
Programming with BSP
Homomorphisms

Joeffrey Legaux, Zhenjiang Hu,
Frédéric Loulergue, Kiminori Matsuzaki,

Julien Tesson

Rapport no RR-2013-01

2

Programming with BSP Homomorphisms

Joeffrey Legaux2 Zhenjiang Hu1 Frédéric Loulergue2

Kiminori Matsuzaki3 Julien Tesson4

March 2013

1 National Institute of Informatics, Tokyo, Japan
Hu@nii.ac.jp

2 LIFO, Université d’Orléans, France,
{Joeffrey.Legaux,Frederic.Loulergue}@univ-orleans.fr

3 Kochi University of Technology, Kochi, Japan
matsuzaki.kiminori@kochi-tech.ac.jp
4 LACL, Université Paris Est Créteil, France

Julien.Tesson@lacl.fr

Abstract

Algorithmic skeletons in conjunction with list homomorphisms play an impor-
tant role in formal development of parallel algorithms. We have designed a notion
of homomorphism dedicated to bulk synchronous parallelism. In this paper we de-
rive two application using this theory: sparse matrix vector multiplication and the
all nearest smaller values problem. We implement a support for BSP homomor-
phism in the Orléans Skeleton Library and experiment it with these two applica-
tions.
Keywords: Algorithmic skeletons, Constructive algorithms, Bulk synchronous par-
allelism, All nearest smaller values, Sparse linear algebra

1 Introduction

Parallel programming needs to be as widespread as parallel machines that now range
from smartphones to supercomputers. Structured models of parallelism such as al-
gorithmic skeletons [4] or bulk synchronous parallelism [24], ease the writing and
reasoning on parallel programs. Algorithmic skeletons are, or can be seen as, higher-
order functions that capture usual parallel patterns but that have a semantics identical
or close to usual higher-order functions on collections, in particular lists. The most
famous ones are the map and reduce skeletons. Bulk synchronous parallelism offers an
abstract and simple model of parallelism yet allowing to take realistically into account
the communication costs of parallel algorithms. It has been used in many applications
domains [2].

The theory of lists [1] is a powerful tool to systematically develop correct functional
programs. From a specification, or naive implementation of a program, it allows to

3

derive step-by-step, a more efficient version. Algorithmic skeletons in conjunction with
list homomorphisms (or homomorphisms for short) play an important role in formal
development of parallel algorithms [5,9,10,17].

We have defined a notion of homomorphism dedicated to bulk synchronous paral-
lelism, and explore its theory [7, 21] in the context of the Coq proof assistant [22].
Our SDPP framework allows to derive step-by-step correct parallel programs in Coq
and then to extract functional parallel programs for the OCaml [13] language and the
BSML library [14] that can be compiled and run in parallel. If our long term goal is to
provide sufficient automation to use the Coq proof assistant to ease the development
of efficient parallel programs, our framework still lacks automation and the programs
we can extract cannot compete yet with hand-written code. Therefore on a practical
side it would be interesting to have a support for BSP homomorphisms in an efficient
library of algorithmic skeletons such as the C++ Orléans Skeleton Library [11]. The
work presented in this paper provides such a support and we illustrate its use through
the derivation of non-trivial applications.

The main technical contributions of this paper can be summarised as follows.

• We derive two applications in a systematic way using the theory of BSP homomor-
phisms: a sparse-matrix vector multiplication and the all nearest smaller values
algorithm;

• We implement support for the execution of BSP homomorphisms in the Orléans
Skeleton Library;

• We experiment with these applications implemented with OSL on parallel ma-
chines.

The organisation of this paper is as follows. We start by reviewing the basic con-
cepts of homomorphism and recall the definition of the BSP homomorphisms and their
theory (section 2). We then show how to derive BSP homomorphisms from specifica-
tions in section 3. Section 4 is devoted to the Orléans Skeleton Library, in particular
support for BSP homomorphisms with the bh skeleton. We experiment with the derived
applications in section 5. We discuss the related work in Section 6 and conclude the
paper in section 7.

2 BSP Homomorphisms

Our notations are basically based on the programming language Haskell [18]. Func-
tional application is denoted by a space and an argument may be written without brack-
ets. Thus f a means f(a). Functions are curried, i.e. functions take one argument and
return a function or a value, and the function application associates to the left. Thus
f a b means (f a) b. Infix binary operators will often be denoted by ⊕, ⊗, �. Functional
application binds stronger than any other operators, so f a⊕ b means (f a)⊕ b, but not
f(a⊕ b). Lists are finite sequences of values of the same type. A list is either the empty
list, a singleton or a concatenation of two lists. We denote [] for the empty list, [a] for a
singleton list with element a, and x ++ y for a concatenation of two lists x and y. The
concatenation operator is associative. Lists are destructed by pattern matching.

