and
C/W ⊆ (C, Y)+ w.r.t. F1. This is true because when computing (C, Y)+

w.r.t. F1 we find paths C/Z and C/W which are included in (C, Y)+

during a step of Algorithm 1. More precisely, there are sets of paths C/Z1

. . . C/Zn ∈ (C, Y)+ such that C/W ⊆ closure1Step(C,Zn,F1), . . .,
Z2 ⊆ closure1Step(C,Z1,F1), Z1 ⊆ closure1Step(C,Z,F1). As f is one
of the XFD (C, (Z → W)) described above, it will eventually be added
to G, and selected in line 9 to be in coverF (recall that C/A ∈ (C, Y)+F1

and C/A ∈ (C, Y)+F2
).

2. Let f = (C, (Y → A)) ∈ K1. In this situation f ∈ F+
1 , (C/Y ∪ {C/A})

⊆ IP1, and (C/Y ∪ {C/A}) 6⊆ IP2. We prove that f ∈ coverF+. As C/A ∈
(C, Y)+F1

, there is a sequence α = f1, . . . , fn corresponding to a derivation of
f . With the same arguments as those in 1c, we know that coverF contains
all XFD which are needed to the derivation of f or f is added to G. Then
f is considered in line 4 and f is added to coverF in line 6 or 8 because
(C/Y ∪ {C/A}) ⊆ IP1, and (C/Y ∪ {C/A}) 6⊆ IP2.

3. Let f = (C, (Y → A)) ∈ K2. The proof that f ∈ coverF+, is similar to
case 2.

✷

7.5 Complexity of Algorithm 3

Algorithm 3 depends on Algorithm 1 which computes the closure of a set of
paths ((C,X)+), and on Algorithm 4 which computes just one step of the inverse
closure of a set of paths. In Algorithm 1, we notice that:

– The loop at line 4 is executed at most |IP| times when we consider that at
each iteration just one path in IP is added to X(i).

– Checking that X(i) 6= X(i+1) has a complexity, in the worst case, of O(|IP|2)
when X(i) = X(i+1) = IP.

– For computing the set Y in line 5, we consider all XFD in F and check if one
of the conditions (a)-(c) is satisfied for each XFD. The complexity of this

45

part is O(|f |.|IP|.|F|) where |F| is the cardinality of F and |f | is the size of
the longest XFD in F .

– For computing the prefixes and attributes in lines 6 and 7, the runtime is
O(|IP|).

Thus, the time complexity of Algorithm 1 is O(|IP|.(|f |.|IP|.|F|+ |IP|2+ |IP|)) or,
factorising, O(|IP|2.(|f |.|F|+|IP|+1)). Therefore the running time of Algorithm 1,
in the worst (unlikely) case, is O(|IP|2.(|f |.|F|+ |IP|)).

The running time of Algorithm 4 is based on the following remarks. At each
iteration, we compute S on the basis the two sets Y1 and Y2 which contain sets
of path.

– The computation of Y1 is done in time O | F |.
– To compute Y2 we need to consider all XFD in F and, for each f ∈ F having

P on its right-hand side, we compute the prefixes of all paths on its left-hand
side. Then the computation of Y2 is done in time O | F | .(n.m+mn), where
m is the number of labels on the longest path in f and n is the number of
path on the left-hand side of f . In fact, we know that:
(i) Prefixes of a path Q are obtained in time O(m). We have to compute
prefixes for n paths.
(ii) The new sets of path in Y2 are obtained by combining each prefix of a
path P1 (on the left-hand side of f) with a prefix of paths P2 . . . Pn. This
computation is done in time O(mn).

– The number of sets of path in R is m; in Y1 is | F | and in Y2 is m
n× | F |. At

each iteration we compute the distributing union of two sets S1 and S2 which
complexity is O(|S1|.|S2|). As we have | X | iterations the computation of S
is done in time O((m+ | F | +mn× | F |)|X|).

In the worst case, Algorithm 3 will treat about |F i|.|IPi| XFD for each set
F i. The worst case occurs when for each XFD f = (C, (X → P)) in F i, (C,X)+

contains |IPi| paths and just one path is added to (C,X)+ in each step of the loop
of Algorithm 1 and no XFD is added to coverF . Hence, in this case, lines 12-15
of Algorithm 3 will be executed |IPi| times for each XFD in F i. The complexity
of Algorithm 3 is O(|F i|.|IPi|.(g + h)) where g is the complexity of Algorithm 1
and h is the complexity of Algorithm 4.