4

Definition 2.1 (Homomorphism) Function h is said to be a homomorphism, if it is
defined recursively in the form of

h [] = id� h [a] = f a h (x++ y) = h(x)� h(y)

where id� denotes the identity unit of �. Since h is uniquely determined by f and �,
we will write h = ([�, f]).

Definition 2.2 (BH) Given a function k, and two homomorphisms g1 = ([⊕, f1]), g2 =
([⊗, f2])1, h is said to be a BH, if it is defined in the following way.

h [] l r = []
h [a] l r = [k a l r]
h (x++ y) l r = h x l (g1 y ⊕ r) ++ h y (l ⊗ g2 x) r

The above h defined with functions k, g1, g2, and associative operators ⊕ and ⊗ is
denoted as h = BH (k, ([⊕, f1]), ([⊗, f2])).

Function h is a higher-order homomorphism, which computes on a list and returns
a new list of the same length. In addition to the input list, h has two additional param-
eters, l and r, which append necessary information to perform computation on the list.
The information of l and r, as defined in the second equation, is propagated from left
and right with functions g2,⊗ and g1,⊕ respectively.

Rather than checking directly that a function is a BH homomorphism we use an indi-
rect way using the mapAround function. mapAround , compared to map, captures more
interesting independent computations on each element of lists. Intuitively, mapAround
is to map a function to each element (of a list) but is allowed to use information of the
sublists in the left and right of the element, e.g.,

mapAround f [x1, x2, . . . , xn]
= [f ([], x1, [x2, . . . , xn]), f ([x1], x2, [x3, . . . , xn]), . . . , f ([x1, . . . , xn−1], xn, [])].

Theorem 2.1 (Parallelization mapAround with BH) For a function h = mapAround f ,
if we can decompose f as f (ls , x, rs) = k (g1 ls , x, g2 rs) where gi is a composition of a
function pi with a homomorphism hi = ([⊕i, ki]) then

h xs = BH (k′, ([⊕1, k1]), ([⊕2, k2])) xs ι⊕1 ι⊕2

where k′ (l, x, r) = k(p1 l, x, p2 r) holds, where ι⊕1 is the (left) unit of ⊕1 and ι⊕2 is the
(right) unit of ⊕2. Proof. This can be proved by induction on the input list of h. The
detailed proof in Coq is discussed in [7,21]. ut

Theorem 2.1 is general and powerful in the sense that it can parallelize not only
mapAround but also other collective functions, such as scan, to BH [7,21].

1See [21] for a discussion about weaker conditions for the definition of BSP homomorphism

5

3 Program Derivation using BSP Homomorphisms

In this section, we demonstrate with two nontrivial examples how to derive applications
using the BH theory. One is the all nearest smaller values problem and the other is the
sparse matrix-vector multiplication.

3.1 All Nearest Smaller Values

The All Nearest Smaller Values (ANSV) problem is as follows:

Let as = [a1, a2, . . . , an] be an array of elements from a totally ordered do-
main. For each aj, find the nearest element to the left of aj and the nearest
element to the right of aj that are less than aj. If there is no such an element,
we put −∞ instead.

An example of the input and the output for the function ansv that solves this problem
is as follows.

ansv [3, 1, 4, 1, 5, 9, 2, 6, 5]
= [(−∞, 1), (−∞,−∞), (1, 1), (−∞,−∞), (1, 2), (5, 2), (1,−∞), (2, 5), (2,−∞)]

A direct specification of the ANSV algorithm is as follows:

ansv as = mapAround nsv as
where nsv (ls , x, rs) = (nsvL x ls , nsvR x rs)

nsvL x [] = −∞
mnsvL x (ls ++ [l]) = if l < x then l else nsvL x ls
nsvR x [] = −∞
nsvR x ([r] ++ rs) = if r < x then r else nsvR x rs

where we simply use mapAround to compute on each element and its surround (left
and right arrays) with the function nsv . In the definition of nsv , nsvL x ls is to compute
the rightmost element in ls that is less than x, while nsvR x rs to compute the leftmost
element in rs that is less than x.

However, this specification is not in a form to which Theorem 2.1 can apply: The
computation of the left and right arrays depends on the center value x. To match the
specification with the input form of Theorem 2.1, the computation on the left and right
arrays should be independent from the center element. We can give such a definition
where we first select the candidates from the left and right arrays and choose a correct
one from them. Since the computation for the left and right is symmetry, we here
discuss about that for the right.

On the right segment, a value cannot be a candidate if a value is larger than or
equals to that on its leftwards as shown in Figure 1. Therefore, we can decompose the
definition of nsvR as follows into a homomorphism that removes unnecessary elements
from an array and a function that picks up the nearest smaller value. Since the result
of the homomorphism is a list in which elements are in decreasing order, the binary
operator of the homomorphism just removes elements in the right list larger than the
rightmost element.

6

3 [4 3 5 4 2 1 4]

Figure 1: The candidates in a right array. The leftmost one denotes the center value. A
black one denotes a candidate and a gray one denotes a non-candidate.

nsvR v rs = pickupR v (([⊕, id]) rs)
where (ls++ [l])⊕ rs = ls ++ [l] ++ dropWhile (λx.x > l) rs

pickupR x [] = −∞
pickupR x (r : rs) = if r < x then r else nsvR x rs

The function nsvL can also be decomposed into a function and a homomorphism. With
the derivation so far, it is now easy to apply the Theorem 2.1 to the specification to
derive the ANSV as a BH.

3.2 Sparse matrix-vector multiplication

Sparse matrices are often compressed into array representations. We develop a parallel
program to compute the multiplication of a sparse matrix and a vector.

Here we consider an array representation that consists of triples (y, x, a):

• y: the row-index of the nonzero element,

• x: the column-index of the nonzero element, and

• a: the value of the nonzero element.

We assume that elements are sorted with respect to the indices y and x. For example,
the following matrix A is represented by the array as with five triples.

A =

 1.1 2.2 0
0 1.3 1.4
0 0 3.5

 as = [(0, 0, 1.1), (0, 1, 2.2),
(1, 1, 1.3), (1, 2, 1.4), (2, 2, 3.5)]

In the matrix-vector multiplication, there is a result element for each row. Let us put
the result on the first element in the row, and clear the other values with a dummy value
denoted as 2. For example, multiplying a vector [3.0, 4.0, 1.0] to the array representation
as yields

mult as [3.0, 4.0, 1.0] = [(0, 0, 12.1), (0, 1,2), (1, 1, 6.6), (1, 2,2), (2, 2, 3.5)] .

Note that we can apply the array packing [7] to compact the result into the result vector
[12.1, 6.6, 3.5].

Now we develop the specification of this problem using the mapAround function.
The first and important step is to determine which kind of values are needed from the

7

left or from the right. To check whether an element is the first one in the row, we simply
compare the row-index of the element with that of the left element. When we compute
the result value, we need the partial sum of the rightward values in the row, multiplied
by the vector. Therefore, the values passed from the right are the row-index of the right
element and the partial sum in the row (of right element). Based on these insights, we
can develop a specification with the mapAround function. In the following program,
v〈i〉 denotes the ith element of the vector v.

mult as v = mapAround (f v) as
where f v (ls , (y, x, a), rs) = let yl = gl ls ; (yr, sr) = gr v rs

in if (yl == y) then (y, x,2)
elseif (yr == y) then (y, x, v〈x〉 ∗ a+ sr)
else (y, x, v〈x〉 ∗ a)

Now we give the definition of the auxiliary functions and check that they are homo-
morphisms. The function gl just takes the row-index of the last element in a list. It is a
homomorphism

gl = ([�, λ(x, y, a).y]) where a� b = b ,

and any value (here we use −1) is a left unit of the operator�. The function gr v is a
bit more complicated and is defined as follows.

gr v [(y, x, a)] = (y, a ∗ v〈x〉)
gr v [as ++(y, x, a)] = let (y′, s) = gr v as

in (y′, if y′ == y then s+ a ∗ v[x] else s)

This function is indeed a homomorphism as follows.

gr v [(y, x, a)] = (y, a ∗ v〈x〉)
gr v (ls ++ rs) =gr v ls � gr v rs

where (yl, sl)� (yr, sr) = if yl == yr then (yl, sl + sr) else (yl, sl)

A right unit of the operator � is (−1, 0).
Now we can apply the Theorem 2.1 to the specification above and obtain the fol-

lowing BH.