8 Experimental Results

In order to examine the performances of Algorithm 3, we run several experi-
ments on synthetic data. Recall that Algorithm 3 has as input two local systems
S1 = (D1,F1, O1) and S2 = (D2,F2, O2), and computes the set coverF which
contains only the XFD for which no violation is possible when considering docu-
ment sets for S1 and S2. We take into account two parameters in the experiments:
(i) the number of paths obtained from D1 and D2, and (ii) the number of XFD
in | F1 | + | F2 |.

Tree T (Figure 16) guides the way we perform our experiments. T is built by
repeating the pattern tree in Figure 15 several times. To perceive the difference

46

between the sub-trees of T , we relabel the nodes of the pattern tree by adding
the index k (k ≥ 1). Thus, we say sub-tree k to refer to the kth tree pattern in
T .

Our experiments consist in generating coverF from sets F1 and F2 which
increase at each test by assuming the existence of bigger sets of paths IP1 and IP2

and, therefore, larger trees T . In the text, we usually refer to tree T to indicate
the type of documents (the schema) we are dealing with. In this context, let us
define IPj

1 as the set of paths containing all the paths in the tree T except the

paths C/R1,k/G1,k (with k ≤ j), and IPj
2 as the set of paths containing all the

paths in the tree T except the paths C/R1,k/F1,k (with k ≤ j). We suppose that

the set of paths IPj
1 (respectively IPj

2) is generated from D1 (respectively D2).

n

R1

D2B2

A1 B1 F1 G1 E1 D1

A2
E2 D3

Fig. 15. Pattern tree

n

R1,1

D2,1B2,1

A1,1 B1,1 F1,1 G1,1 E1,1 D1,1

D3,1A2,1
E2,1

R1,n

D2,nB2,n

A1,n B1,n F1,n G1,n E1,n D1,n

D3,nA2,n
E2,n

. . .

C

Fig. 16. Tree T built by repeating, under the same root, n times the pattern tree in
Figure 15.

The set of XFD Fj
1 (respectively F

j
2) is defined over paths in IPj

1 (respectively

IPj
2). Table 5 shows the XFD in F j

1 and Fj
2. Sets F

j
1 and F j

2 contain both XFD

(1) and (2). However XFD (3a), (4a) and (5a) are only in F j
1 and XFD (3b), (4b)

47

and (5b) are only in F j
2. With XFD (4a) and (5a), we can derive the XFD (6)

(C/R1,k, ({A1,k/A2,k, B1,k/B2,k} → E1,k/E2,k)) and with XFD (4b) and (5b),

we can can also derive the XFD (6). Hence, F j
1 and Fj

2 derive XFD (6) but
by different ways. We can remark that |F1

1| = |F
1
2| = 5, |F2

1| = |F
2
2| = 10 and

F1
1 ⊂ F

2
1, F

1
2 ⊂ F

2
2.

Fj
1

Fj
2

(1) (C/R1,k, ({A1,k, B1,k} → D1,k)) (1) (C/R1,k, ({A1,k, B1,k} → D1,k))

(2) (C/R1,k, ({D1,k} → E1,k)) (2) (C/R1,k, ({D1,k} → E1,k))

(3a) (C/R1,k, ({E1,k} → F1,k)) (3b) (C/R1,k, ({E1,k} → G1,k))

(4a) (C/R1,k, ({A1,k/A2,k, B1,k/B2,k} → D1,k/D2,k)) (4b) (C/R1,k, ({A1,k/A2,k, B1,k/B2,k} → D1,k/D3,k))

(5a) (C/R1,k, ({D1,k/D2,k} → E1,k/E2,k)) (5b) (C/R1,k, ({D1,k/D3,k} → E1,k/E2,k))

Table 5. Contents of the XFD set Fj
1 and Fj

2 using in the experiments

The algorithm was implemented in Java and the tests have been done on an
Intel Quad Core i3-2310M with 2.10GHz and 8GB of memory. We have used
three scenarios for performing our tests.

In the first scenario we examine the influence of the size of F1 and F2 on
the execution time of Algorithm 3. We have used Fj

1 and F j
2, such that 1 ≤

j ≤ 45. Figure 17 shows reasonable execution time (approximately 2 minutes)
for computing coverF from sets of XFD F1 and F2 where |F1| + |F2| = 450.
Figure 17 also shows that the size of coverF increases slightly.