mult as v = BH (k v, ([�, λ(y, x, a).(y, a ∗ v〈x〉)]), ([�, λ(x, y, a).y])) as
where k v (yl, (y, x, a), (yr, s)) = if y == yl then (y, x,2)

elseif y == yr then (y, x, a ∗ v〈x〉+ s)
else (y, x, a ∗ v〈x〉)

a� b = b
(yl, sl)� (yr, sr) = if yl == yr then (yl, sl + sr) else (yl, sl)

4 BH in the Orléans Skeleton Library

4.1 An Overview of Orléans Skeleton Library

Orléans Skeleton Library is a C++ library of data-parallel algorithmic skeletons. It is
implemented on top of MPI and takes advantage of the expression templates optimi-
sation techniques [25] to be very efficient yet allowing programming in a functional

8

Skeleton
Signature

Informal semantics

map
DArray<W> map(W f(T), DArray<T> t)

map(f, [t0, . . . , tt.size−1]D) = [f(t0), . . . , f(tt.size−1)]D

reduce
<T> reduce(T⊕(T,T), DArray<T> t)

reduce(⊕, [t0, . . . , tt.size−1]D) = t0 ⊕ t1 ⊕ . . .⊕ tt.size−1

scan
DArray<T> scan(T⊕(T,T), DArray<T> t)

scan(⊕, [t0, . . . , tt.size−1]D) = [⊕0
i=0ti; . . . ;⊕t.size−1

i=0 ti]D

permute
DArray<T> permute(int f(int), DArray<T> t)

permute(f, [t0, . . . , tt.size−1]D) = [tf−1(0), . . . , tf−1(t.size−1)]D

shift
DArray<T> shift(int o, T f(T), DArray<T> t)

shift(o, f, [t0, . . . , tt.size−1]D) = [f(0), . . . , f(o− 1), t0, . . . , tt.size−1−o]D

redistribute
DArray<T> redistribute(Vector<int> dist, DArray<T> t)

redistribute(dist, [t0, . . . , tt.size−1]D) = [t0, . . . , tt.size−1]dist

getPartition
DArray< Vector<T> > getPartition(DArray<T> t)

getPartition([t0, . . . , tt.size−1]D)
=
[
[t0, . . . , tD(0)−1], . . . , [tji , . . . , tji+D(i)−1], . . . , [tjp−1 , . . . , tt.size−1]

]
Ep

where Ep(i) = 1 and ji =
∑k=i−1

k=0 D(k)

flatten
DArray<T> flatten(DArray< Vector<T> > t)

flatten([a0, . . . , aa.size−1]D)
=
[
a0[0], . . . , a0[a0.size− 1], a1[0], . . . , aa.size−1[aa.size−1.size− 1]

]
D′

where D′(i) =
∑

ji≤k<ji+D(i) ak.size and ji =
∑k=i−1

k=0 D(k)

Figure 2: OSL Skeletons

style. Programming with OSL is very similar to programming in sequential as OSL of-
fers a global view of parallel programs [6]. OSL programs operate on distributed arrays
that are one dimensional arrays such that, at the time of the creation of the array, data
is distributed among the processors. Distributed arrays are implemented as a template
class DArray<T>. A distributed array consists of bsp_p partitions, where bsp_p is the
number of processing elements of the parallel (BSP) machine. Each partition is an array
of elements of type T.

To give a quick, yet precise, overview of OSL, figure 2 presents an informal semantics
for the main OSL skeletons together with their signatures. In this figure, bsp_p is
noted p. A distributed array of type DArray<T> can be seen “sequentially” as an array
[t0, . . . , tt.size−1] where t.size is the (global) size of the (distributed) array t (and we use
the same notation if t is a C++ vector). But as with the getPartition skeleton, the
user can expose the distribution of the distributed array, this informal semantics should
also indicates how the array is distributed. We write the distribution as a subscript D
of the distributed array. D is a function from {0, . . . , bsp_p− 1} to N.

The first skeleton, map (and variants such as zip, mapIndex, etc.) is the usual com-
binator used to apply a function to each element of a distributed array (or two for
zip). The first argument of both map and zip could be a C++ functor either extending
std::unary_function or std::binary_function, respectively.

Parallel reduction and parallel prefix computation with a binary associative operator
⊕ are performed using respectively the reduce and scan skeletons. Communications

9

are needed to execute both skeletons.
permute and shift are communication skeletons. The next skeleton only modifies

the distribution of the distributed array, not its content: redistribute distributes the
content of the distributed array according to a vector of integers representing the target
distribution. All the skeletons up to redistribute preserve the distribution. It means
that if they are applied to evenly distributed arrays, the result will be an evenly dis-
tributed array. The redistribute skeleton may thus seems useless. However, some
algorithms such as BSP regular sampling sort, require intermediate and final results
that are not evenly distributed. To implement such algorithms, two additional skele-
tons are needed: getPartition and flatten.

As a very short OSL program, we compute the variance
∑n−1

i=0 (xi −
∑n−1

j=0 xj

n
) of a

sequence of random variables xi:

double avg = osl::reduce(std::plus<double>(), x) / x.getGlobalSize();

double variance = osl::reduce(std::plus<double>(),

osl::map(boost::bind(std::minus<double>(),avg, _2), x));

4.2 Using The BH Skeleton

The signature of the bh skeleton is:

DArray<typename K::result_type>

bh(K k, Homomorphism<T, L> * hl, Homomorphism<T, R> * hr,

L l, R r, const DArray<T>& temp)

According to Definition 2.2, a BH is defined by a function k and two homomorphisms
g1 and g2. k can be easily implemented as a usual functor whose () operator takes three
arguments: the left summary (which will be the result of the application of g1 on the
left part of the list), the current element and the right summary. For g1 and g2, we
define a generic virtual base class Homomorphism which defines the needed function f ,
operator � and its unit id� (Definition 2.1). The user can then implement its own
homomorphism by creating a derived class that provides concrete implementations of
those 3 items.

k, g1 and g2 are the first three parameters of our generic BH skeleton. To apply it
to actual data, we need to provide three last arguments: the boundary elements L and
R, and the list in the form of a DArray. The return value will be a list of the same size,
whose type of elements will be the result type of k.

Implementing for example the computation of the prefix-sum on an array of integers
can be easily done. First, we need the left homomorphism that subsequently adds all
the values:

class HAdd: public Homomorphism<int, int> {

public:

HAdd() { neutral = 0;}

inline int f(const int& i) {return i;}

inline int o(const int& i1, const int& i2) {return i1+i2;}

};

10

We do not have any computation to conduct on the right side. However we still need to
provide an homomorphism to the bh skeleton, so we can define one that always returns
the same value. This homomorphism, named HConst, is defined in a similar way than
HAdd but with each operator returning 0.

We now only have to define the k function which will simply add the computed sum
of the left sub-array with the current element:

struct AddLeft {

typedef int result_type;

inline int operator()(int l, int i, int r) const { return l+i; }

};

We can now apply the skeleton to compute the prefix sum on any distributed array
d, using zeros for the boundary values:

DArray<int> result = osl::bh(AddLeft(),new HAdd(), new HConst(), 0, 0, d);

4.3 Implementation of the BH Skeleton

The bh skeleton is implemented with the usual expression template mechanisms of our
library, so it can be integrated seamlessly in any OSL expression and trigger the fusion
optimisation when it is relevant. The recursive definition of homomorphisms provides
room for a major optimisation. If we apply the definition to an array of elements, we
can write the third recursive rule as such:

h [x1, . . . , xn] = h [x1, . . . , xn − 1]� h [xn] = h [x1, . . . , xn − 1]� f (xn).
This allows us to pre-compute locally the application of the homomorphism to each
sub-array in a linear time as we only have to apply f and � once per element. Without
this optimisation, we would have to conduct these operations i times for each of the
n xi elements, thus resulting in a square complexity. Thanks to the associativity of
homomorphisms, we can symmetrically implement the same optimisation for the right
homomorphism that applies on the end of the array.

A disadvantage is that in order to achieve this purpose we have to consider the local
array on each node in its entirety. This forces us to break the loop fusion mechanism,
which is based on the fact that each element of the array is treated separately. However
fusion can still occur on the expression we apply the bh skeleton to.

5 Experiments

We implemented programs computing the ANSV and sparse-matrix vector multiplica-
tion using our implementation of the BH skeleton in the OSL library. We then measured
the scalabity of those programs when parallelised over several cores on two architec-
tures : a shared-memory computer containing 4 processors with 12 computer cores
each (thus a total of 48 cores), and a distributed-memory cluster of 8 machines each
containing 2 processors of 4 cores (for a total of 64 cores). More experiments are
currently undergoing on a larger cluster containing several hundreds cores. Those
measures were conducted using a statistical evaluation protocol [23] in order to ensure
stability and reproducibility of the results. ANSV was solved on a 107 elements array.