In the second scenario we examine again the influence of the size of F1 and
F2 on the execution time of Algorithm 3. Notice that, in the first scenario,
the functional dependencies involving index k concerns only one subtree. Now,
in this second scenario, we allow an XFD involving index k = 1 to derive an
XFD involving index k = 2, and so on. To do this, we add to F j

1 (respectively

Fj
2) the XFD of the form (7a) (C, ({R1,k/E1,k−1/E2,k−1} → R1,k/D1,k/D2,k)),

respectively (7b) (C, ({R1,k/E1,k−1/E2,k−1} → R1,k/D1,k/D3,k)), with 2 ≤ k ≤
j.

As shown in Figure 18, the execution time for computing coverF is more
important than the one obtained with the first scenario. For instance, for sets
F1 and F2 (such that |F1|+|F2| = 262) we need 53 minutes to compute coverF .
This behaviour is explained by two facts:

– XFD of the form (7a) and (7b) are not added to coverF due to condition in
line 9 of Algorithm 3. Checking this condition is an expensive task because
the computation of (C,R1,k/E1,k−1/E2,k−1)

+
Fi

involves many paths.
– For this example, lines 12-15 of Algorithm 3 generate many XFD increasing

dramatically the number of XFD in coverF . Indeed, |coverF| has about
10610 XFD when |F j

1|+ |F
j
2| is 262.

In the third scenario, we compare Algorithm 2 (which computes F) with
Algorithm 3 (which computes coverF). Recall that in Section 7, we have shown

48

CPU Time Size of coverF

0 2 5 5 0 7 5 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450

|F1| + |F2|

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

45 000

50 000

55 000

60 000

65 000

70 000

75 000

80 000

85 000

90 000

95 000

100 000

105 000

110 000

115 000

120 000

125 000

130 000

135 000

T
im

e
 i

n
 m

s

0

5 0

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1 000

1 050

1 100

1 150

1 200

1 250

1 300

1 350

1 400
|co

ve
rF

|

Fig. 17. Scenario 1: CPU time for the computing of coverF and the evolution of its
size

that coverF is equivalent to F . Now, Table 6 compares these two algorithms.
Line 1 in Table 6 shows the results with sets F1

1 and F1
2 while line 4 shows the

result with F2
1 and F2

2, and line 5 shows the result with F3
1 and F3

2, the same
sets used in scenario 1. When computing the set F for sets F3

1 and F3
2 with

Algorithm 2, we obtain an out-of-memory error after 5 minutes. For the same
sets of XFD, Algorithm 3 takes approximately 2.9 seconds and |coverF| = 92.
Since test concerning line 5 does not produce a result for Algorithm 2, we perform
tests of line 2 and 3 on a modified tree, i.e., on T without the leaves. In other
words, we delete nodes A2,2, B2,2, D2,2, D3,2 and E2,2 from a tree T with k = 2
sub-trees. The tree considered in line 3 contains nodes F1,2 and G1,2 in addition
to nodes in the tree considered in line 2. As expected, in all cases, Algorithm 3 is
much more efficient than Algorithm 2. Moreover, the size of F grows dramatically
while the size of coverF increases slightly.

|IP1|+ |IP2| |F1| |F2| |F
+
1 | |F

+
2 | |F| t1 (ms) |coverF| t2 (ms)

1 12 5 5 3 835 3 835 5 755 19 211 30 160

2 17 7 7 3 865 3 865 5 785 24 401 32 195

3 18 8 8 3 928 3 928 5 911 26 476 34 204

4 23 10 10 7 670 7 670 11 510 165 460 61 503

5 34 15 15 ? ? ? > 5min 92 2 949
Table 6. Comparison: t1 is the time needed to compute F and t2 is the time needed
to compute coverF .

49

CPU Time Size of coverF

0 2 5 5 0 7 5 100 125 150 175 200 225 250

|F1| + |F2|

0

200 000

400 000

600 000

800 000

1 000 000

1 200 000

1 400 000

1 600 000

1 800 000

2 000 000

2 200 000

2 400 000

2 600 000

2 800 000

3 000 000

3 200 000

T
im

e
 i

n
 m

s

0

500

1 000

1 500

2 000

2 500

3 000

3 500

4 000

4 500

5 000

5 500

6 000

6 500

7 000

7 500

8 000

8 500

9 000

9 500

10 000

10 500

|co
ve

rF
|

Fig. 18. Scenario 2: CPU time for the computing of coverF and the evolution of its
size

Our experiments confirm the time complexity presented in Section 7.5, and
reinforce the importance of computing the smaller set coverF instead of the
equivalent set F considered in Section 7.1. The worst case happens when docu-
ments have many equivalent paths and derivations that involve a lot of paths.
We have used Algorithm 1 to test, successfully, the equivalence between F and
coverF on several examples. These tests contribute to the validation of the cor-
rection of our method.