11

Sparse matrix-vector multiplication was conducted on a 109 elements matrix with 10%
of non-zero elements, leading to an actual 108 elements of data.

 1
 4

 8

 16

 24

 32

 48

 64

 1 4 8 16 24 32 48 64

S
p

e
e

d
u

p

Number of cores

Ideal curve
ANSV

Sparse Matrix-Vector Multiplication

Figure 3: Distributed memory

 1

 4

 8

 16

 24

 32

 48

 1 4 8 16 24 32 48

S
p

e
e

d
u

p

Number of cores

Ideal curve
ANSV

Sparse Matrix-Vector Multiplication

Figure 4: Shared memory

The ANSV problem scales well although sub-linearly, we may expect its performance
to peak at a greater number of cores. This could be explained by the fact that each pro-
cessor has to communicate its local array of candidate elements to every other core.
Those arrays can reach a consequent size on big problems, and the cost of this commu-
nication operation may rapidly overcome the parallelisation gains on larger numbers of
cores.

On the other hand, the sparse matrix-vector multiplication is perfectly linear. As in
this problem the processors only have to exchange a pair of numbers, the communi-
cation cost is probably too small to impact the scaling of the algorithm at this level.
We also get super-linear speedups on the distributed architecture with a large num-
ber of cores, which seems to indicate that this particular computation is limited by the
memory bandwidth on the shared memory architecture.

6 Related Work

There are many algorithmic skeletons libraries, for various host languages: [8] is a
recent survey of such libraries. Depending on the supported data structures, these
libraries could be used to implement programs obtained by systematic developement
based on the theory of lists [5, 10, 17], trees [15] or arrays. However none support
BSP homomorphisms. Compared to BSP implementations of skeletons [26] together
with usual theories, our theoretical framework and OSL library allow to derive and
implement efficient programs such as the all nearest smaller values program.

Several researchers worked on formal semantics for BSP computations, for exam-
ple [12, 19, 20]. But to our knowledge none of these semantics was used to generate
programs as the last step of a systematic development. LOGS [3] is a semantics of BSP
programs and was used to generate C programs [27]. The main difference with our
approach is that it starts from a local and imperative view of parts of the program to
build a larger one, and we start from a global and functional view and refine it.

12

7 Conclusion and Future Work

The theory of bulk synchronous parallel homomorphism allows to derive non-trivial ap-
plications. The support of BSP homomorphism in the Orléans Skeleton Library through
the BH skeleton can be used to implement such applications. In the SkeTo and OSL
libraries, fusion [16] is done by the expression templates technique. More global op-
timisations could be done, in particular using the Proto framework for C++: This is
planned. However we still need to investigate the theory of fusion for BSP homomor-
phisms before incorporing BH fusion in OSL.

Acknowledgements

This work is partly supported by ANR (France) and JST (Japan) (project PaPDAS ANR-
2010-INTB-0205-02). Joeffrey Legaux is supported by a PhD grant from the Conseil
Général du Loiret.

References

[1] R. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of Program-
ming and Calculi of Discrete Design, pages 5–42. Springer-Verlag, 1987.

[2] R. H. Bisseling. Parallel Scientific Computation. Oxford University Press, 2004.

[3] Y. Chen and J. W. Sanders. Logic of global synchrony. ACM Transaction on Pro-
gramming Languages and Systems, 26(2):221–262, 2004.

[4] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, 1989. Available at http://homepages.inf.ed.ac.uk/mic/Pubs.

[5] M. Cole. Parallel Programming with List Homomorphisms. Parallel Processing
Letters, 5(2):191–203, 1995.

[6] S. J. Deitz, D. Callahan, B. L. Chamberlain, and L. Snyder. Global-view abstrac-
tions for user-defined reductions and scans. In PPoPP, pages 40–47, New York,
NY, USA, 2006. ACM.

[7] L. Gesbert, Z. Hu, F. Loulergue, K. Matsuzaki, and J. Tesson. Systematic Devel-
opment of Correct Bulk Synchronous Parallel Programs. In International Confer-
ence on Parallel and Distributed Computing, Applications and Technologies (PDCAT),
pages 334–340. IEEE, 2010.