9 Related Work

We suppose a system which is expected to receive XML documents from different
sources, each one submitted to some local integrity constraints. The motivation
of this paper comes from the idea of giving to this a system the capability of
verifying all the original (local) constraints whose satisfaction can be ensured
by any local valid documents. To achieve our goal we have seen the necessity of
using an axiom system.

We decided to adopt the XFD definition presented in [2] for which a vali-
dation algorithm is introduced in [4]. Indeed, [4] offers a general algorithm to
verify the satisfaction of different integrity constraints, including XFD. A com-
plementary approach is presented in [8], where the idea of incremental validation
is considered via some static verification of functional dependencies w.r.t. up-
dates. In [8], XFD are defined as tree queries which augments considerably the
complexity of an implementation, and the necessary dynamic part of the veri-

50

fication (i.e. considering values existing in the XML document) still has to be
done for parts involved in the updates.

In this paper we propose an axiom system, for XFD as those in [2, 4], together
with an efficient algorithm for computing the closure of a set of paths. Our work
on the axiom system is comparable to the one proposed by [16]. The main
differences are: (i) we propose a more powerful path language allowing the use
of a wild-card; (ii) our XFD are verified w.r.t. a context and not only w.r.t.
the root, i.e., XFD can be relative; (iii) our XFD can be defined by taking into
account two types of equality: value and node equality and (iv) we use simpler
concepts (such as branching paths, projection) which, we believe, allow us to
prove that our axiom system is sound and complete in a clearer way.

Several other proposals for defining XML functional dependencies (XFD)
exist. We refer to [1, 9, 12, 15, 17, 16, 19] as some examples and to [9, 18] for a
comparison among some of them. The path language used in [1, 17, 16] allows
only the specification of simple paths. In [18, 4], we find a more powerful path
language. All these approaches present paths as unary queries, but [9] whose
path language is n-ary. Different XFD proposals entail different axiomatisation
system, such as those in [9, 11, 16].

We use our axiom system in the development of a practical tool: to filter
local XFD in order to obtain a set containing only XFD that cannot be violated
by any local XML document. The goal of our global system is to deal with data
coming from any local source, but not to perform data fusion. In this context,
our work presents an original point of view, since we are not interested in putting
together all the local information, but just in manipulating them. Indeed, our
approach does not deal with data, only with the available constraints (XFD in
our case).

Some work consider schema integration of local database into a global. Usu-
ally, this proposal comes together with the idea of data fusion. XML data fusion
is considered in papers such as [5, 14]. In [14], the author considers the following
problem: given an XFD f : X → A, it can be violated when local data is put
together - even when f is satisfied by each local data separately. He proposes a
probabilistic approach to decide which data is the most reliable. In [7] data ex-
change is considered. A target schema is built from a source schema (a mapping
is given). The goal of their proposal is to construct an instance over the target
schema, based on the source and the mapping, and to answer queries against
the target data in a way consistent with the source data.

In several modern applications the schema often changes as the information
grows and different people have inherently different ways of modelling the same
information. In the XML domain, one should easily imagine a situation where the
schema is not agreed upon in advance but is designed incrementally, according
to the needs of different users. Our global (integrated) system is also intended to
be a consensus one, a starting point for constraint evolution when the demand
for dealing with new and old information exists.

Different works have already considered XML type evolution, but these pro-
posals usually do not take into account the evolution of associated integrity

51

constraints whose role is extremely important in the maintenance of consis-
tent information. In [10] authors offer as a perspective to apply to XML their
proposal of adapting (or re-formulating) functional dependencies according to
schema changes. This is done in [15] where authors consider the problem of
constraint evolution in conformance with type evolution. The type evolution
proposed in [6] is well adapted to our proposes; it seems possible to combine
their type evolution with our XFD filter in order to generate a set of constraints
allowing interoperability.