[8] H. González-Vélez and M. Leyton. A survey of algorithmic skeleton frameworks:
high-level structured parallel programming enablers. Software, Practrice & Expe-
rience, 40(12):1135–1160, 2010.

[9] S. Gorlatch and H. Bischof. Formal Derivation of Divide-and-Conquer Programs:
A Case Study in the Multidimensional FFT’s. In D. Mery, editor, Formal Methods
for Parallel Programming: Theory and Applications, pages 80–94, 1997.

13

http://homepages.inf.ed.ac.uk/mic/Pubs

[10] Z. Hu, H. Iwasaki, and M. Takechi. Formal derivation of efficient parallel pro-
grams by construction of list homomorphisms. ACM Transactions on Programming
Languages & Systems, 19(3):444–461, 1997.

[11] N. Javed and F. Loulergue. Parallel Programming and Performance Predictability
with Orléans Skeleton Library. In International Conference on High Performance
Computing and Simulation (HPCS), pages 257–263. IEEE, 2011.

[12] H. Jifeng, Q. Miller, and L. Chen. Algebraic laws for BSP programming. In
L. Bougé, P. Fraigniaud, A. Mignotte, and Y. Robert, editors, Euro-Par’96. Parallel
Processing, number 1123–1124 in LNCS, Lyon, August 1996. LIP-ENSL, Springer.

[13] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The OCaml
System release 4.00.0. http://caml.inria.fr, 2012.

[14] F. Loulergue. Parallel Juxtaposition for Bulk Synchronous Parallel ML. In
H. Kosch, L. Boszorményi, and H. Hellwagner, editors, Euro-Par 2003, number
2790 in LNCS, pages 781–788. Springer Verlag, 2003.

[15] K. Matsuzaki, Z. Hu, and M. Takeichi. Parallelization with tree skeletons. In
Euro-Par, pages 789–798, 2003.

[16] K. Matsuzaki, K. Kakehi, H. Iwasaki, Z. Hu, and Y. Akashi. A fusion-embedded
skeleton library. In Euro-Par, pages 644–653, 2004.

[17] K. Morita, A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi. Automatic Inversion
Generates Divide-and-Conquer Parallel Programs. In ACM SIGPLAN 2007 Confer-
ence on Programming Language Design and Implementation (PLDI 2007), pages
146–155. ACM Press, 2007.

[18] B. O’Sullivan, D. Stewart, and J. Goerzen. Real World Haskell. O’Reilly, 2008.

[19] D. Skillicorn. Building BSP Progams Using the Refinement Calculus. In D. Merry,
editor, Workshop on Formal Methods for Parallel Programming: Theory and Appli-
cations, pages 790–795. Springer, 1998.

[20] A. Stewart, M. Clint, and J. Gabarró. Barrier synchronisation: Axiomatisation and
relaxation. Formal Aspects of Computing, 16(1):36–50, 2004.

[21] J. Tesson. Environnement pour le développement et la preuve de correction
systématiques de programmes parallèles fonctionnels. PhD thesis, LIFO, University
of Orléans, November 2011.

[22] The Coq Development Team. The Coq Proof Assistant. http://coq.inria.fr.

[23] S.-A.-A. Touati, J. Worms, and S. Briais. The Speedup Test. Technical Report
inria-00443839, INRIA Saclay - Ile de France, 2010.

[24] L. G. Valiant. A bridging model for parallel computation. Comm. of the ACM,
33(8):103, 1990.

14

http://caml.inria.fr
http://coq.inria.fr

[25] T. Veldhuizen. Techniques for Scientific C++. Computer science technical report
542, Indiana University, 2000.

[26] A. Zavanella. The skel-BSP global optimizer: Enhancing performance portability
in parallel programming. In Euro-Par, volume 1900 of LNCS, pages 658–667.
Springer, 2000.

[27] J. Zhou and Y. Chen. Generating C code from LOGS specifications. In 2nd Interna-
tional Colloquium on Theoretical Aspects of Computing (ICTAC’05), number 3407
in LNCS, pages 195–210. Springer, 2005.

15

	Introduction
	BSP Homomorphisms
	Program Derivation using BSP Homomorphisms
	All Nearest Smaller Values
	Sparse matrix-vector multiplication

	BH in the Orléans Skeleton Library
	An Overview of Orléans Skeleton Library
	Using The BH Skeleton
	Implementation of the BH Skeleton

	Experiments
	Related Work
	Conclusion and Future Work