10 Conclusions

In this paper we were motivated by applications on a multiple system environ-
ment and we presented a method for establishing the biggest set of XFD that
can be satisfied by any document conceived to respect local XFD. One important
originality of our work is the fact that we do not deal with data, only with the
available constraints (XFD in our case). Our approach is not only interesting
for multiple system applications, but also in a conservative constraint evolution
perspective. To reach our goals, a new axiom system, built for XFD defined over
a context and two kinds of equality, was introduced. Moreover the paper pre-
sented the proof of its soundness and completeness and an efficient algorithm to
compute path closures.

As some future directions that follow from this work, we mention:

– By using the schema evolution method of [6] together with our computation
of coverF , the generation of a new type and a new set of integrity constraints
that will allow interoperability without abolishing constraint verification. We
are currently working on a platform that puts together these tools.

– The extension of our method to other kinds of integrity constraints such as
inclusion constraints.

– An incremental computation of coverF , following the evolution of local con-
straints or systems.

– The detection of local XFD that are not selected in coverF but that could
be included in it by correcting the associated documents that do not respect
them.

References

1. Arenas, M., Libkin, L.: A normal form for XML documents. ACM Transactions
on Database Systems (TODS) 29 No.1 (2004)

2. Bouchou, B., Cheriat, A., Halfeld Ferrari, M., Laurent, D., Lima, M.A., Musicante,
M.: Efficient constraint validation for updated XML databases. Informatica 31(3),
285–310 (2007)

3. Bouchou, B., Halfeld Ferrari, M., Lima, M.: Contraintes d’intégrité pour xml. visite
guidée par une syntaxe homogène. Technique et Science Informatiques 28(3), 331–
364 (2009)

52

4. Bouchou, B., Halfeld Ferrari, M., Lima, M.A.V.: A grammarware for the in-
cremental validation of integrity constraints on XML documents under multiple
updates. Transactions on Large-Scale Data and Knowledge-Centered Systems,
TLDKS Journal 6(LNCS 7600) (2012)

5. Cecchin, F., de Aguiar Ciferri, C.D., Hara, C.S.: XML data fusion. In: DaWak,
pp. 297–308 (2010)

6. Chabin, J., Halfeld Ferrari, M., Musicante, M.A., Réty, P.: Minimal tree language
extensions: A keystone of XML type compatibility and evolution. In: ICTAC 2010,
7th International Colloquium of Theoretical Aspects of Computing, Lecture Notes
in Computer Science, vol. 6255, pp. 60–75. Springer (2010)

7. Chirkova, R., Libkin, L., Reutter, J.L.: Tractable xml data exchange via relations.
In: Proceedings of the 20th ACM Conference on Information and Knowledge Man-
agement, CIKM 2011, pp. 1629–1638 (2011)

8. Gire, F., Idabal, H.: Regular tree patterns: a uniform formalism for update queries
and functional dependencies in XML. In: EDBT/ICDT Workshops (2010)

9. Hartmann, S., Trinh, T.: Axiomatising functional dependencies for XML with fre-
quencies. In: FoIKS, pp. 159–178 (2006)

10. He, Q., Ling, T.W.: Extending and inferring functional dependencies in schema
transformation. In: Proceedings of the 2004 ACM CIKM International Conference
on Information and Knowledge Management, pp. 12–21 (2004)

11. Kot, L., White, W.M.: Characterization of the interaction of XML functional de-
pendencies with DTDs. In: ICDT- 11th International Conference on Database
Theory, pp. 119–133 (2007)

12. Lee, M.L., Ling, T.W., Low, W.L.: Designing functional dependencies for XML.
In: Extending Database Technology (EDBT), pp. 124–141 (2002). URL citeseer.

ist.psu.edu/article/lee02designing.html

13. Liu, J., Vincent, M.W., Liu, C.: Functional dependencies, from relational to XML.
In: Ershov Memorial Conference, pp. 531–538 (2003)

14. Pankowski, T.: Reconciling inconsistent data in probabilistic XML data integra-
tion. In: Sharing Data, Information and Knowledge, 25th British National Con-
ference on Databases - BNCOD, pp. 75–86 (2008)

15. Shahriar, M.S., Liu, J.: Preserving functional dependency in XML data transfor-
mation. In: ADBIS ’08: Proceedings of the 12th East European conference on
Advances in Databases and Information Systems, pp. 262–278. Springer-Verlag
(2008)

16. Vincent, M., Liu, J., Mohania, M.: The implication problem for ’closest node’
functional dependencies in complete XML documents. Journal of Computer and
System Sciences 78(4), 1045 – 1098 (2012)

17. Vincent, M.W., Liu, J., Liu, C.: Strong functional dependencies and their applica-
tion to normal forms in XML. ACM Trans. Database Syst. 29(3), 445–462 (2004)

18. Wang, J., Topor, R.: Removing XML data redundancies using functional and
equality-generating dependencies. In: ADC ’05: Proceedings of the 16th Aus-
tralasian database conference, pp. 65–74. Australian Computer Society, Inc., Dar-
linghurst, Australia, Australia (2005)

19. Zhao, X., Xin, J., Zhang, E.: XML functional dependency and schema normal-
ization. In: HIS ’09: Proceedings of the 9th International Conference on Hybrid
Intelligent Systems, pp. 307–312 (2009)

53

A Algorithm for computing the longest common prefix

Given AP the FSA associated to path P and AR the FSA associated to path R,
Algorithm 5 computes the FSA AP∩R associated to the longest common prefix
of P and R. We suppose that automata AP and AR are deterministic.

Let AP = (QP , Σ, IP , δP , FP) and AR = (QR, Σ, IR, δR, FR). Algorithm 5 is
similar to the intersection algorithm of two FSA. In this way it is explained by
the following items:

– Each state of the resulting automaton AP∩R is pair-state (p, q) such that
p ∈ QP and q ∈ QR.

– The initial pair-states in AP∩R comes from the set IP × IR.
– A pair-state (p′, q′) is added to the set of pair-states Q when there exist

(p, q) ∈ Q and a ∈ Σ such that δP (p, a) = p′ and δR(q, a) = q′ (in other
words (p′, q′) is reached from (p, q)).

– The only difference between Algorithm 5 and the intersection algorithm is
the way of computing the set of final pair-states. In the intersection algorithm
a pair-state (p, q) is final when p ∈ FP and q ∈ FR. In Algorithm 5, a pair-
state (p, q) is final when p ∈ FP or q ∈ FR, or there exist a, b ∈ Σ such that
δP (p, a) and δR(q, b) are defined and a 6= b.

Example 14. Consider the XML document of Figure 3 and the set IP = L(D) of
Figure 4. Given P = /library//section/title/data andR = /library//section/txt/data,
the longest common prefix P ∩R can be written as /library//section since P ∩
R = { /library/book/chapter/section/, /library/book/chapter/section/section/,
/library/book/chapter/section/section/section }. In Figure 19 we have the FSA
associated to paths P and R, and the FSA computed by Algorithm 5 for P ∩R.

AP : library//section/title/data

1 2 3 4 5 6 7

8 9

library book chapter section section section

title
title

title

data

AR : library//section/txt/data

a b c d e f g

h i

library book chapter section section section

txt
txt

txt

data

AP∩R :

1, a 2, b 3, c 4, d 5, e 6, f 7, g
library book chapter section section section

Fig. 19. FSA associated to the paths P , R and P ∩R.

54

Algorithm 5 Longest Common Prefix Algorithm of two Paths

Input:
– AP = (QP , Σ, IP , δP , FP), the FSA associated to path P
– AR = (QR, Σ, IR, δR, FR), the FSA associated to path R

Output: AP∩R, the FSA associated to path P ∩ R (the longest common prefix of P
and R)

1: Q = ∅ % initialization of the set of pair-states
2: I = IP × IR % initialization of the set of initial pair-states
3: F = ∅ % initialization of the set of final pair-states
4: worklist = ∅ % list for storing the states which are not yet treated
5: worklistprec = ∅ % list for storing the states which are already treated
6: for each (p, q) ∈ I do
7: worklist.add((p, q))
8: end for
9: while worklist.size() > 0 do
10: (p, q) = worklist.removeF irst()
11: worklistprec.add((p, q)) % (p, q) is marked as treated
12: Q = Q ∪ {(p, q)}
13: % computing of new pair-states
14: for each a ∈ Σ such that δP (p, a) and δR(q, a) are defined do
15: δ((p, q), a) = (δP (p, a), δR(q, a))
16: if (δP (p, a), δR(q, a)) 6∈ worklistprec then
17: worklist.add((δP (p, a), δR(q, a)))
18: end if
19: end for
20: % checking if (p, q) is final pair-state
21: if p ∈ FP or q ∈ FR then
22: F = F ∪ {(p, q)}
23: else if ∃ a, b ∈ Σ such that δP (p, a) and δR(q, b) are defined and a 6= b then
24: F = F ∪ {(p, q)}
25: end if
26: end while
27: return (Q,Σ, I, δ, F)

55

